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Science is built up of facts just as a house is built up

of stones, but a collection of facts is no more a

science than a heap of stones is a house.

H. Poincaré

Ever since the first microscope was built in the seven-
teenth century, morphological observations by
microscopy have driven the course of biology.
Microscopes allowed the discovery of the cell as the
structural unit of tissues and organisms, and they pro-
vided the tools to uncover the interior structure and
organization of cells. Later, fluorescence-labelling
methods with antibodies allowed the visualization of
specific proteins within cells, and the development of
microscopy systems with increasingly better spatial
and temporal resolution — such as CONFOCAL and
MULTI-PHOTON MICROSCOPY — has resulted in a detailed
description of cellular architecture. Despite their suc-
cess, conventional microscopy methods suffer serious
limitations. They require chemical fixation and
involve the observation of biological samples under
non-physiological conditions. Conventional
microscopy methods can generally not resolve the
dynamics of cellular processes and, most importantly,
it has been very difficult to generate quantitative data
using conventional microscopy.

The discovery of genetically encoded fluorescent
tags has revolutionized the way microscopy is used in
biology. It is now possible to analyse the dynamics of
proteins or organelles in living cells1 and to probe

interactions between molecules in vivo2,3. More rele-
vant to the topic of this discussion, by combining 
in vivo microscopy with computational approaches, it
is now possible, for the first time, to extract quantita-
tive information about the biophysical properties of
proteins within living cells. We discuss here some of
the kinetic microscopy methods that provide the basis
of quantitative in vivo imaging and we outline compu-
tational approaches to extract biophysical information
from in vivo imaging data.

Kinetic microscopy
Recent advances in microscopy methods have made it
possible to visualize the dynamics of proteins and
organelles in living cells. To do so, proteins can either be
covalently labelled with a FLUOROPHORE and injected into
cells, or fluorescent tags can be genetically encoded1,4–6. By
far the most popular fluorescent label is the autofluores-
cent green fluorescent protein (GFP) from the jellyfish
Aequorea victoria. GFP can be fused to any complemen-
tary DNA using standard cloning methods, and, as sev-
eral spectrally distinct derivatives are available, multi-
colour observations are possible on several proteins
simultaneously7,8. An alternative genetically encoded tag
is the FLASH system (fluorescein arsenic helix binder),
which consists of a short peptide that is engineered onto
a protein of interest9. The protein is then expressed and
the cells treated with a peptide-binding ligand, which
diffuses into the cell and fluoresces once it is bound to
the tag. This system has not been widely used, but is
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CONFOCAL MICROSCOPY

A microscopy method used to
obtain a thin optical section
through a specimen.

MULTI-PHOTON MICROSCOPY

A microscopy method that uses
the simultaneous absorbance of
several low-energy electrons to
generate an optical section
through a specimen.

FLUOROPHORE

A small molecule or a part of a
larger molecule that can be
excited by light to emit
fluorescence.
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nuclear envelope13,14, intranuclear structures15–18, and
genes and chromatin19–23 have given the first insights
into the dynamics of the cell nucleus19–23. Whereas
many of the early in vivo microscopy studies were limit-
ed to observations of single focal planes at each time
point, recently developed rapid sampling methods
combined with the increased stability of fluorescent
probes, now make it possible to routinely acquire three-
dimensional data sets over time — a method common-
ly referred to as four-dimensional (4D) microscopy24,25.
These types of experiments generate large data sets,
which often cannot be intuitively and quantitatively
interpreted. Visualization tools that facilitate the quali-
tative and quantitative analysis of 4D-data sets have
recently been reported26–28.

F words of kinetic microscopy: FRAP, FLIP, FCS
FRAP. Observations from studies with fluorescently
tagged proteins typically show the STEADY-STATE distribu-
tion of a protein, but they do not directly provide infor-
mation about the kinetic properties of molecules. To
determine the kinetic properties of proteins in vivo, the
movement of the protein of interest must be made visi-
ble. The most commonly used technique for this is
FRAP (fluorescence recovery after photobleaching)1,29–31

(FIG. 1). In this method, a small area of a cell is rapidly
bleached using a high-intensity laser pulse. The move-
ment of unbleached molecules from the neighbouring
areas is then recorded by time-lapse microscopy as the
recovery of fluorescence in the bleached area. This
method is minimally invasive and the dynamics of the
observed protein closely reflect its behaviour in vivo as
FRAP does not generate protein gradients, but merely
makes a fraction of the fluorescently labelled molecules
invisible. FRAP experiments often give a qualitative
impression of the mobility of a protein, but more
importantly, they contain much quantitative informa-
tion. For example, the apparent DIFFUSION COEFFICIENT and
the size of the mobile fraction of a protein can be directly
determined from the primary data1,31.

FLIP. A related method to FRAP is FLIP (fluorescence
loss in photobleaching). In this technique, an area with-
in the cell is repeatedly bleached and the loss of fluores-
cence in areas that are distant from the bleach area is
monitored1 (FIG. 1). FLIP largely eliminates the concern
that the recovery properties are due to damage at the
bleach spot, as all measurements are made in areas that
are never bleached. FLIP is often used to probe the
mobility of a protein, but is also a useful tool to study
the continuity of cellular compartments32.

FCS. FCS (fluorescence correlation spectroscopy) pro-
vides an alternative method for measurements of pro-
tein dynamics in vivo33,34 (FIG. 1). In FCS, a laser beam is
focused on a microvolume, typically in the femtolitre
range, and fluctuation of the fluorescence signal is mea-
sured over a short period of time. The recorded signals
reflect the movement of labelled proteins through the
sample volume, which is similar to the situation if we
looked straight across a busy road and record the fluctu-

attractive, as the small tag is unlikely to interfere with
the function of the protein.

Genetically encoded tags are routinely used in time-
lapse microscopy experiments to probe the dynamic
behaviour of proteins and cellular compartments. For
example, tracking the progress of GFP-fusion proteins
through the exocytic and endocytic pathway has pro-
vided fundamentally new insights into protein trans-
port and the architecture of the endomembrane
system10–12. Similarly, time-lapse observations of the
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Figure 1 | Kinetic microscopy methods. a | In fluorescence recovery after photobleaching
(FRAP), the fluorescence intensity in a small area after bleaching by a short laser pulse is
measured using time-lapse microscopy. The recovery kinetics of mobile molecules are
dependent on the mobility of a protein. Immobile proteins show no recovery. b | In fluorescence
loss in photobleaching (FLIP), the fluorescence intensity is measured in a small area after
repeated bleaching of a region that is distant from this area. The rate of loss of fluorescence
signal is dependent on the mobility of the protein. Immobile proteins show no loss. c | In
fluorescence correlation spectroscopy (FCS), the movement of molecules through a small
volume is observed. During an observation period (tx) rapidly moving molecules traverse the
sample volume, whereas slowly moving molecules or bound molecules remain in the sample
volume. Fractions of a protein with distinct mobilities are resolved by autocorrelation curves.

STEADY STATE

An open system, the content of
which is held constant by a
continuous input. Here, the
output equals the input.

DIFFUSION COEFFICIENT

A measure to characterize the
speed with which a particular
molecule moves in a particular
medium when driven by
random thermal agitation.
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pure diffusional mobility of a protein in a living cell
(FIG. 2). Furthermore, proteins often form higher-order
complexes or associate with relatively immobile cellular
structures, such as the cytoskeleton or chromatin. In
both cases, the measured mobility is significantly
reduced. It is important to realize that all photobleach-
ing methods measure apparent mobilities41. This
behaviour becomes obvious in the analysis of nuclear
proteins. For example, the core histone H3 is virtually
immobile, whereas a similarly sized splicing factor is
highly mobile42,43. A similar situation is found in the
analysis of plasma membrane and transmembrane
proteins in membranous compartments32,44,45.

The fact that the interaction properties of a protein
are reflected in the mobility measurement complicates
the analysis of photobleaching data (FIG. 2). However, the
fact that binding to other cellular components affects
mobility also indicates that the measured apparent
mobility contains information about the behaviour of
the protein. Computational approaches, particularly
kinetic modelling methods, allow the quantitative test-
ing of hypotheses about why a protein moves slower
than would be expected for its size. The strategy in such
an approach is to generate a mathematical description
— a kinetic model — of the hypothesized biological
reality. The model is characterized by biophysical 
PARAMETERS, such as binding and release constants, resi-
dence times and diffusion coefficients. By determining
the set of parameters that result in a best fit of the
model to the experimental data, the model can be tested
and quantitative information about its parameters can
be obtained. We outline below step-by-step how, using
computational methods, we can extract information
regarding biophysical properties of proteins and
processes from in vivo microscopy data.

Modelling = quantitative hypothesis testing
Techniques for the analysis of dynamic data can useful-
ly be divided into four groups, although the distinc-
tions are not absolute: the statistical tools of time series
analysis46, the analytical and computational tools of
differential equations47–51, the computational tools of
STOCHASTIC SYSTEMS52,53, and the scaling and phase-space
tools of FRACTALS and CHAOS54. For applications in cell
biology, differential equations are often used because
they are a natural mathematical language for cellular
processes, such as biochemical kinetics, membrane
transport and binding events. Alternative approaches
to biological modelling and data analysis are described
briefly in BOX 1.

The object of any type of data analysis is hypothe-
sis testing. For example, statistical tests, such as the t-
test or ANALYSIS OF VARIANCE, ask how probable it is that a
particular experimental result occurs by chance.
Analysis of quantitative dynamic data, such as those
collected in video microscopy, goes one step further
— it offers the possibility of quantitative mechanistic
hypothesis testing. One way to visualize the role of
kinetic modelling in cellular and molecular hypothe-
sis testing is shown in FIG. 3. The difficulty is knowing
with precision what is predicted by a complex

ations in the passing cars. The time it takes molecules to
move through the sample volume depends on their diffu-
sional properties, and the fluctuation patterns give a
direct measure of the concentrations of the proteins in
the sample volume. FCS can be used to measure diffu-
sion coefficients and binding constants35–37. As FCS can
simultaneously be done on several fluorophores, it can
also be used in cross-correlation spectroscopy to deter-
mine whether two proteins physically interact — if they
do, they would be predicted to show identical fluctua-
tion patterns. FCS is a single-molecule detection
method and it is therefore exquisitely sensitive.
However, owing to its great sensitivity, bleaching effects
during measurements can generate artefacts. FCS is still
in an experimental stage, but it does hold great promise.
Early FCS applications include the determination of
diffusional mobilities of proteins and RNA35,36,38, the
determination of binding interactions39,40 and the 
measurement of ion concentrations40.

Measuring biophysical properties in vivo
Photobleaching methods were initially designed, and
are commonly used, to measure the mobility of pro-
teins in living cells. Indeed, in FRAP and FCS, the pri-
mary measurement is the diffusion coefficient.
However, as all proteins readily interact with many
partners in vivo, it is virtually impossible to measure
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Figure 2 | FRAP for the measurement of protein binding in vivo. Information about the
binding properties of a protein can be obtained from measurements of apparent protein
mobility by FRAP. A monomeric protein moves more rapidly than a protein that transiently
interacts with relatively more immobile cellular structures, such as the cytoskeleton or
chromatin. The FRAP recovery kinetics reflect these transient interactions. A monomeric
protein recovers rapidly, a protein with short transient interactions recovers with intermediate
kinetics and a protein with long transient interactions recovers slowly. Kinetic modelling allows
us to extract information about the binding properties from mobility measurements.

PARAMETER

The numerical constant that
determines the absolute speed
of a process. A first-order
process is characterized by a
single parameter, the rate
constant. A process that is
governed by a
Michaelis–Menten equation is
characterized by two
parameters, V

max
and K

m
.

STOCHASTIC SYSTEMS

A dynamic system, the processes
of which are characterized by a
probability distribution. The
stochastic system theory is
particularly important when the
abundance of molecules in a
particular state falls below the
deterministic limit, about 100
molecules per cell.

FRACTALS

These are objects that provide
more and more features as the
resolution of the observation
increases. These finer features
show statistical self-similarity as
seen in biological branching
patterns, ion-channel currents
and heart rate.
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simple systems often behave in surprising ways. What is
needed is a way to know what the diagram predicts in a
given experiment.

Translating diagrams to kinetic models
Kinetic modelling supports quantitative hypothesis
testing by first translating a diagram into a mechanis-
tic kinetic model (see BOX 2). Diagrams typically 
consist of molecules, complexes, cellular locations
and processes. As molecules and complexes can exist
in several locations, it is often necessary to define 
several STATES for a single molecule — each state is ‘a
chemical species in a physical place.’ For example,
phosphorylation of a protein at a single amino acid
results in at least two states: the phosphorylated one
and the unphosphorylated one. However, if both are
present in both cytoplasm and nucleoplasm, then
four states are required.

Arrows in a diagram usually represent various
types of processes. Three fundamental biological
processes can describe virtually any biological 
diagram: transformations, translocations and binding.

hypothesis that contains many interacting processes in
a given experimental situation. It is here that kinetic
modelling and simulation of complex systems have
proved valuable.

Molecular and cell-biological hypotheses or theories
are often represented as diagrams. The final slide in
nearly every scientific seminar and a key figure in every
biological review is a diagram that represents the
author’s current working hypothesis. Typically, these
diagrams comprise a collection of molecules represent-
ed as symbols, their biochemical transformations and
translocations represented as arrows, and some graphic
notation, such as lines that are terminated with plus or
minus, to indicate regulatory controls. Diagrams offer a
language for description of cell-biological systems that is
somewhat more precise than printed paragraphs, but it
often remains difficult to make quantitative predictions
for a given experimental protocol with the use of dia-
grams alone. Scientific intuition has been successful
when systems are limited to a few molecules and
processes, but today’s summary diagrams generally have
many more molecules and arrows than this, and even

Box 1 | Other types of mathematical models 

There are many approaches to mathematical modelling. Several other types of mathematical descriptions, apart from
the dynamic, differential-equation models that are the focus of this review, are compared below.

Curve fitting.
Modern graphics and spreadsheet software typically have various options for fitting experimental data to functions.
These tools offer a powerful means of summarizing a data set by fitting it to a SUM OF EXPONENTIALS, a POLYNOMIAL, a SUM

OF GAUSSIANS, etc. This is always possible and the coefficients that fit the data can be taken as quantitative parameters,
which are derived from the data. Indeed, these parameters are sometimes touted as model independent and therefore
desirable. In general, however, these coefficients have no physical meaning. They can quantify patterns and can be
useful in diagnosis, but they yield no mechanistic information. By contrast, the parameters of a mechanistic model
yield useful information on the biological processes that they quantify. If, for example, the rate constant for a given
process is doubled in a given experimental circumstance, then the corresponding process has been fundamentally
changed by the experimental protocol.

Statistics.
Statistical models search for patterns in experimental data. Correlation, regression and cluster analysis are all powerful
statistical tools that can identify relationships among measured variables that probably are not attributable to chance.
Statistics are a powerful tool for supplying us with new and interesting potential mechanisms, mechanisms that need
experimental tests and mechanistic analysis.

Phenomenological laws.
Many readers will be familiar with linear phenomenological laws, such as Ohm’s law for electric current (I = g∆V) or the
law of bulk flow (F = (1/R)∆P). These seem to be algebraic, but are really special cases of the general linear differential
equations that govern forces and fluxes in irreversible thermodynamics64. The current (I) is the rate of charge movement,
dQ/dt; and the flow (F) is the rate of volume movement, dV/dt. The ‘forces’ in these equations (∆V and ∆P) are gradients
in chemical potential and can, when required, be resolved into functions of the state variables whose derivatives are on
the left-hand sides of the differential equations.

Enzyme kinetics.
The often-cited form of the Michaelis–Menten equation, v = V

max
S/(K

m
+ S), can be taken as a surrogate for all the

more complex velocity equations that are derived and documented in REF. 65 and elsewhere. In the context of
differential equation models, we can incorporate enzyme kinetics by recognizing that this equation is another
differential equation in disguise. Velocity (v) is a symbol for the rate of change of product, dP/dt. This most widely
known of biochemical equations is therefore a nonlinear differential equation in which the driving force of chemical
potential arises from a concentration of substrate (S), which is greater than its equilibrium value.

Logic models.
An array of modelling tools, which have been developed in theoretical biology, systems biology and biomedical
engineering, are beginning to move from qualitative to quantitative simulations. These include electric circuit
models49, logic network models, Petri nets and process algebra.

CHAOS

A deterministic system (for
example, some systems of
nonlinear differential
equations), the output of which
seems random, but is not. Such
systems show a surprising
sensitivity to initial conditions.

ANALYSIS OF VARIANCE

A statistical procedure for
testing for differences among
the means of several
populations. It partitions the
total sample variance among
several specific sources to carry
out the test on means.

SUM OF EXPONENTIALS

An algebraic expression that is
made up of exponentials. In a
first-order system, the time-
course solution for every state
can be precisely mimicked by
the sum of exponentials that
correspond to the number of
states in the system.

POLYNOMIAL

Algebraic expressions that are
made up of more than one
term — for example, mx + b.

SUM OF GAUSSIANS

An approximation by weighted
sums of normal distributions,
or Gaussians, each
characterized by two
parameters — a mean and a
variance — to describe a data
set.

STATE

The generic name used here to
identify those variables that
change with time and for which
differential equations are
written.
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Because most biological diagrams concern themselves
with changes in more than a single molecular species, the
corresponding kinetic models comprise ‘systems’ of dif-
ferential equations. For example, if the diagram contains
17 molecular species, the corresponding model will, in
general, consist of 17 differential equations. The form of
these equations is perhaps most easily understood by
examining the dimensions or units of the various terms.
Traditionally, the derivatives are written on the left-hand
side of these equations. These derivatives with respect to
time represent the instantaneous change in molecular
abundance, or the rate of change of the number of mole-
cules of this species in a particular cellular location at a
particular moment in time, measured in, for example,
molecules per second.As the units on the right-hand side
must be the same as those on the left, it is clear that the
derivatives must have the same units as the fluxes.
Processes or fluxes that produce or deliver the molecular
species will have a positive sign; those that consume it or
remove it will have a negative one.

By writing rate laws, diagrams are translated into a
precise physical–chemical language. The reason for
using differential equations rather than algebraic equa-
tions is that differential equations are able to describe
mechanisms and cause-and-effect relationships. The
change on the left-hand side of a differential equation
(the derivative) can be seen as the effect, and the
processes on the right-hand side can be seen as the
causes. The complete differential equation therefore
expresses the equality of cause and effect.

The rendering of biological diagrams in mathemati-
cal form does not mean that cell biologists must know
how to solve differential equations using analytical, pen-
cil-and-paper methods. Indeed, for many nonlinear dif-
ferential equations, no such solution is even possible.
Fortunately, there are many software tools (see online
links box) available to solve any system of differential
equations, from very simple to very complex. Although
the typeset form of a system of differential equations is
fairly standardized, it is remarkable how many differen-
tial equation-solver software packages with different
input formats are currently available. Attempts to con-
struct an ‘Esperanto’ for biological kinetic models are
under way, and are based on the popular EXTENSIBLE

MARKUP LANGUAGE (XML). This means that a model file
not only encodes the model-definition information, but
also encodes how to interpret it. This new language
could substantially facilitate the communication of
models between software packages and among labora-
tories. Further details are available in the published
descriptions of CellML56 and SBML57, as well as in the
links included at the end of this review.

Simulation: what does a diagram predict?
Once a biological diagram has been formulated as a
quantitative kinetic model, simulation is used to dis-
cover what that model predicts for a particular experi-
mental situation. In other words, simulation applies a
particular experimental protocol to the kinetic model
and displays the model’s predictions in a way that can
be compared directly to the experimental data (FIG. 3).

Transformations include everything that makes or
breaks covalent bonds, such as the biochemical path-
ways of intermediary metabolism, the synthesis and
splicing of RNA transcripts, the actions of kinases and
phosphatases, and the proteolytic activities of protea-
somes or caspases. Translocations include all active
and facilitated transport mechanisms, currents in ion
channels, diffusion and bulk-flow processes that
move molecules or complexes from one place to
another. Binding comprises all those intermolecular
interactions, such as hormones that activate recep-
tors, ALLOSTERIC REGULATION of enzymes or transporters
and formation of multimeric protein complexes, that
involve bonds whose energy is much less than the
energy of a covalent bond.

A biological diagram is therefore a collection of
processes that link states. To express the diagram in
mathematical form requires two steps. First, a RATE LAW

is written for each PROCESS, and second, these rate laws
are combined to construct the differential equations
for each state. A rate law is an algebraic expression
that gives the flux (molecules per second) through a
particular process as a function of the relevant molec-
ular abundances or other state variables in the biolog-
ical system. Rate laws tell us how many molecules are
traversing a particular pathway, but to keep track of
how many molecules there are in any state at any
time, it is necessary to sum up or integrate all the
inputs and outputs. To do this, differential equations
are constructed for each state (molecule or molecular
complex in a cellular location) by setting its rate of
change to be equal to the sum of the processes or rate
laws that produce this molecular species minus those
processes or rate laws that consume it. In other words,
we write down the differential equations that repre-
sent mass conservation for each state55. BOX 2 gives an
example of the diagram translation process.

Hypothesized 
mechanistic  
diagram

Mechanistic 
kinetic model

Experimental 
methods

Predictions

Data

Match?

NO

YES

Experimental 
design

Translation Simulation Optimization

Figure 3 | Role of kinetic models in quantitative hypothesis testing. The lower (purple)
half of this figure represents experimental design and experimental methods, which
combine to produce quantitative experimental data on a biological system of interest.
Hypothesis testing is then carried out by comparison of the data to that expected based on
the current hypothesis. Arrows in the upper (blue) half of the diagram represent the steps in
kinetic analysis that are detailed in this review: translation of diagrams into kinetic models,
simulation to obtain the predictions of the model for a given experimental design and
optimization of model parameters to ensure an unbiased comparison of model predictions
and experimental data. These three steps differ from scientific intuition (dashed arrow) by
being quantitative and robust to complexity.

ALLOSTERIC REGULATION

A modification of a process by a
molecule that binds to an
enzyme or a transporter or
another protein at a site other
than its active, or catalytic, site.

RATE LAWS

Algebraic expressions for the
flux through a given pathway.

PROCESS

The generic name for events
that bring about changes in one
or more states.

EXTENSIBLE MARKUP

LANGUAGE

A method for putting
structured data in a text file so
that applications receive not
only unambiguous data but also
unambiguous context. XML
documents are not meant to be
read, except by software.



© 2001 Macmillan Magazines Ltd
NATURE REVIEWS | MOLECULAR CELL BIOLOGY VOLUME 2 | DECEMBER 2001 | 903

R E V I E W S

structs that can be used to specify the sequence of
events that defines a protocol.

A protocol is a timeline of pre-planned experimen-
tal perturbations. Nearly always, it consists of experi-
menter-induced changes in state variables or processes
that are taking place at known times. In practice, this
translates to specifying a set of initial and boundary
conditions to be imposed on the solution of the differ-
ential equations. For example, FRAP experiments are
often assumed to begin in a steady state. This means
that the steady-state solution of the differential-
equation system can be calculated and used to set the
initial condition for each molecular abundance before
initiating the bleach pulse. The same applies to other
types of experiments. If a growth factor or a hormone
is added to the medium, then the corresponding state
variable is increased stepwise at the appropriate time.

Simulation provides answers to key questions that
cannot be answered with confidence in any other
way. You can discover whether a diagram really is
consistent with experimental data. You can also learn
whether a diagram is consistent with experiments
that have been reported by other laboratories and,
just as importantly, you can carry out the same tests
for diagrams that have been proposed by other inves-
tigators. Simulation requires a quantitative language
for laboratory procedures so that these can be
imposed on the kinetic model just as they are
imposed on the cells in the laboratory. Some model-
ling software packages (for example, SAAM II) have
an experiment toolbox to facilitate quantifying your
protocol and defining your measurements. Others
(for example, Berkeley Madonna, MATLAB, Virtual
Cell) provide a flexible set of programming con-

Box 2 | Translation 

A diagram66 that contains all three main classes of
biological processes — transformation, translocation
and binding — is reproduced here to illustrate the
translation process. When a ligand (L) binds to its
receptor (RGAC), adenylyl cyclase is activated and
cyclic AMP (not shown) is synthesized from ATP. The
first differential equation represents binding. The
derivative (dLRGAC/dt) on the left-hand side
represents the rate of change of ligand–receptor–
G-protein–cyclase complex, and the terms on the right-
hand side represent the binding and release of ligand.
The second equation represents the rate of change of
cAMP, and the two processes are both transformations
— the first term represents the flux (molecules per
second) of cAMP that is produced by adenylyl cyclase and the second represents the flux of cAMP degradation by
phosphodiesterase. Either or both of these simple enzymatic rate laws could be replaced with more complex ones if, for
example, saturation or allosteric regulation of the enzymes was thought to be important.

dLRGAC/dt = k
f
· L · RGAC – k

r
· LRGAC

dcAMP/dt = k
AC

· LRGAC · ATP – k
PDE

· cAMP

The mechanism of control of protein kinase A (PKA) is summarized in the diagram without kinetic detail both
because it is well known and because it is not the focus of the review. For our purposes, the catalytic subunit of PKA
can be considered to exist free or bound to its regulatory subunit.

dCR/dt = k
bind

· R · C – k
unbind

· CR
dR/dt = k

unbind
· CR – k

bind
· R · C – k

cAMP
· R · cAMP + k

1
· RcAMP

dC/dt = k
unbind

· CR – k
bind

· R · C – k
InNuc

· C + k
OutNuc

· C
Nuc

If the abundance of R is very small compared to cAMP, then the last two terms in dR/dt can safely be omitted
from the right-hand side of dcAMP/dt. Otherwise, we must add these terms. The equation for dC/dt emphasizes
that C can exist in two places, and therefore includes the first translocation processes in this example. Note that the
simple first-order rate laws for nuclear import and export could readily be replaced by more mechanistically
detailed ones if desired.

dC
Nuc

/dt = k
InNuc

· C – k
OutNuc

· C
Nuc

dCREB /dt = –k
PKA

· C
Nuc

· CREB + k
PP–1

· PP1 · CREBP

Once in the nucleus, the catalytic subunit mediates phosphorylation of the cAMP response element binding protein
(CREB). Then, CREBP recruits the CREB-binding protein (CBP), which, in turn, recruits RNA polymerase II.
Recruitment is easily modelled as binding and the transcription rate can be seen as proportional to the abundance of
this heteromeric complex.

dCREBP/dt = k
PKA

· C
Nuc

· CREB – k
PP–1

· PP1 · CREBP – k
recruit

· CREBP · CBPPPolII + k
dis

· CREBPCBPPolII
dCREBPCBPPolII/dt = k

recruit
· CREBP · CBPPolII – k

dis
· CREBPCBPPolII 

Transcription Rate = k
elong

· CERBPCBPPolII

C
C

C
CC

R R

AC

G

PP-1

CREB
P

CBP Pol II

R

L

PKA



© 2001 Macmillan Magazines Ltd
904 |  DECEMBER 2001 | VOLUME 2  www.nature.com/reviews/molcellbio

R E V I E W S

FRAP protocols are initiated by defining a region of
cellular space to be bleached and then changing a
bleaching rate constant to a non-zero value for the
duration of the experimental laser pulse. FLIP experi-
ments are imposed on a model by bleaching as is the
case for FRAP, but with an average effective bleach
constant, or by a more precise replication of the
repeated laser pulses with intervening periods of
image collection.

Simulation can also be used to show what a particu-
lar biological diagram predicts for every defined region

And if an enzyme inhibitor or receptor antagonist is
added, a specific rate constant could be altered at the
right time to initiate the response of the model.
Imposing these boundary conditions on a kinetic
model leads to the definition of the boundary of a
model as those molecular species or physical quanti-
ties that impinge on the model, but for which no dif-
ferential equation is written. Variables on the
boundary must be completely specified in the proto-
col because they affect the outcome but are not
explicitly modelled.

Box 3 | Simulation 

When both time and space are variables, mathematicians refer to the resulting differential equations as partial
differential equations. To solve these, the space is partitioned into a large number of small, but finite, volumes. This
amounts to compartmentalizing the space and then solving ordinary (only time is an independent variable)
differential equations for every volume simultaneously. Shown here is such a simulation for Ca2+ and inositol-1,4,5-
trisphosphate (Ins(1,4,5)P

3
) dynamics in a neuroblastoma cell59. Note that the computing times are vastly different for

partial differential equations versus ordinary differential equations. These simulations each required about 25 minutes
on an SGI workstation; if diffusion could have been neglected and the Ca2+ and Ins(1,4,5)P

3
compartments treated as

well mixed, these simulations could reasonably have been done in a few seconds. The pseudocolour images graphically
depict the evolving solutions of this model for Ca2+ and Ins(1,4,5)P

3 
at more than 7,000 locations, each 1.2 µm on a

side, in the simulated neuroblastoma cell. Graphs at the right of this figure show the simulated time courses in two
selected locations, one in the soma (red) and one in the neurite (green). The original paper and the online
supplementary material should be consulted for details of model structure and equations, but it is instructive to realize
that this kinetic model makes predictions for a system with at least ten interacting processes: (1) dynamics of
Ins(1,4,5)P

3 
synthesis, (2) the spatial distribution of bradykinin (BK) receptors on the cell surface, (3) the spatial

distribution of SERCA (SR–ER calcium) pumps, (4) Ins(1,4,5)P
3

receptors and (5) leak channels in the endoplasmic
reticulum, (6) the spatial distribution of Ca2+ channels and (7) pumps in the plasma membrane, and Ca2+ buffering by
both (8) fixed endogenous buffers and (9) mobile exogenous ones (Fura-2 in this case), as well as (10) diffusion of the
mobile species. Applications such as this one illustrate the profound usefulness of simulation as the best tool for
discovering what your diagram predicts. Figure courtesy of L. Loew.
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experimental data, whereas modelling generally links
each experimental measurement to some function of
the state variables of the model and then assesses the
model’s ability to reproduce the data when the corre-
sponding experimental protocol is applied.

Simulation is therefore the first step in modelling.
Once a model of the biological system has been pro-
posed and a model of the experiment has been super-
imposed on it, simulation permits us to know with pre-
cision what the model predicts. But in practice we need
to know precisely how to decide whether a model fits
the data or not. How do we find the best combination
of parameters? The answer is optimization.
Optimization theory60 is therefore an essential element
of kinetic analysis and modelling (FIG. 3).

of a spatially complex cell. This is essential whenever
diffusion cannot be assumed to be fast on the timescale
of the experimental measurements, as is often the case
for FRAP experiments, or for experiments in large cells
or nerve cells with long projections. One of the most
interesting tools for such ‘four-dimensional’ simula-
tions is the Virtual Cell software58; an excellent example
of its use in simulating whole-cell calcium dynamics
imaged with a fluorescent dye (Fura-2) has recently
been published59 (see BOX 3 for details).

Simulation versus modelling
The terms ‘simulation’ and ‘modelling’ are often used
interchangeably, but it is useful to make a distinction.
Simulation typically makes no explicit reference to

Box 4 | Optimization 

The figure shows the classic model of the
secretory pathway with proteins transported
from the endoplasmic reticulum to the
Golgi complex and to the plasma
membrane. Data points in the graphs
represent the transport of VSVG–GFP
(vesicular stomatitis virus G protein–GFP)
through the Golgi apparatus in a single
cell61. Solid lines in the upper panel
represent a solution of the secretory
pathway model for the values of the rate
constants below the graph. Clearly, this
model fails to fit the experimental data for
total cellular fluorescence (yellow) and Golgi
fluorescence (pink). We would not, however,
want to rule out the classical
ER–Golgi–plasma-membrane model on
these grounds because the poor fit is only a
consequence of wrong parameter values. In
the lower panel, the optimizer in the SAAM
II software (see online links box) has
minimized an appropriate objective
function and found a point in parameter
space that gives excellent fits (brown,
blue)of the experimental data. Moreover, the
coefficients of variation (CV) for the
parameter estimates are all less than 2%, as
shown below the graph.

This example emphasizes the usefulness of
an optimizer in giving any theory its best
chance to fit the available experimental data,
as well as simultaneously supplying the very
useful statistical information on the
confidence that we should place in these
parameter estimates. Again, it should be
emphasized that these confidence limits
hold for the given model structure.
Residence times and fluxes that are
calculated from these rate constants also
hold for this structure and could well change
if a new model, which fits the experimental
data just as well, is discovered. Original data
courtesy of K. Hirschberg, J. Lippincott-
Schwartz).
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Optimization also provides tools to evaluate how
well our analysis performs. Parameter estimation is
able to provide confidence intervals for each parame-
ter because the greater the noise in the experimental
data, the greater is the uncertainty or variance that is
associated with the optimized parameter values. The
standard statistical measure of confidence in a para-
meter estimate is its coefficient of variation (CV).
This number is calculated as the estimated parameter
standard deviation divided by the parameter value,
and is generally reported as a percentage. Some soft-
ware packages report this information as the frac-
tional standard deviation (FSD) of the parameter
estimate, and other packages, even some that include
optimizers, do not report this vital information at all.
Another measure of confidence in a model is sensi-
tivity analysis. In its most common form, this proce-
dure involves solving the model again with one of its
parameter values increased or decreased to show that
this new value no longer fits the experimental data.
Although qualitatively useful, this one-at-a-time
variation fails to ask whether the fit, once destroyed
by a change in the tested parameter, could be recov-
ered by making changes in the other parameters of
the model. For this reason, formal parameter estima-
tion and its extensive statistical methods, which lead
to coefficients of variation, are preferred.

Conclusions and prospects
Recent advances in applications of fluorescent tracers
and indicators have permitted microscopy to move
from static images to dynamic recording in live cells.
The combination of these powerful imaging methods
with mechanistic computational modelling allows us,
for the first time, to extract information about biophysi-
cal properties of proteins and processes in living cells.
Kinetic analysis and modelling aim to help investigators
deal with cellular complexity by allowing them to know
with precision what their complex diagrams predict.
Quantitative predictions can then be compared directly
with quantitative experimental data as a means of test-
ing the hypotheses that are represented by the diagrams.
Just as database tools have become vital to the field of
bioinformatics for the management and statistical
analysis of complex data sets, the management and
analysis of large numbers of complex biological models
is being facilitated by database technology and defines
the nascent fields of INTEGRATIVE BIOINFORMATICS or 
pathway databases63.

Biology knows, perhaps better than other scien-
tific disciplines, the difficulty of analysing and under-
standing intact complex systems. It is not surprising
that disciplines that routinely deal with complex 
systems, such as developmental biology or physiology,
are strongly represented among the pioneers of com-
putational biology. Kinetic analysis is now also begin-
ning to find a place in the technical repertoire of cell
biologists. In the coming years, computational cell
biology and systems biology will be powerful tools to
help us comprehend the enormous complexity of
cell biology.

Optimization
From the perspective of quantitative hypothesis test-
ing, the purpose of optimization is to give each
hypothesis its best chance to account for the available
experimental data. Optimization is the exploration
of the parameter space of a model in search of
numerical values for each parameter that optimize a
specific quantitative measure of goodness of fit. You
can think of parameter space by imagining an origin
with as many axes emerging from it as you have para-
meters in your model. Every point in this space rep-
resents a unique set of numerical values, one for each
parameter. Now we add one more axis to this space,
one that represents the measure of fit. One intuitively
clear measure of fit is the weighted sum of the
squares of the errors between the model solution and
the experimental data. Every set of parameter values
will correspond to a numerical value of the weighted
sum of squares. For a perfect fit, the sum of squares
would be zero. The task of optimization is to deter-
mine the set of parameter values that yields the best
or optimal fit. For large models this is not easy, and
improvement of methods for efficiently searching a
high-dimensional parameter space represent an
important research area in numerical analysis. BOX 4

gives an illustration of the optimization process that
is applied to the kinetics of protein transport in the
secretory pathway61.

If a set of parameters has been found that fit the
experimental data reasonably well, we can say that the
theory is quantitatively consistent with the experi-
mental data. This, in itself, is a stronger assertion than
the paragraph of a discussion section that begins,
‘Taken together, these data indicate…’. If the model is
correct, then the parameter values of the mechanistic
model can be used to calculate extra features of the
system, including residence times, steady-state molec-
ular abundance, steady-state fluxes (molecules per
second) or fractional distribution of a given molecule
among its various cellular locations. Moreover, if the
parameters are evaluated in two or more physiologi-
cal or pharmacological situations, it becomes possible
to discern which cellular processes were affected and
by how much. This is new information, much of it
unavailable by any other means. All of these motivate
the application of kinetic analysis to complex 
molecular and cellular problems.

Often, however, a model fails to account for all the
experimental data. No set of parameter values can be
found that eliminates systematic deviations between
model solution and experimental data. This means
either that the kinetic model is flawed and needs to be
improved by ensuring that the biological diagram has
been accurately translated, or that the biological dia-
gram itself — that is, the theory — is incorrect.
Computational tools are not yet used routinely to dis-
cover new theories, but this will probably become
essential as complexity grows. A provocative example
of a relatively simple computational search for an
appropriate model recently appeared62, and this general
goal is a current objective of several research groups.

INTEGRATIVE BIOINFORMATICS

The intersection of kinetic
modelling and database
technology, a combination that
becomes essential as cell
biologists move to analyse
larger and more complex
molecular genetic control
systems.
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The following terms in this article are linked online to:
Swiss-Prot: http://www.expasy.ch/
GFP

FURTHER READING
Simulation and Modelling Software
SAAM Institute: http://www.saam.com/
Berkeley Madonna: http://www.berkeleymadonna.com/
Gepasi: http://www.gepasi.org/gepasi.html
StochSim: http://www.zoo.cam.ac.uk/comp-
cell/StochSim.html
MATLAB: http://www.mathworks.com/index.shtml
Virtual Cell: http://www.nrcam.uchc.edu/
WinSAAM: http://www-saam.nci.nih.gov/
XPPAut: http://www.math.pitt.edu/~bard/xpp/xpp.html
E-Cell: http://www.e-cell.org/
Online Textbook 
Integrative Bioinformatics: http://www.bioinformatics
services.com/bis/resources/cybertext/IBcont.html
Databases 
PathDB: http://www.ncgr.org/pathdb/index.html
KEGG: http://www.genome.ad.jp/kegg/
BIND: http://www.bind.ca/cgi-bin/bind/dataman
WIT: http://wit.mcs.anl.gov/WIT2/
EMP: http://emp.mcs.anl.gov/
EcoCyc:http://ecocyc.pangeasystems.com/ecocyc/
ecocyc.html
Klotho: http://www.ibc.wustl.edu/klotho/
Standards
CellML: http://www.cellml.org/
SBML: http://www.cds.caltech.edu/erato/sbml/docs/index.html
Access to this interactive links box is free online.


