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Abstract

Enlarged ventricular size and/or asymmetry have been
found markers for psychiatric illness, including schizophre-
nia. However, this morphometric feature is non-specific and
occurs in many other brain diseases, and its variability in
healthy controls is not sufficiently understood. We studied
ventricular size and shape in 3D MRI (N=20) of monozy-
gotic (N=5) and dizygotic (N=5) twin pairs. Left and right
lateral, third and fourth ventricles were segmented from
high-resolution T1w SPGR MRI using supervised classifi-
cation and 3D connectivity. Surfaces of binary segmenta-
tions of left and right lateral ventricles were parametrized
and described by a series expansion using spherical har-
monics. Objects were aligned using the intrinsic coordinate
system of the ellipsoid described by the first order expan-
sion. The metric for pairwise shape similarity was the mean
squared distance (MSD) between object surfaces. Without
normalization for size, MZ twin pairs only showed a trend
to have more similar lateral ventricles than DZ twins. After
scaling by individual volumes, however, the pairwise shape
difference between right lateral ventricles of MZ twins be-
came very small with small group variance, differing sig-
nificantly from DZ twin pairs. This finding suggests that
there is new information in shape not represented by size, a
property that might improve understanding of neurodevel-
opmental and neurodegenerative changes of brain objects
and of heritability of size and shape of brain structures. The
findings further suggest that alignment and normalization
of objects are key issues in statistical shape analysis which
need further exploration.

1 Introduction

Quantitative morphologic assessment of individual brain
structures in neuroimaging most often includes segmenta-
tion followed by volume measurements. Volume changes
are intuitive features as they might explain atrophy or dila-
tion of structures due to illness. On the other hand, struc-
tural changes like bending/flattening or changes focused at
a specific location of a structure, for example thickening
of the occipital horn of ventricles, are not sufficiently re-
flected in global volume measurements. Development of
new methods for three-dimensional shape analysis incor-
porating information about statistical biological variability
aims at tackling this issue.

Davatzikos [1] proposed an analysis of shape mor-
phometry via a spatially normalizing elastic transformation.
Inter-subject comparisons were made by comparing the in-
dividual transformations. The method is applied in 2D to
a population of corpora callosa. A similar approach in 3D
has been chosen by Joshi et al[2] to compare hippocampi.
Using the viscous fluid transformation proposed by Miller
[3], inter-subject comparisons were made by analyzing the
transformation fields. Theanalysisof transformation fields
in both methods has to cope with the high dimensionality
of the transformation and the sensitivity to the initial posi-
tion. Although the number of subjects in the studied pop-
ulations is low, both show a relatively stable extraction of
shape changes (see Csernansky[4]). Quantitative analysis
of shape changes provided by the deformation fields, ex-
pressed as point-wise changes in size, can be easily inter-
preted locally[5, 6]. A difficulty, however, is the inability
of deformation fields to capture subtle changes that might
be related to the various scales at which the object’s geo-
metric features are manifested.

The approach taken by Kelemen[7] evaluates a pop-
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ulation of 3D hippocampal shapes based on a bound-
ary description by spherical harmonic basis functions
(SPHARM), which was proposed by Brechbühler [8, 9].
The SPHARM shape description delivers an implicit corre-
spondence between shapes on the boundary, which is used
in the statistical analysis. As in the approaches discussed
before, this approach has to handle the problem of high di-
mensional features versus a low number of samples. Fur-
ther, the detected shape changes are expressed as changes
of coefficients that are hard to interprete.

Golland[10] in 2D and Pizer et al[11, 12] in 3D pro-
posed two different approaches of applying shape analysis
to a medial shape description. Blum[13] claims that medial
descriptions are based on the idea of a biological growth
model and a ’natural geometry for biological shape.’ The
medial axis in 2D captures shape intuitively and can be re-
lated to human vision (see Burbeck[14] and Siddiqui[15]).
Both Pizer and Golland propose a sampled medial model
that is fitted to individual shapes. By holding the topol-
ogy of the model fixed, an implicit correspondence between
shapes is given and statistical shape analysis can directlt be
applied.

This paper applies a technique originally developed for
model-based segmentation, the SPHARM shape represen-
tation of object surfaces[8, 7], to analyze brain structures.
In particular, we address the clinical research problem of
studying similarity of brain structures in idential (monozy-
gotic, MZ) and non-identical (dizygotic, DZ) twin pairs.
The paper is organized as follows. First we discuss the
SPHARM description and its use for shape analysis, with
special emphasis on the issues alignment and normaliza-
tion of structures prior to measuring shape difference. We
then present results of the lateral ventricle study in MZ/DZ
twins.

2. Methods

2.1 Spherical harmonics (SPHARM)

In summary, the SPHARM description is a hierarchical,
global, multi-scale boundary description that can only rep-
resent objects of spherical topology. The basis functions
of the parameterized surface are spherical harmonics. Kele-
men[7] demonstrated that SPHARM can be used to express
shape deformations. Truncating the spherical harmonic se-
ries at different degrees results in object representations at
different levels of detail. SPHARM is a smooth, accurate
fine-scale shape representation, given a sufficiently small
approximation error.

In the next sections, we briefly describe the mathemat-
ical properties of spherical harmonic descriptors, and the
parameterization computation. Also, we discuss how to es-
tablish correspondence between different objects described

by SPHARM. This correspondence is used to compute the
Mean Squared Distance (MSD) between surfaces, the met-
ric for measuring shape difference used herein.

2.1.1 Spherical harmonics descriptors

This section gives a summary of spherical harmonic follow-
ing Brechb̈uhler[8].

Spherical harmonic basis functionsY ml , −l ≤ m ≤ l
of degreel and orderm are defined onθ ∈ [ 0;π ] × φ ∈
[ 0; 2π) by the following definitions[16] (see Fig. 1 left for
a visualization of the basis function):

Y ml (θ, φ) =

√
2l + 1

4π
(l −m)!
(l +m)!

Pml (cos θ) eimφ(1)

Y −ml (θ, φ) = (−1)m Y ml
∗(θ, φ) , (2)

whereY ml
∗ denotes the complex conjugate ofY ml andPml

describes the associated Legendre polynomials

Pml (w) =
(−1)m

2l l!
(1− w2)

m
2
dm+l

dwm+l
(w2 − 1)l. (3)

To express a surface using spherical harmonics, the
three coordinate functions are decomposed and the sur-
facev(θ, φ) = (x(θ, φ), y(θ, φ), z(θ, φ))T takes the form

v(θ, φ) =
∞∑
l=0

l∑
m=−l

c ml Y ml (θ, φ) , (4)

where the coefficientscml are three-dimensional vectors due
to the three coordinate functions. The coefficientscml are
obtained by solving a least-squares problem. Therefore,
the values of the basis functions are gathered in the ma-
trix z = (zi,j(l,m)) with zi,j(l,m) = Y ml (θi, φi), where
j(l,m) is a function assigning an index to every pair(l,m)
and i denotes the indices of thenvert points to be ap-
proximated. The coordinates of these points are arranged
in v = (v1,v2, . . . ,vnvert)

T and all coefficients are gath-
ered inc = (c 0

0 , c
−1
1 , c 0

1 , . . .)
T . The coefficients that best

approximate the points in a least-squares sense are obtained
by

c = (zTz)−1zTv . (5)

Using spherical harmonic basis functions, we obtain a
hierarchical surface description that includes further details
as more coefficients are considered. This is illustrated in
Fig. 1 right.

2.1.2 SPHARM description from voxel-based objects

The objects of interest are usually manually or semi-
automatically segmented by a human expert, resulting in
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Figure 1. Decomposition of objects using
SPHARM description. Left: Visualization of
the Spherical harmonic basis functions. The
plot shows the real parts of the spherical har-
monic functions Y ml , with l growing from 0
(top) to 5 (bottom), and m ranging from 0 (left)
to l in each row. Right: Description of a lat-
eral ventricle (side view) at different degree’s;
m = 1,4,8,12 top to bottom.

a voxel representation. The voxel representation has to be
preprocessed to fulfill the precondition of sphere topology,
e.g. via a closing operation or a smoothing filter. As we
are only interested in its boundary, the voxel representation
is converted to a polygonal surface mesh that serves as in-
put for the optimization procedure that finds an appropriate
(θi, φi) parameterization[8].

The appropriate parameterization of the points of a sur-
face description is a key problem. Every pointi of the point
cloud that will be approximated by the surface description
is to be assigned a parameter vector(θi, φi). For surfaces
of spherical topology, the natural parameter space is the unit
sphere with polar coordinates. A homogeneous distribution
of the parameter space is essential for the decomposition
of the surface. This is also necessary for an appropriate
approximation of corresponding points, as described in the
next section 2.1.3.

A bijective mapping of the surface to the unit sphere is
created, i. e., every point on the surface has to map to ex-
actly one point on the sphere, and vice versa. The main
idea of the procedure is to start with an initial parameteriza-
tion. This initial parameterization is optimized so that every
surface patch gets assigned an area in parameter space that
is proportional to its area in object space, while the distor-
tion to the quadrilateral mesh is minimized. The proposed
parametrization of surfaces is invariant to object scaling as
the whole surface is mapped to the unit sphere and opti-
mized for homogeneous distribution of nodes.

2.1.3 SPHARM correspondence

The scheme for establishing correspondence between ob-
jects described by SPHARM[8] is a 3D extension of the 2D
arc-length shape parameterization (see also Székely [17]).
The first step is a homogeneous distribution of the parame-
ter space over the surface, a step done in the parameteriza-
tion optimization. In the second step the parameterization is
rotated in the parameter space for normalization. This rota-
tion is based on the first order ellipsoid, which is computed
from the first three SPHARM coefficients. The result of the
rotation satisfies the following properties:

• The parameter locations of the poles of the first order
ellipsoid match with the poles of the sphere.

• The parameter locations of the 3 main ridges of the
first order ellipsoid are moving along the equator, and
the0 andπ meridians of the sphere.

Rotation in parameter space eliminates dependency of
the parametrization from an arbitrary choice of poles of the
surface parametrization. Correspondence between surfaces
is know defined as the point-to-point correspondence estab-
lished by points with the same parameter vector(θi, φi).
Whereas alignment and rotation in parameter space is thus
normalized on a coarse scale object representation (ellip-
soid), the final correspondence is obtained by expansion of
the object to a higher degree. The quality of the correspon-
dence is shown in Fig. 2. The visual comparison demon-
strates that normalizing the parameter space on a coarse
scale description of objects results a good correspondence
despite the fact that it does not use explicit characteristic
surface features. A quantitative evaluation study against
manual landmarking is currently in progress. Please note
that objects shown in Fig. 2 have been spatially normalized
as described in later section 2.2.

2.1.4 Mean Squared Distance (MSD) between
SPHARM objects

The correspondence between objects described by
SPHARM allows the computation of distance measures
between two objects. The orthogonality of the spherical
harmonic basis functions allows Parseval’s theorem to be
used to compute the root Mean Squared Distance (

√
MSD)

between two objects directly from their coefficients via a
difference calculation. A correction is needed since the
squared spherical harmonic basis functions do not integrate
to 1 but to 4π.

MSD=
1

4π
·

inf∑
l=0

l∑
m=−l

||cm1,l − cm2,l||2 (6)
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Figure 2. Visualization of the SPHARM corre-
spondence. A first order ellipsoid and six left
lateral ventricles are displayed. The surface
net shows the (θi, φi) parameterization (same
parameters = same homologous points). The
ridges on the first order ellipsoid are the equa-
tor and {0, π/2, π, 3 · π/2} meridian lines in all
objects. The equator and meridian lines are
emphasized in different colors. The poles are
at the crossing of the meridian lines.

Error measures other than
√

MSD need an appropriate
sampling of the spherical parameterization(θi, φi), for ex-
ample by an iterative icosahedron subdivision of the spher-
ical (θ, φ) parameter space. Using the point-to-point cor-
respondence described previously and this sampling, er-
ror measures like the Mean Absolute Distance (MAD),
Hausdorff-distance or arbitrary quantiles derived from the
histogram of surface distances can be computed straightfor-
wardly.

2.2 Object alignment and scaling

As a prerequisite for any shape similarity calculation,
shapes have to be normalized with respect to a reference co-
ordinate frame. Since we are interested in measuring shape
differences, a normalization is needed to eliminate differ-
ences that are due to rotation, translation and magnification.
Normalization of translation and rotation is accomplished
by aligning the SPHARM objects via the first order ellip-
soid. This perfectly matches center and axes of the first
order ellipsoids (see Fig. 3).

In order to normalize for magnification, an appropriate
scaling method has to be defined. The choice of the scaling
method depends on the task and the type of objects. We
investigated two possibilities:

A No scaling correction: The computation of shape dif-
ferences without any scale normalization reveals dif-
ferences between small and large objects even though
they might have the same shape properties. Thus, the

differences will reflect mixed values of both the shape
differences and the size differences.

B Uniform scaling to unit volume: Creating a shape dif-
ference measure that is orthogonal in its nature to the
volume measure has the potential to reveal information
additional to size. The volume measurements can be
incorporated later into a multivariate statistical analy-
sis as an additional orthogonal feature (see later Fig 8).

The effects of the two different scalings applied to the
driving clinical problem are illustrated in Fig. 3.

Alignment

No scaling Unit Volume scaling

Figure 3. Object alignment and scaling. Top
row: Two left lateral ventricles are aligned to
perfectly match the center and axis of the first
order ellipsoid; left: objects, middle: first or-
der ellipsoids, right: aligned ellipsoids. Bot-
tom row: Pairs of right lateral ventricles (MZ
twin pair) unscaled (left) and scaled to unit
volume (right). This example shows that
shapes are quite similar and that the scaling
corrected for an existing size difference.
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3. Results

This section presents SPHARM applied to a population
of lateral ventricles, a fluid filled structure in the center of
the human brain that is divided into a left and a right part lo-
cated in the respective brain hemispheres. The image data is
part of a mono/dizygotic twin study and consists of 20 twin
subjects (10 pairs, 5 monozygotic and 5 dizygotic pairs).
The original brain images were provided by D. Weinberger,
NIMH Neuroscience in Bethesda, Maryland. The segmen-
tation method used a single gradient-echo channel (T1w,
256x256x128, 240mm FOV, 1.5mm slice distance) with
manual seeding for Parzen-window based non-parametric
supervised statistical classification. Manually-guided three-
dimensional connectivity was used to extract the left and
right lateral ventricles. The segmented structures were post-
processed using a closing operation with a spherical struc-
turing element of radius of two voxels to provided simply
connected 3D objects as required for surface parametriza-
tion.

Figure 4. Three-dimensional rendering of the
skin surface (transparent) and the lateral ven-
tricles. Lateral ventricle of left and right brain
hemispheres are shown in green and orange.

Fig. 5 displays the lateral ventricles of all twin pairs. The
statistical shape analysis presented below aimed to distin-
guish monozygotic (MZ) twins from dizygotic (DZ) twins
and from unrelated pairs. The three subject groups are
matched for age, gender and handedness. The population
size of each group is very small (5 MZ, 5DZ, 10 unrelated),
so the observed effect must be quite large for the statistical
analysis to yield a significant result. A previous study was
performed by Bartley et al[18] on the same datasets with
the goal of distinguishing the populations. They compared
cortical gyral patterns and the total brain volumes. Both
measures show significant differences between the MZ and
DZ populations.

Figure 5. Visualization of the lateral ventricles
of all twin pairs (same color for pairs) scaled
with the individual volume (correct relative
size). Top two rows: Left ventricles. Bot-
tom two rows: Right ventricles. Each block:
Top row: MZ twins. Bottom Row: DZ twins.

3.1 Volume similarity analysis

We studied the twin pair’s similarity using signed vol-
ume difference but also normalized absolute volume differ-
ence: ∆volT1,2 = |volT1 − volT2 |/(volT1 + volT2). The
former uses volumes normalized by individual size of intra-
cranial cavity, whereas the latter is a relative measure and
independent of overall brain size. We will only discuss the
relative measure as the absolute measure presented signifi-
cantly more population noise. As shown in Fig. 6, there is
a trend in both brain hemispheres between the two popula-
tions, but no significant conclusions can be drawn since the
volume measurement distributions are overlapping. Thep-
values for discriminating the two population are at 0.15 and
0.16, which is non-significant at a5% significance level (see
Tab. 1).
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Figure 6. Plot of pairwise relative ventricle
volume difference ∆volT1,2 between MZ and
DZ twin groups. Results of left and right ven-
tricles are shown in the left and right figures.
No significant conclusions can be drawn.

3.2 Shape analysis via SPHARM

The SPHARM coefficients of the objects were deter-
mined and normalized with respect to rotation and transla-
tion using the first order ellipsoid. Using the objects not
normalized for scaling, our analysis yields no significant
difference between the two populations as shown in Fig. 7
and Table 1. There is just a trend showing a smaller volume
difference in MZ pairs versus DZ pairs. A significant differ-
ence between MZ and DZ groups is observed for the lateral
ventricles in the right brain hemisphere after normalizing
(isotropic scaling) the objects for individual volumes. The
p-value is at 0.019 (see Tab. 1), which suggests significance
at the5% level.

MZ/DZ MZ/Other DZ/Other

Volume Left 0.151 0.333 0.486
Volume Right 0.167 0.377 0.500
MSD unscaled Left 0.201 0.030 0.295
MSD unscaled Right 0.145 0.042 0.419
MSD scaled Left 0.106 0.046 0.825
MSD scaled Right 0.019 0.009 0.471

Table 1. Table of p-values for discriminating
the 3 populations of MZ and DZ twin pairs and
unrelated pairs. Bold numbers are significant
at the 5% level.

A closer analysis of the results plotted in Figure 7 reveals
interesting new information about the structure of brain ven-
tricles in genetically identical MZ twin pairs, non-identical
DZ twins, and non-related but age and gender matched
pairs. We are well aware that we have to be cautious with
conclusions due to the small sample size. Before size nor-

malization (upper row), the left and right ventricles show
the same trend, namely that MZ twins are more similar than
DZ twins. Group tests were not significant which is in part
due to the small sample size. After size normalization with
individual volumes, the right ventricles reveal a very inter-
esting result. MZ twin pairs show a very small shape dif-
ference and very low variability, suggesting that the shapes
after normalization are very similar (see also Fig. 5). This
shows that differences of right ventricles in MZ twin pairs
are mostly due to a global scaling (see Fig. 6) and that there
are only minor residual shape differences. Surprisingly, this
strong and significant effect is not found for the left ven-
tricles, where even after size normalization there is only a
trend showing more similar ventricle shapes in MZ as com-
pared to DZ. The statistics further illustrates that DZ twin
pairs didn’t differ from unrelated pairs, both before and af-
ter volume normalization.

No scaling

NR MZ DZ

2.5

5

7.5

10

12.5

15

17.5
Left MSD, no scaling, mm

NR MZ DZ

2.5

5

7.5

10

12.5

15

Right MSD, no scaling, mm

Unit Volume scaling

NR MZ DZ

0.5

1

1.5

2

2.5

3

Left MSD, vol scaling, mm

NR MZ DZ

0.5

1

1.5

2

2.5

Right MSD, vol scaling, mm

Figure 7. Plot of MSD shape difference be-
tween twins of the left (left column) and right
(right column) lateral ventricles. Top row:
Plots for shape difference when no scaling
normalization is applied. Bottom row: Plots
when objects are isotropically scaled to unit
volume. The vertical axis displays the MSD
shape difference in mm.

The splitting of size difference and residual shape dif-
ference between pairs allows us to use both measures in a
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combined analysis, as there might be an interaction between
volume and shape differences leading to a better group dis-
crimination or an improved understanding of morphologic
differences. Figure 8 illustrates the two-dimensional feature
space with relative volume difference (vertical axis) and
MSD shape difference of size-normalized objects (horizon-
tal axis) for the left and right ventricles. The three groups
unrelated subjects (NR), MZ twins and DZ twins are indi-
cated by triangles, squares and diamonds. Interpretation is
difficult due to the small sample size and the non-Gaussian
distribution of samples, suggesting that multi-variate non-
parametric statistical techniques would be required for a
quantitative analysis. A visual comparison shows that dis-
crimination between MZ and DZ twin pairs is better for the
right ventricles than for the left ventricles. Discrimination,
however, would be mostly governed by the MSD shape dif-
ference measure rather than the volume difference measure.

0 0.5 1 1.5 2 2.5
MSD

0

0.02

0.04

0.06

0.08

0.1

Vol

Left MSD vs Vol diff

0 0.5 1 1.5 2
MSD

0

0.02

0.04

0.06

0.08

Vol

Right MSD vs Vol diff

Figure 8. Plot of combined MSD shape differ-
ence and volume difference between twins of
the left (left column) and right (right column)
lateral ventricles. MZ Twins are shown as red
squares, DZ Twins as blue diamonds and un-
related subjects (NR) as black triangles. Lat-
eral ventricles were scaled to unit volume for
the MSD shape difference measure.

4. Conclusions

This paper presents shape analysis using surface
parametrization by spherical harmonics. The hierarchical
nature of the SPHARM shape representations allows ob-
ject alignment by an intrinsic coordinate system derived
from a coarse scale representation, which is feasible for ob-
jects depicting three distinctly different major axis. Previ-
ous work[8, 7] and results presented in this paper demon-
strate that this alignment results in a good initial point-to-
point correspondence of surfaces if shapes are derived from
a homogeneous shape population. A quantitative analy-
sis of the quality of 3D correspondence is the subject of
a current study. The method presented herein can be seen

as complimentary to the seminal work by Toga et al.[5,
6] as it does not express shape variability in Talairach
stereotaxic space but an an intrinsic object-centered coordi-
nate system. The shape distance metric used herein is equiv-
alent to the mean square distance (MSD) between densly
sampled corresponding surface points, however obtained by
a quick calculation in parameter space. Alternative shape
representation schemes providing dense sets of correspond-
ing points could be used as well. The MSD is known to be
sensitive to outliers. Future work will replace the MSD met-
ric by statistical analysis of quantiles derived from surface
distance histograms as discussed in the text.

The MZ/DZ twin study demonstrates that shape mea-
sures reveals new information additional to size measure-
ments which might become relevant for improved under-
standing of structural differences in normal populations but
also in comparisons between healthy controls and patients.
Twin studies offer the advantage to reduce natural biolog-
ical variability by choosing subjects with identical genes.
This study clearly demonstrates that significant differences
between MZ and DZ pairs could not be found by volume
measurements but only by analyzing shape. Scaling by vol-
ume showed that there is only a minor residual shape dif-
ference for the right but not for the left ventricle, and that
this lateralized shape effect results in a significant group
difference between MZ and DZ twin pairs. We have no
obvious explanation for this finding but hope to get more
insight through close collaboration with experts in neuro-
biology and neurodevelopment. Global scaling reveals an
effect otherwise hidden due to the fact that any size change
would also be reflected in the shape difference measure.
The choice of scaling might depend on the application do-
main and on the type of shape effects to be studies. Alter-
native choices would include the size of the longest axis,
an affine transformation, or a Procrustes fit between sets of
corresponding points. A follow-up study currently analyzes
differences between MZ twins discordant for schizophre-
nia to reveal insight into hypothesized morphologic changes
due to illness. Analysis of shape changes similarly to the
case study presented here might also become important in
longitudinal assessments of morphologic change due to de-
velopmental or degenerative processes.

A weakness of shape analysis by SPHARM is the non-
intuitive nature of the set of coefficients describing shape.
Shape difference findings, even found to be statistically sig-
nificant, do not easily reveal the type and localization of
the effect. Localized shape differences between groups are
only qualitatively accessible by 3D surface renderings la-
beled with results of local test statistics (e.g.[4]) or by cine
loops displaying a morphing between mean shapes. The
important issue of providing an intuitive shape description
expressed in terms of natural language, e.g. change of width
or curvature) are currently addressed by developing an alter-
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native shape representation technique based on 3D medial
representations (skeletons)[19, 20].
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