

- Introduction
 - Historique
 - Fluorescence
 - Résolution
 - Microscopie Confocale
- Applications et exploitation des données
 - Immunomarquages
 - Réflection
 - Time-Lapse
 - Etudes spectrales
 - F-Techniques
 - FCS/FLIM
- Conclusion

Introduction

Historique

Fluorescence

- Résolution
- Microscopie Confocale
- Applications et exploitation des données
 - Immunomarquages
 - Réflection
 - Time-Lapse
 - Etudes spectrales
 - F-Techniques
 - FCS/FLIM
- Conclusion

6

Historique

- XVII : naissance de la microscopie photonique (découverte d'agents pathogènes : tuberculose, peste..)
- 1957 : Naissance de la microscopie confocale avec Marvin Minsky
 - conjuguer le plan de la source lumineuse et celui de l'image filtrée

1980 : Émergence de la microscopie confocale

besoins en biologie cellulaire + progrès technologiques (source laser, développement de l'électronique, informatique...)

Historique

NECESSITE

Grande baleine

- Grossissement: voir des petits détails
- Résolution : pouvoir distinguer 2 éléments très proches
- Contraste : possibilité de disinguer un élément d'un autre

Historique

• Microscopes de fluorescence à champ large

(Wide field fluorescence microscopes)

Capteurs CCD à haute résolution et sensibilité Déconvolution possible pour éliminer les signaux hors plan focal Fondamentale, video-microscopie rapide

• Microscopes confocaux à balayage laser

(Confocal laser scanning microscopes)

Détecteurs : photomultiplicateurs Diaphragme (pinhole) confocal pour sélectionner la fluorescence émise dans le plan focal, colocalisation, 3D

• Microscopes à balayage laser et excitation bi- (multi-) photonique (Two- (or multi-) photon laser scanning microscopes) *Avantages :* excitation restreinte au volume focal, résolution temporelle

- Introduction
 - Historique

Fluorescence

- Résolution
- Microscopie Confocale
- Applications et exploitation des données
 - Immunomarquages
 - Réflection
 - Time-Lapse
 - Etudes spectrales
 - F-Techniques
 - FCS/FLIM
- Conclusion

Principe d'excitation / émission

 $\mathbf{E} = \mathbf{h}\mathbf{v} = \mathbf{h}\mathbf{c}/\lambda$

Prof. Alexander Jablonski, 1935

Principe du filtrage de la lumière

Application au microscope : dichroïque

Leica MICROSYSTEMS

Exemple de lampes à fluorescence

Mercury Arc Lamp UV and Visible Emission Spectrum

- Introduction
 - Historique
 - Fluorescence

Résolution

- Microscopie Confocale
- Applications et exploitation des données
 - Immunomarquages
 - Réflection
 - Time-Lapse
 - Etudes spectrales
 - F-Techniques
 - FCS/FLIM
- Conclusion

Airy disc

 $D_0 = 1.22 * \lambda / NA$ (lateral)

Limited by Diffraction

XY Plane

XZ Plane

Point Spread Function (PSF)

Res = $0.61 \times \lambda / NA$

Leic MICROSYSTE

Conventional

Res = $0.61 \times \lambda / NA$

Confocal

 $\mathsf{Res}(\mathsf{x}\mathsf{y}) = \mathbf{0}.\mathbf{4}^*\lambda \,/\, \mathrm{NA}$

 $\text{Res}(xz) = 1,4\lambda / NA^2$

- Introduction
 - Historique
 - Fluorescence
 - Résolution

Microscopie Confocale

- Applications et exploitation des données
 - Immunomarquages
 - Réflection
 - Time-Lapse
 - Etudes spectrales
 - F-Techniques
 - FCS/FLIM
- Conclusion

Sectionnement optique de l'échantillon

Suppression de la fluorescence en dehors du plan focal

Amélioration de la résolution latérale et axiale

Amélioration du contraste

LASER

AOTF : Acouto Optical Tunable Filter

Sélection de la longueur d'onde d'émission

Modulation de l'intensité

Couplage par fibre optique

Fiber Optic Laser Coupler Lens Position Adjustment Optical Fibers Optical Fibers Aspherical Focusing Lens

Beam splitter

Miroir dichroïque

AOBS

Scanner en XY

Comment faire de l'imagerie point par point ? Miroirs rotatifs (galvanomètres)

Zoom?

Limites sur le vitesse de balayage : récupération des photons et effets photo-induits 30 Scanning the Sample

Axe

Microscopie confocale

Sectionnement optique

Pinhole

Ouverture fonction de : λ : longueur d'onde NA : ouverture numérique

Résolution optimale

Intensité de fluorescence maximale

Pinhole

Pinhole Aperture Size Effects on Signal and S/B Levels

Filtrage spectral

Cascade de dichroïques

Système spectral

Détecteur

Leica MICROSYSTEMS

Gain variable 0 à 1250 V

Echantillonage

Quantification Transformation du signal en niveau de gris 8 bits 12 bits...

Microscopie confocale : pixelisation

800x800nm

200x200nm

Travailler avec une taille optimal de pixel

100x100nm

Théorie de Nyquist : 2,3 pixels /resel

50x50nm

Microscopie confocale

Microscopie confocale

Microscopie confocale

Sectionnement optique de l'échantillon

Suppression de la fluorescence en dehors du plan focal

Amélioration de la résolution latérale et axiale

Amélioration du contraste

Microscopie Confocale

- Introduction
 - Historique
 - Fluorescence
 - Résolution
 - Microscopie Confocale

Applications et exploitation des données

- Immunomarquages
- Réflection
- Time-Lapse
- Etudes spectrales
- F-Techniques
- FCS/FLIM
- Conclusion

Embryon Drosophile

T. Lecuit, Luminy, Marseille

 $\lambda \text{ exc} = 405 \text{ nm}$ $\lambda \text{ ém.} = 422-496$

 $\lambda \text{ exc} = 488 \text{ nm}$ $\lambda \text{ ém.} = 496-533$

 λ exc = 543 nm λ ém. = 556-628 nm

 $\lambda \text{ exc} = 633 \text{ nm}$ $\lambda \text{ ém.} = 661-690 \text{ nm}$

Etude de colocalisation

	lmage				
Geometric Analysis					
4Dimeter	202.444				
THPIXEIS	262,144				
#Pixels, mask	21,397				
Area [µm²]	5,112.01				
Area, mask [µm²]	417.26				
Mask area rate	8.16%				
Densitometric Analysis:					
Channel 1					
Intensity sum	7,744,006				
Intensity sum, mask	1,624,968				
Mean intensity	29.54				
Mean intensity, mask	75.94				
Mask intensity rate	20.98%				
Channel 2					
Intensity sum	16,348,619				
Intensity sum, mask	1,484,046				
Mean intensity	62.37				
Mean intensity, mask	69.36				
Mask intensity rate	9.08%				

Réflexion

Etude de surface

Réflexion

Time-Lapse

Arabidopsis thaliana First channel: Cell wall in reflection. 2 & 3 channel: Monitoring mitochondrial (GFP-green) and plastid (autofluorescence-red) movement.

22 fps

Courtesy of Prof. Dr. D. Menzel, Institut für Zelluläre und Molekulare Botanik Zellbiologie der Pflanzen, Bonn University.

Fluorescence Recovery After Photobleaching

	FD464	FD464 _{theor}	H1-GFP _{arbitrary} R0I	H1-GFP _{circular ROI}	H1-GFPliterature
M _f [%]	103	100	91	-	~ 90
t _{1/2} [s]	2.3	(1.0)	138.6	59.9	~ 55
τ[s]	3.3	(1.4)	200.9	41.5	-
D _{eff} [µm²/s]	1.6	3.7	-	0.01	-

τ: Time constant of recovery (calculated by LCS, circular ROI)

t_{1/2}: Half-life of recovery (calculated by LCS, circular ROI) D_{eff}: Effective diffusion coefficient (Axelrod et al. 1976)

Fluorescence Recovery After Photobleaching

λexc. = 488 nm Obj. 63X, 1.32 Zoom = 4,6 Δt = 823 ms

T. Lecuit, Luminy, Marseille

Fluorescence Resonance Energy Transfer

Fluorescence Resonance Energy Transfer

Bleaching de l'accepteur

Etude des modifications des interactions moléculaires

Proximité donneur-accepteur 10-100 Å

Augmentation de l'intensité de fluorescence du donneur

Spectre d'émission de fluorescence

Spectres d'émission de fluorescence

Mean Intensity

Viewer Pos Spectrum 572.08 582.08 592.08 602.08 612.08 622.08 632.08 642.08 652.08 662.08 672.08 682.08 692.08 702.08 $y_1 = f(x_1=692.54) = 21.06$ $y_2 = f(x_2=692.88) = 20.83$ dx = 0.34 dy = 0.23[nm]

Séparation spectrale

Séparation spectrale

FITC/TxR sample

2 channel recording:
Detection bands fine tuned
No gaps between bands
High efficient prism
High efficient PMTs
AOBS[®] applied

FITC

The total of all light collected from FITC molecules will be distributed into both channels.

We assume here:

³⁄₄ of all FITC emission go into the green channel (G)

1/4 of all FITC emission goes into the red channel (R)

TxR

The total of all light collected from TxR molecules will be distributed into both channels.

We assume here:

1/5 of all TxR emission goes into the green channel (G)

4/5 of all FITC emission goes into the red channel (R)

Both dyes

In a real experiment, we will have both dyes simultaneously in the sample and therefore get signals from both dyes in both channels.

A calculated measurement

$$G = \frac{3}{4} FITC + \frac{1}{5} TxR$$
$$R = \frac{1}{4} FITC + \frac{4}{5} TxR$$

Leica MICROSYSTEMS

Etudes Spectrales

Unmixing is: Solving sets of *n* linear equations with *n* unknowns.

First proven records of solutions go back some 4000 years (Egypt)

For a reference see: http://www.ETH\EducETH - Mathematik -Leitprogramm Lineare Gleichungssysteme.htm

Fluorescence Lifetime Imaging Microscopy FLIM

Fluorescence Lifetime IMaging FLIM

Fluorescence lifetime image of a C. *elegans*. The different lifetime colours derive from various fluorescent proteins (CFP, GFP, YFP). Courtesy H. Hutter.

Fluorescence Correlation Spectroscopy

Lien entre la diffusion de molécules et la fluctuation de l'intensité de fluorescence dans un volume donné

Principe de l'excitation à deux photons

Processus de fluorescence en excitation à un photon

Processus de fluorescence en excitation à deux photons

L'énergie d'un seul photon est absorbée par un fluorochrome pour passer d'un état d'énergie basal (S_0) à un état excité (S_1)

Deux photons d'énergie deux fois plus faible (et donc de longueur d'onde deux fois plus élevée) sont absorbés par la molécule dans un laps de 10⁻¹⁶ s

Les caractéristiques du rayonnement émis par le fluorochrome en excitation à deux photons sont inchangées

En microscopie à balayage laser à deux photons, l'excitation est strictement restreinte au volume focal

Fluorescence suite à une absorption à un photon

Fluorescence suite à une absorption à deux photons

MICROSYSTEMS

Multicolor Image of the NMJ

Courtesy of Prof. Stephan Sigrist

500 nm 74

STED is pure physics! But you can add mathematics on top!

Optical pathway

Formation of presynaptic active zone (Liprin) Courtesy S. Sigrist, Wuerzburg

Typical lateral resolution: 200x200 nm

Typical lateral FWHM in STED is **90x90** nm^{76}

ACTIN

Confocal

STED

MICROTUBULES

Confocal

STED

78

Increase xy resolution in fluorescence microscopy over classical Abbe limits:

FWHM_{confocal, xy}: 200 nm

SOME EXAMPLES:

 $d_{xy} = \frac{\lambda}{2n \cdot \sin \alpha}$

The task

- Neurophysiology (Synapse-cell-interactions, motoneurons etc.)
- Endocytotic processes
- Virus biology (Malaria, AIDS)
- Pathology (Multiple Sclerosis etc.)

Microtubules of a Vero cell

79

Increase xy resolution in fluorescence microscopy over classical Abbe limits:

FWHM_{confocal, xy}: 200 nm

SOME EXAMPLES:

 $d_{xy} = \frac{\lambda}{2n \cdot \sin \alpha}$

The task

- Neurophysiology (Synapse-cell-interactions, motoneurons etc.)
- Endocytotic processes
- Virus biology (Malaria, AIDS)
- Pathology (Multiple Sclerosis etc.)

Microtubules of a Vero cell

Applications Example - Cell Biology

F-Actin

 β -Tubulin

Confocal

STED

Nice for demonstrational purposes

Resolution enhancement by STED:

A threefold improved resolution can make 9 spots out of 1 !

Microscopie Confocale

- Introduction
 - Historique
 - Fluorescence
 - Résolution
 - Microscopie Confocale
- Applications et exploitation des données
 - Immunomarquages
 - Réflection
 - Time-Lapse
 - Etudes spectrales
 - F-Techniques
 - FCS/FLIM
- Conclusion

Conclusion

Technique d'imagerie à haute résolution

Large domaine d'application

Exploitation des images brutes

Système commercial entièrement motorisé

Système évolutif

Ca y est vous êtes libres !!!