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Colocalization Definitions

Colocalization refers to different data analysis methods to characterize the degree
of overlap between two different fluorescent labels, each having a separate emission
wavelength, to see if two different cellular "targets" are located in the same area or
very near to one another. (Wikipedia)

In cell biology:
two proteins are at the same location
At statistical level:
at the observed resolution, we can not exclude that two proteins are at the same location

e Why is colocalization investigated ?
° to show an association between two molecules

e to show the recruitment of a molecule during a process
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Definitions
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@ How can colocalization be present ?

® chance colocalization

® apparent colocalization due to inappropriate
image analysis methods

® real colocalization where the assumption of
direct or indirect interactions between
molecules is correct.
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@ Different «colocalizations»

distance ~ 1-10 nm

e Direct interaction

“‘ distance ~ 50-100 nm
e Indirect interaction

distance ~ 100-500 nm

e Cellular microdomains

membrane domains, endosomes...
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We want coefficients

sensitive to the extra non-colocalized signal

robust to relative variations of intensities

robust to the presence of Background




Problems related to the acquisition

Effect of imaging conditions

Color shift l Background: weak SNR .
Blur: out of focus . Cross-talk .
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@ Colocalization Overview

» A guided tour into subcellular colocalization analysis in light
microscopy Imaged plugin: Jacob ot etal 2006]

° Intensity-correlation based approaches [Costes et al. 2004][Manders et al. 1992]
[Van Steensel et al. 1996][Li et al. 2004]
0 Global intensity similarity measure

o0 Mixed information; noise contamination
° Object-based approaches [soute et al. 2006]iLachmanovich et al. 2003]
0 Information of the objects of interest which are explicitly explored

e Our method

0 Statistical reliable object detection adapting the microscope noise
nature

o Statistical reliable colocalization controlling a false discovery rate
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Quantitative colocalisation

o intensity- q 2 approaches N\ Ghjfect-
based &F BT R ReTamrse - & <
¢ g T ¢ A o ad s 1 me.l_hods

methods

correlation score of the ; : . .
intensity values in a dual- Object identification by

channel image is calculated segmentation

Pearsons, Manders’, cross Analysis of object position

correlation and Lis coeff.,,
Costes: statistical validation




Quantitative colocalization

/ Quantification \
image as a collection of pixels: image as a collection of objects:
look for pixels which are linearly look for partial/total overlap of objects

linked between the two channels.

Parikles Centroids

Intensity based: well adapted for a global intensity analysis, but not for local spatial analysis
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Intensity-based methods

Total colocalisation

Partial colocalisation’

Pearson’s coefficient: evaluate the linearity of relationship
Y (R -R)x(G,-G)

R =—
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Different intenéities

Exclusion

R-=-1, no conclusion or exclusion
R-= 0, no correlation
R-= 1, high correlation
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Intensity-based methods

Noise is a major drawback which may decrease the Pearson’s coefficient value

Remove noise, but how ? thresholding

Costes’ method: progressively decrease the threshold until
Ry below threshold is equal or below zero

Manders’ coefficients:

Ricooc = R;, if Gi>0; Gicoloc=G,j, if Ri>0

Auto. thr. N

Green
255

uto. thr. G

Manders et al. (1992) ). Cell Sci 103, 857-862.
Costes et al. (2004). Biophys . 86, 3993-4003
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Intensity-based methods

PC:-0.108 PC:0.169

PC:0.446 PC:0.446 PC:0.446 PC:0.228
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Intensity-based methods

PC:-0.108 PC:0.169
M1=0, M2=0 M1=0.25, M2=0.25

PC:0.446 PC:0.446 PC:0.446 PC:0.228
M1=0.5, M2=0.5 M1=0.5, M2=0.5 M1=1, M2=0.163 M1=0.5, M2=0.286
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Intensity-based methods (3/4)

Li’s approach: E "o<;§3r% | S
fop, 2 | 28 6
Normalize both channel intensities to a [0, |] range oy ¥ 606\%00\0&
Postulate: if colocalization exists, both intensities are —_
on the same side of the mean value (Ai-a)(Bi-b)>0 ?
Intensity Correlation Quotient, ICQ ;‘
reflects the proportion of covarying pixels 3
-
The ICQ values are distributed between [-0.5;0.5] ;
Random staining: ICQ =0 5 Meanlinewort) |
Segregated staining: -0.5<ICQ<0 A
Dependent staining : 0<ICQ<0.5 S
0 Q/ 2
A good mean to highlight exclusion and -1 0 1
absence of colocalization (SANED)

Li et al. (2004). ). Neurosci. 24,4070-408 |
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Intensity-based methods (4/4)

While Pearson’s coefficient put a number on two images, the significance of the number

remains unclear.
Costes proposes to confront the observed R, to a distribution of R, obtained from

randomized images

’11'\"\‘
34 ("
Statistical approach
N
N ',\e i r
22 \ ‘
Green channel + “.« Red channel = "
E \
F-] \
2 \
S \
£ | |
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J" 1 PCH0.687
0 /I T IK = ’l'l T
. o 206 v ol cat gy 0,015 0,000 0015 0,68 0,69 0,70
Randomized green image Cologalisation map 5 Peirson's coefficlent

Costes et al. (2004). Biophys |. 86, 3993-4003




Green intensity (1)

r=0.25 r=04

| B
-
‘ NoO threshold

Red intensity (1)




Summary on intensity-based

approaches

Pearson’s coefficient:
- higly sensitive to noise
- Not appropriate if several ratios of proteins exist on the same image
- not easy to highlight exclusion
- not comparable from one couple of images to another
Manders coefficient:
- threshold hard to set, not always accurate if automatically set
- not always comparable from one couple of images to another
Li’s approach:
+ easy to highlight exclusion/no colocalization
A good visual estimate of the proportion of colocalization
A first approach to image normalisation
Coste’s approach:
The first statistical approach
No need to compare a couple of image to another: absolute statement for colocalization
- Need to minimize noise




@ Object-based analysis

| .Segmentation
2.Centroid retrieval
3.Colocalisation

Segmentation
Centroids
retrieval

Raw image Centroids

[Lachmanovich et al. 2003]
[Jaskolski et al. 2005]
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Colocalisation Method

Main idea

= Multiple hypothesis tests on the distances between all pairs of the spots generated
by the two protein markers

m Two spots are decided to be colocalized if their distance is statistically significantly small

Sa:={ca;i:= (21 Ya.

’ :4.,‘).1 < 1 < 3\?‘_1}
5[} = {(n, .

(zp.i.yB.i-2B.i). 1 <1 < Np}

(dij)1<i<NA1<j<Ng
Spot detectlon "
_________ IAIB ' colocalization ratio
| : Multiple hypo. testsé e Vs
““““““““““ ‘ NysNp
Null hypothesis model
.............. M oottt p(log(d))
R4, Rp
~
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Microscopie confocale vs

microscopie a champ large

Microscope confocal

image brute

image brute

image déconvoluée
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Rayleygh’s Resolution Criterion

® The “minimal” resolvable distance between two symmetrically-
placed incoherent point sources of equal amplitudes
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@ Confocal imaging

e Confocal microscope Detector

e The small pinhole: photon-limited imaging
e Data model X := (X;);czq
e Photon counting mode (Poisson)

Confocal
Aperture

Xi ~ P(Az) “‘ Dichroic Mirror
e Analog mode (Poisson+Gaussian) ésemeam

Xi=aU+Vi, Ui~P\), Vi~N(uo?)

» s the overall gain of the detector

(Ui)i  » models the photon counting Objective Lens

(Vi.)i » models the readout noise

intensity image counts (observed) — /V\ P fE
ne or Focus
—— ) 2

TN ]
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Wavelet transform

Une ou plusieurs fonctions meéres qui engendrent par dilatation et
translation la famille d’'ondelettes
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Wavelet transform

translation
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Analyse multi-résolution

orthogonale

A x(t) =Ax(t)+D;x(t)

uﬂur-—.l_.ﬂuﬂL—IL‘_ll—lH[
Ax X
! t b 3 v ’ ’7
L @ & Tﬁ L] I_‘|
¢ T : Ax L‘_I
2 D,x
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~
Y

INSTITUT PASTEUR




Spot Detection by Wavelet Transform

Features of the wavelet transform

* Based on the convolution of the signal with a family of functions derived from a “mother”
function by translation and dilation

x10
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B2 - scale function B2 - wavelet function

* Analysis tool that cuts up data into different frequency components and studies each with
a resolution adapted to its scale

Original

|st scale

27 2nd scale

3rd scale

Olivo-Marin,).-C., Pattern Recognition (2002)




Spot detection by wavelet Transform

Noisy original image Wavelet bands

Level 3

Olivo-Marin,J.-C., Pattern Recognition (2002)




Spot Detection

Noise
reduction

.
N
‘ p=20 Thresholdi
N\ / =sno Ing Olivo-Marin,J.-C., Pattern Recognition (2002)
Zhang et al. 2007

Feature Adapted Detection with Wavelet Transform )




Step 2: Null Hypothesis Model

® Simulation from the detections

m Null model: (d; ;); ; are observed from the object centers 5S4 and Sp which
are independently and uniformly randomly distributed in the supports of protein
A (R 4) and of protein B (R ), respectively

® Null model describes the situation where colocalizations can occur only
by chance

m Currently, R4 and R are both supposed to be the cell support, but can be
refined using prior information

®m The null distribution of d is estimated by a Parzen window method (Gaussian
kernel estimator) applied on distances drawn from the null model

o p(log(d)) is estimated instead of P(d) to avoid instability at the boundary (d = 0)

G —
Y]

INSTITUT PASTEUR




@ Step 3: Multiple Hypothesis Tests

m Test the observed distances against the null distribution

m Multiple hypothesis tests

o Controlling FamilyWise Error Rate (FWER)
= The probability of erroneously rejecting even one null hypothesis

= Highly conservative

o Controlling False Discovery Rate (FDR)  banamint ana voration 5001

FDR := E||FP|/(|FP| + |TP|)]
= Usually have a high detection power
= Can easily handle dependent statistics (e.g. the observed distances)
m Colocalization ratio computation
o If FDR <3 then and if K hypotheses have been rejected, we will have at
least K'(1 — 3) correct decisions on average

Te = I(<1 — 4,13)/(1\’241\’73)
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@ Applications Context

O

O

O

® How an unknown protein X is localized during the endocytic process

Physiological function and the location of a protein are highly related
Location reveals the information on the protein’s biological role
5 proteins (P,, P,, P5, P4, Ps) as markers of cellular compartments

Co-immunofluorescence labeling for (X, P;), showing bright “spots”

Protein-protein colocalization (association) analysis

Hela cells (a slice view of the confocal volume)

TN —
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Colocalization specificity under the null model

Simulated Hela cell 0.7}

06
0.5

041

40 0.3 B

0.2
20

0.1

y (mu) " 10 x (mu)

-3 -2 -1

- About 300 virtual detections for each of the 2 proteins; p(log(d))
- 10 replications with each having approximately 10° tests
- FDR controlled at 5 = (0.5

Not a single colocalization (false positive) detected

S S—
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Protein P, Detected spots

min.

P1 P2 P3 P4 P5

Colocalization ratios with different proteins 9
FDR controlled at 3 —= (.5

iivorrirwusr PASTEUR

Protein X Detected spots




Total Internal Reflection Fluorescence Microscopy

Evanescent Wavefront Aqueous
Medium
Fluorophores (n=1.33-1.37)
Excited

Fluorophore

Glass
-—Microscope
Slide
=1.518)

Laser
Excitation—

c
1
Reﬂected .
"}f,',“_’,?;‘ ; Light Waves  Figure 1
PM
TIRF
O Secretory (O
i O O vesicles
Confocal| Recyeling Early endosomes O
endosomes @ O
= o2

Lysosome




Our analysis of the positive control: CLC-GFP/anti-CLC

CLC-GFP

TIRF image-laser 488 spot detection spot detection




Our Analysis of the negative control: Caveolin and clathrin light chain(CLC)

Cav1-GFP

Epifluorescence

spot detection




Colocalization Controls

Negative: <5%
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Conclusion 1

B A novel statistical colocalization approach
O Multiscale spot detection
O Null model generation

O Multiple hypothesis tests controlling FDR
B The method has a good specificity

* This approach is well adapted for
microscopic point-like object, but
not for anisotropic objects.

* Time consuming

B Ripley’K cross function




Statistics: Ripley's K cross function Kia(r)

2 proteins: A; and A>.
Statistics on the number of A, spots closer than r
from A; spots.

Average number of A1-A2 neighbors
Az spots, A; spots closer than r

..........................
-----
e oy
¢¢¢¢¢
* ‘s
.
. *
% LN
0‘ .

o

19|
Kia(r Z Z 1% y|<r}b(|X_8Q| x —yl)

x€A1 yEA2 boundary correction

Problems: -Specificity (with no extensive simulations !) ?
-Interpretation: number of real colocalizations ? Length scale?




Specificity: Asymptotic normality of Kio(r)

If A spots are randomly distributed (for any A; spots)

) (7r7°2, v Var{f('lz(r)})

'n,2>>1

x1 €A1 X1#X2E€A

with
Var{Klz( )} 77!32‘2 ( Z Hy (|x1 —09Q|,r) + Z Hs (X1X277“)>

Boundary correction Correlations between A, spots

Az spots, As spots




A statistical test of proteins colocalization

f{lz(’r) e 7I"l"2

e 12 (fr-) > (5 mmmmp Pri«real» colocalization} >0

\/ var {K 12 (T’) } quantile of standard normal law

N(0,1) at level 6




A statistical test of proteins colocalization

e 19 (fr) > (5 mmmmp Pr{«real» colocalization} >

\/ var {K 12 (’l") } quantile of standard normal law

N(0,1) at level 6
KIZ (r) 4./\

1 1 1 1 1 1 1 1
0.1 0.2 0.3 04 05 0.6 0.7 0.8 049 1 r




A statistical test of proteins colocalization

e 19 (r) > (5 mmmmp Pr{«real» colocalization} >

\/ var {K 12 (’l") } quantile of standard normal law

N(0,1) at level 6

colocalization

probability 99% _
PesssssMssgEsssEEEEEEEEEEEnnnnunE [ q0,99=2.32

"100-300 nm

e samEEEEEEEEEEEEEEEEEEEEEEEEEEEEE H qo.01=-2.32




Test against synthetic data
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Test against synthetic data

K 12 6
5[ ,ﬁ.\,\ 'AN‘.|[ ' H a ‘
[ “.'(' . '.“f.l
4 | i )
3} N W "'-\%. |
q0.99 2. ™ -I"‘h'"-|- T N :"‘I'-l,_,_:‘nl EEEEEN COIOCallzatlon ?
. ‘ “-,\‘N.'-\\'\
1 N A
| YES |
of.
N
| = () 2
a =y °
q0'01-2l—lllllllllllllllllllllllllllllq
-3 - . A " A
0 0.5 1 1.5 2 25 3 3.5 4 45, f
pzxe S




Test against synthetic data
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Test against synthetic data
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Negative control: Caveolin (fluo. Antibody)
ps Clathrin (GFP)

Klg(T)

3
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1. |
of | et 2"\Va
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-3 "
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5

pixels

Caveolin (fluo. Antibody) — No colocalization
Clathrin (GFP)




Positive control: Clathrin (fluo. Antibody) ¢s
Clathrin (GFP)

Klg(T)
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35
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pixels

Clathrin (fluo. Antibody) —Clathrin Strong colocalization
(GFP)




Conclusion: Problems of pixel-based
methods and solutions

Problem 1 - Sensitivity to noise

Solution 1 - Object-based method: proteins spots detection with elaborate

algorithms and statistics on spots inter-distances

Problem 2 - Specificity (true vs false colocalizations)

Solution 2- Analytical formula for the level of significance of Kix(7)

Problem 3 - Colocalization parameters (distance scale and steechiometry)

Solution 3- Fitting parametric models to Ki2(r) curve. In progress !

‘ C— ‘
Distance scale d ~ N(M, 0‘), QLR




