
IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 9, NO. 1, FEBRUARY 2001 173

Graph Matching by Relaxation of Fuzzy Assignments
Swarup Medasani, Raghu Krishnapuram, and YoungSik Choi

Abstract—Graphs are very powerful and widely used represen-
tational tools in computer applications. In this paper, we present a
relaxation approach to (sub)graph matching based on a fuzzy as-
signment matrix. The algorithm has a computational complexity
of (2 2) where and are the number of nodes in the two
graphs being matched, and can perform both exact and inexact
matching. To illustrate the performance of the algorithm, we sum-
marize the results obtained for more than 12 000 pairs of graphs
of varying types (weighted graphs, attributed graphs, and noisy
graphs). We also compare our results with those obtained using
the Graduated Assignment algorithm.

Index Terms—Graph isomorphism, graph matching, inexact
graph matching, subgraph matching.

I. INTRODUCTION

GRAPHS of various types have been widely used as repre-
sentational tools in many applications. For example, ob-

ject recognition can be accomplished by establishing a corre-
spondence between the graph representing the object and the
graphs representing the models in the database. Graphs have
also been used for knowledge representation and scene descrip-
tion. The process of determining the correspondence between
graphs is called graph matching. For real-time applications, fast
and efficient graph matching is mandatory.

One of the most commonly used graph structures for mod-
eling objects is the attributed relational graph (ARG). An ARG
is a relational structure, which consists of a set of nodes con-
nected by edges. The nodes and edges have attributes associ-
ated with them. Each node represents a component of the ob-
ject being modeled, and the properties of the component are as-
signed as attributes to the node. The edges of an ARG represent
the structural relationships between the components. A formal
definition of ARGs is given in [1].

A graph is a collection of nodes and edges.
is the set of nodes and is the set of edges. An edge con-

necting nodes and is denoted by , and belongs to the set
. If the edges and nodes are labeled, we obtain labeled graphs.

Theproblemofcomparinggraphscanbeclassifiedaseitherexact
graph matching or inexact graph matching. Graph isomorphism
usually entails finding an exact match between two graphs, while
subgraph isomorphism means finding an exact match between a
graphandasubgraphofanothergraph.Theexactgraph-matching
or graph-isomorphism problem can be stated as follows. Given
two graphs and , find

Manuscript received November 2, 1999; revised April 24, 2000. This work
was supported by a Grant fromKorea Telecom’s MTRL (Multimedia Tech-
nology Research Laboratory).

S. Medasani is with HRL Laboratories, LLC, Malibu, CA 90265 USA
(e-mail: smedasani@hrl.com).

R. Krishnapuram was at the Colorado School of Mines, Golden, CO. He is
now with IBM India Research Lab Indian Institute of Technology, New Delhi,
110016 India.

Y. Choi is with Korea Telecom, MTRL Seoul, 137-792 Korea.
Publisher Item Identifier S 1063-6706(01)01360-1.

such that iff . The sub-
graph isomorphism problem can be formulated as follows. Find

and , and a mapping function
such that iff . In the same vein,
the inexact graph matching problem can be framed as follows. If
labels are assigned to nodes and edges from two setsand ,
find , , and a mapping function
such that the number of nodes in and with matching la-
bels is , and the number of edges in such that
if is . Inexact graph matching can be
further generalized to the case where the labels inand are
not crisp. In this case, inexact graph matching means comparing
graphsbasedontheoverallstructureandthecompatibilityofnode
and edge labels. In this paper, we consider the exact as well as in-
exact subgraph matching problem.

The computational complexity of graph isomorphism is still
an open question, i.e., whether it belongs toor [2], [3].
However, the problem of subgraph isomorphism and inexact
graph matching is known to be -complete [2]. There are
three basic approaches to graph matching [4]. The first approach
is based on group-theoretic concepts and aims at classifying the
adjacency matrices into permutation groups. Unfortunately, this
approach is not practical due to a large overhead. The second ap-
proach employs a state-space search. In this approach, a state-
space is constructed and searched for a solution. One of the
best known methods is the depth-first backtracking search [5].
The state-space search methods have a high computational com-
plexity, i.e., , where, are the number of edges in the
two graphs. The third approach uses concepts from nonlinear
optimization. Relaxation labeling methods are the most com-
monly used among the nonlinear optimization methods [6]–[8].
Since these methods do not search the entire state-space, their
computational complexity is quite low, namely .

Thegraduatedassignment (GA)algorithm [4] is an example of
the relaxation approach. The GA technique can potentially pro-
vide good (sub)optimal solutions for problems that use a “match
matrix” todenotecorrespondencebetweentwogroupsofobjects.
Let graph have nodes and graph have nodes. Without
loss of generality, we assume that . In the graph-matching
application, if the elements of the match matrix are binary, then
a “1” in the th row and th column means that nodein graph
matches node in graph . In other words, the match matrix is
an assignment matrix in which the sum of the elements in each
column is 1, and the sum of elements in each row is. In GA
as well as our approach, we do not restrict the elements of the
matrix to be binary. In other words, we use a fuzzy assignment
matrix.Anewenergy-minimizationframeworkforgraphisomor-
phism based on an equivalent maximum, clique formulation was
recently proposed by [9]. Some other approaches to graph iso-
morphismuseneuralnetworks[10],[11],geneticalgorithms[13],
Lagrange relaxation [12], [14], continuous edit [15].

1063–6706/01$10.00 © 2001 IEEE

174 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 9, NO. 1, FEBRUARY 2001

In this paper, we present anewapproach to graph matching by
relaxation of fuzzy assignments. It is similar in principle to Gold
and Rangarajan’s graduated assignment algorithm [4] and Cross
and Hancock’s dual-step expectation maximization (EM)-based
algorithm [16], but only to the extent that all these algorithms
use (partial) matching degrees in each step and apply what is
known as the “alternating optimization” technique. GA tries to
match graphs edgewise, while our algorithm tries to match the
graphs nodewise. The dual-step EM approach solves the prob-
lems of finding correspondences and projection transformation
between points by maximizing the data-likelihood over the space
of correspondence matches and transformation parameters. A re-
lational consistency measure [17], [18] based on supercliques is
used to assignprobabilities toputativecorrespondences.A bipar-
tite graph representing the most probable correspondence match
is used to gate the likelihood function for obtaining the transfor-
mation parameters. In the maximization step of the EM the cor-
respondence match is updated and is used to update the transfor-
mation parameters in turn. The highlights of our approach are: 1)
the objective function is simple and easy to interpret; 2) the ob-
jective function encodes fuzzy memberships explicitly so that a
discrete optimization problem is converted to a continuous one
that isamenable tooptimization;3)exactupdateequationscanbe
derived by using techniques commonly employed in fuzzy clus-
tering and optimization theory; and 4) the algorithm is easy to
implement. Our experimental results indicate that the matching
accuracyofFGMisconsistentlyhigheracrosstheboard,although
GA tends to be faster for sparse graphs.

The rest of the paper is organized as follows. In Section II, we
introduce the fuzzy graph matching (FGM) algorithm and derive
the update equations. In Section III, we discuss the compatibility
measure used in FGM and present an analysis of the complexity
of the algorithm. In Section IV, we present results on exact and
inexact subgraph matching using FGM. Finally, in Section V,
we present the conclusions.

II. FGM ALGORITHM

The proposed fuzzy graph matching algorithm [19] uses ideas
from relaxation labeling and fuzzy set theory to solve the sub-
graph isomorphism problem. The algorithm can handle exact as
well as inexact subgraph matching. The objective function of
FGM is inspired by the assignment prototype (AP) [20], fuzzy
-means FCM [21], and GA [4] algorithms. Let and de-

note the two graphs being matched with vertex setsand ,
respectively. The complexity of FGM algorithm is ,
where and . The FGM algorithm uses a
membership matrix where represents the relative
degree to which node matches the node , i.e.,
is the fuzzy assignment matrix.

The objective function used for the FGM algorithm is

(1)

In (1), is a constant that controls the relative influence of the
two terms in the minimization process, represents the ab-
solute compatibility between nodes , (given
the fuzzy assignments), taking into account the attributes of
the edges incident on nodesand and those of the neigh-
boring nodes of and . In other words, is the com-
patibility matrix. The function a decreasing function that
converts to a kind of “dissimilarity.” In this paper, we use

, where is a control parameter. This
function was chosen mainly due to its simplicity. Our experi-
ments indicate that the choice of this function is not critical. In
Section III, we provide a more detailed discussion on hows
can be chosen. As mentioned earlier, the compatibilitiesde-
pend on . Similarly, the assignments depend on the compat-
ibilities . We update and in an alternating fashion, giving
rise to a relaxation process. To accomplish robust matching, we
introduce dummy nodes in each of the graphs being compared.
Node in graph and node in graph repre-
sent dummy nodes. These dummy nodes [4] are similar to slack
variables that are used to deal with inequality constraints in op-
timization problems. When a particular node in graphdoes
not match any of the nodes in graph, it can be assigned to
the dummy node of graph, and vice versa. The dummy node
enables us to minimize the objective functionsubject to the
following constraints:

for

for

and

(2)

The first term in (1) is minimized if the matching degrees
are high whenever the compatibilities are high. However,
ideally we want . To accomplish this goal, we add
the second (entropy) term in (1) which tries to push the values
of toward either zero or one.

To minimize (1) subject to (2), we use Lagrange multipliers.
The objective function then takes the form

(3)

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 9, NO. 1, FEBRUARY 2001 175

In (3), , , are the Lagrange multipliers that handle the
three sets of constraints in (2). Taking the partial derivative of
in (3) with respect to , we obtain

for to to

for to

for to

(4)

Taking into account the objective function and the constraints of
the problem, and letting to to

, and , we can write the following
Karush–Kuhn–Tucker conditions for :

(5)

(6)

(7)

Equations (4) and (6) can be combined into

to to

to

to

(8)

Since (5) and (7) must hold, we have two possible cases de-
pending on whether some of the values of are zero or not.

Case 1: Here we assume that for . Using
the column constraints and the row constraints [see (2)],
we obtain

to (9)

and

to (10)

where . Equations (9) and (10) form a
consistent system of linear equations that can be easily
solved. Equations (9) and (10) can be written as

...
...

...
...

(11)

where , are the La-
grange multipliers in (3) in vector form

diag

diag

and b

(12)

We can solve the linear equations for and as follows.
From (11) we have

(13)

and

(14)

From (13), we have

(15)

Substituting (15) into (14), we obtain

(16)

where .
Case 2: In this case, we assume that for at least

some . Let us define two sets and , where
and

. It follows from (5) and (7) that for all
and for all , , and . Let us also define

as follows

if
otherwise.

(17)

Note that is not the Kronecker delta. Since some of the
’s are zero, the column constraints can be written as

, for . Similarly, the
row constraints can be written as , for

. Using the constraints along with (8) we obtain

to (18)

176 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 9, NO. 1, FEBRUARY 2001

Fig. 1. Computation of compatibility between nodes.

and

to (19)

Since is always zero, the third term is eliminated from
(18) and (19). Equations (18) and (19) can then be written as

...
...

...
...

(20)

where

diag

diag

and

(21)

As in case 1, we can solve the linear equations in (20)
for and as follows:

(22)
and

(23)

where .
Once and are computed, we can use to update mem-

berships using (8). The FGM algorithm is presented below.

FGM Algorithm

Initialize compatibilities ;
REPEAT

Compute and using equations(15) and(16);
Compute memberships using(8) with set to
zero;

If any is negative

Initialize sets and , where ,
and , ;

Find and using(22) and (23);
For use(8) with set to zero;
Set to zero;

Update using(24);
UNTIL (memberships stabilize).
Use the Sinkhorn technique[22] to further crispify the matrix;

III. COMPATIBILITY

The compatibility is a quantitative measure of the (abso-
lute) degree of match between node and node ,
given the current fuzzy assignment matrix. For example, if

, then indicates complete compatibility of
the nodes and indicates no compatibility. In this paper,
we define the compatibility as

and

(24)

where is the degree of match between (the attributes of)
node and node , is the matching
score between the edge and edge ,

, is the crisp assignment matrix closest
to satisfying the constraints in (2) for and

, and is a normalization factor equal to
the number of edges (with nonzero weights or attribute values)
that are incident on node . Note that acts as a filter so
that each edge in graph that is incident on node(except the
one from the dummy node) contributes to only once. Also,

is raised to the power 0.5 for enhancement purposes. Fig. 1
illustrates the notation used.

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 9, NO. 1, FEBRUARY 2001 177

To compute , we can apply the Sinkhorn technique [22],
which repeatedly normalizes the rows and columns to give the
solution. The complexity of this technique is . How-
ever, this method sometimes takes too many iterations to con-
verge. There are also other standard algorithms for the assign-
ment problem that can be used here as well [23]. Rather than
implement these, we used a rather straightforward method. We
identify the largest element in , set it equal to 1, and zero out
the remaining elements of the row and column corresponding to
the largest element. We repeat this processmore times. This
method has a somewhat higher complexity of , but does
not impose a noticeable computational burden in practice. We
refer to this method as the greedy algorithm.

The degree of match can be defined in many ways, and
the choice of the definition is application-dependent. In this
paper, we deal with weighted graphs and attributed graphs. In
what follows, we consider these cases separately.

In the case of weighted graphs, the nodes have no attributes,
but each edge has a weight associated with it. We denote the
weight associated with edge in graph by , where

. Similarly, the weight associated with edge in
graph is denoted by . Since the nodes have no attributes,
we define the matching degree between the (attributes of)
node and node as

if and and
otherwise

(25)

where is the number of edges with nonzero weights inci-
dent on node of graph , and is the number of edges with
nonzero weights incident on nodeof graph . We initialize
the compatibilities as , and use (24) in later
iterations (for updating). For the exact matching case (i.e., when
no noise is added to the edge weights of graph), we define

if and (26)

For the inexact case (i.e., when noise is added to the edge
weights of graph), the weights are defined as in (25), and

is given by (26). However, the compatibilities are com-
puted using (24) only for and . The
remaining compatibilities are not computed, but the following
formulas are used to compute directly. [Note that the al-
gorithm requites only , and not .]

and

(27)

The reason for using the modified updating technique, shown in
(27), for the compatibilities involving dummy nodes is as fol-
lows: Equations (24) and (25) give a compatibility of 0 when one
of the nodes involved is a dummy node. This forces the nodes to
seek matches among the nondummy nodes. In the inexact case,

since good (exact) matches are not possible, this leads to a poor
performance. A better alternative is to use the dummy node to
the degree that a reasonable match is not possible among the
nondummy nodes. This is what (27) accomplishes. This method
can also be used in the exact case, but we found that the perfor-
mance is satisfactory even otherwise.

In the case of attributed graphs, node is assumed to
have attributes associated with it, and each edge
has attribute associated with it. Each node and edge attribute
has a value in [0, 1]. The values of the attributes of node of
graph are denoted by . Similarly, the
values of the attributes of edge of graph are denoted
by . The matching degree between
the (attributes of) node and node is defined as

if and

otherwise.

(28)

Again, we initialize the compatibilities as ,
and use (24) in later iterations. However, with attributed graphs
(for both exact and inexact cases), we define

if and (29)

where

if or

otherwise.
(30)

The FGM algorithm requires the specification ofand .
The value of was always chosen to be . The algorithm
is quite insensitive to a range ofvalues. However, for faster
convergence, the value ofwas determined as follows. For the
weighted graphs, we used for the exact
matching case, whereis the number of nodes. For the inexact
matching case, we used if connectivity , and
otherwise. In the case of attributed graphs, we used .

The computational complexity of the FGM algorithm can be
shown to be . The , computation step requires the
inversion of (which is an matrix) and (which is a
diagonal matrix). In addition, two matrix vector multiplications
are required [see (15) and (16)]. Thus, we have a complexity of

. To compute the memberships , we
have computations [see (8)]. If any of the memberships
are negative, we have to repeat the process of, computation
and then recompute . Computing compatibilities is the most
expensive part of the FGM algorithm. Computation of the
matrix is , finding the matrix is [
if the greedy algorithm is used]. Thus computing for all
and using (24) is . Therefore, the overall complexity
of the algorithm is , where is the number of nodes
in the smaller graph and is the number of nodes in the larger
one. The complexity of the GA algorithm is , where
is the number of edges in the first graph andis the number
of edges in the second graph. Thus, the two complexities are

178 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 9, NO. 1, FEBRUARY 2001

Fig. 2. Comparison of matching accuracies of FGM and GA: nonnoisy case.

Fig. 3. Comparison of CPU times of FGM and GA in the nonnoisy case.

TABLE I
COMPARISON OFFGM AND GA FOR NONNOISY GRAPHS, n = 20. AVERAGE

NUMBER OF MISMATCHED NODES, NUMBER OF CORRECTMATCHES,
AND CPU TIME IN MIN

similar. (Note that in our model, the graphs are complete, even
though the strengths of relations between edges may be zero.)

IV. EXPERIMENTAL RESULTS

The FGM algorithm was tested on both weighted and at-
tributed relational graphs of varying sizes. For both types of
graphs, we tested the exact matching case as well as inexact
matching case. In the inexact matching case, the weights (or
attributes) of the smaller graph are perturbed by adding noise,
so that exact matching is not possible. The results from more
than 12 000 experiments are summarized here. The results on
weighted graphs are compared with results obtained using the
GA algorithm. The code for GA was obtained from the authors.

We randomly generated weighted and attributed relational
graphs for our experiments. The sizes of the graphs varied

TABLE II
COMPARISON OFFGM AND GA FOR NONNOISY GRAPHS, n = 40. AERAGE

NUMBER OF MISMATCHED NODES, NUMBER OF CORRECTMATCHES,
AND CPU TIME IN MIN

TABLE III
COMPARISON OFFGM AND GA FOR NONNOISY GRAPHS, n = 60. AVERAGE

NUMBER OF MISMATCHED NODES, NUMBER OF CORRECTMATCHES,
AND CPU TIME IN MIN

TABLE IV
COMPARISON OFFGM AND GA FORNONNOISY GRAGHS, n = 100. AVERAGE

NUMBER OF MISMATCHED NODES, NUMBER OF CORRECTMATCHES,
AND CPU TIME IN MIN

from 20 nodes to 100 nodes. In particular, we used graphs with
20, 40, 60, and 100 nodes. The number of edges with nonzero
weights (or nonzero attribute values) were constrained by a
user-specified connectivity level (), which was specified as
either 25%, 50%, 75%, or 100%. A connectivity of 50% implies
that only 50% of all possible edges will have nonzero weights
(attribute values). In the case of weighted graphs, the nodes
were unlabeled and the edge strengths were chosen randomly
from the [0, 1] interval. For attributed relational graphs, there
were five attributes for each node and each edge, and these
attributes were assigned random values in the [0,1] interval.
Once the random graph of the specified size was generated,

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 9, NO. 1, FEBRUARY 2001 179

Fig. 4. Comparison of matching accuracies of FGM and GA: noisy case.

Fig. 5. Comparison of CPU times of FGM and GA in the noisy case.

TABLE V
COMPARISON OFFGM AND GA FOR NOISY GRAPHS, n = 40, � = 0:02.

AVERAGE NUMBER OFMISMATCHED NODES, NUMBER OFCORRECTMATCHES,
AND CPU TIME IN MIN

the nodes of the graph were permuted. The permuted graph
was then modified by deleting randomly selected nodes. The
number of nodes to be deleted was specified in terms of a
deletion percent (), which was either 25% or 50%. The
true-matching assignments between the original graph and the
modified subgraph were also recorded and used as the ground
truth when comparing the assignments obtained from FGM
and GA algorithms. This method of scoring only compares
the modified graph with the original, and may ignore better
matches that result from the modification. This is particularly
true in the inexact matching case, where the noise added to
the weights (attribute values) may cause the best match to be
different from the recorded ground truth.

In our first experiment, we selected graphs of sizes 20, 40, 60,
and 100 nodes. For each graph size, we used four connectivity

TABLE VI
COMPARISON OFFGM AND GA FOR NOISY GRAPHS, n = 40, � = 0:04.

AVERAGE NUMBER OFMISMATCHED NODES, NUMBER OFCORRECTMATCHES,
AND CPU TIME IN MIN

TABLE VII
COMPARISON OFFGM AND GA FOR NOISY GRAPHS, n = 40, � = 0:08.

AVERAGE NUMBER OFMISMATCHED NODES, NUMBER OFCORRECTMATCHES,
AND CPU TIME IN MIN

TABLE VIII
COMPARISON OFFGM AND GA FOR NOISY GRAPHS, n = 40, � = 0:1.

AVERAGE NUMBER OFMISMATCHED NODES, NUMBER OFCORRECTMATCHES,
AND CPU TIME IN MIN

levels and two deletion levels, which gives us eight cases.
For each case, we generated 100 random graph-pairs. The
FGM and GA algorithms were run on the 100 graph-pairs and
the results were averaged. We recorded the number of times
the graph-pairs were matched perfectly by FGM and GA, as
well as the average number of nodes that were mismatched.
The average was computed over only those cases in which
perfect matching did not occur. The results are presented
in Tables I–IV. Each entry in the tables shows the average
number of mismatched nodes (in the cases where mismatching
occurred), total number of correct matches, and the CPU time
in minutes. From the results, we see that FGM results are 100%
accurate while the GA fails in several cases. As a summary
of the tables, Fig. 2 shows the improvement in accuracy (i.e.,

180 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 9, NO. 1, FEBRUARY 2001

TABLE IX
FGM RESULTS ONEXACT MATCHING OF ATTRIBUTED GRAPHS. AVERAGE NUMBER OF MISMATCHED NODES, NUMBER OF CORRECT

MATCHES, AND CPU TIME IN MIN

TABLE X
FGM RESULTS ONINEXACT MATCHING OF ATTRIBUTED GRAPHS ATNOISELEVEL � = 0:04. AVERAGE NUMBER OFMISMATCHED NODES, NUMBER OFCORRECT

MATCHES, AND CPU TIME IN MIN

percentage of correct matches) achieved by FGM over that of
GA for the nonnoisy case. Fig. 3 depicts a plot of the ratio of
CPU time taken by GA to that of FGM as a function of percent
connectivity. It can be seen from these figures that for the
nonnoisy case, the improvement provided by FGM in matching
accuracy is significant for graphs of relatively smaller size.
Although the GA algorithm is somewhat quicker than the FGM
algorithm in many cases, FGM has an advantage for large and
highly connected graphs. The experiments were conducted
on a Pentium II 450-MHz workstation and no attempt was
made to optimize the code of the FGM algorithm. The GA
algorithm is essentially edge-based, and is quite efficient for
sparse graphs since it uses special data structures.

The second set of experiments deal with inexact weighted
graph matching. The random graph-pairs from the previous ex-
periment were used again. The subgraphs from each graph-pair
were perturbed by adding uniform noise. Since this experiment
intends to find the efficiency of FGM for inexact matching, we
fixed the size of the larger graph to 40 nodes and varied the stan-
dard deviation of the noise added to the smaller graph. In par-
ticular, we tried 0.02, 0.04, 0.08, and 0.1. We averaged the
results of inexact matching over 100 graph-pairs. The results
are presented in Tables V–VIII. From the results, we can see
that FGM matching accuracy is always better than or similar to
that of GA. The percent of nodes mis-matched is also smaller
for FGM. However GA is again somewhat faster than FGM in
finding the solution. These results also show that as the connec-
tivity increases, the influence of noise diminishes. This is be-
cause matching becomes easier with more constraints. To sum-

marize the tables, Fig. 4 shows the improvement in matching
accuracy provided by FGM over GA as a function of standard
deviation of noise. It can be seen that the improvement is sig-
nificant for intermediate-level noise. Fig. 5 shows that the ad-
vantage of GA in terms of CPU time diminishes with higher
connectivity even in the noisy case.3

The next two sets of experiments deal with attributed rela-
tional graphs. Each node and edge in the attributed relational
graph is represented by five weights in the interval [0, 1]. The
results on attributed graphs of sizes 20 and 40 nodes are given
in Table IX. In both cases, the FGM results are 100% accurate
and are quite fast. The attributed graphs generated in the pre-
vious step were then perturbed by adding noise. The noise was
added to the subgraphs, and standard deviations of 0.04, 0.1,
and 0.2 were used. The noise added here was higher than in the
weighted graph case. The results on the 20- and 40-node graphs
for the noise level are presented in Table X. Tables XI
and XII contain the results for the noise levels and

. From the results, we can see that FGM is quite robust
and insensitive to increased noise levels. The matching results
are good. The version of the GA code we had was not able to
handle attributed graphs, and so no comparison was possible.

V. SUMMARY AND CONCLUSION

In this paper, we present a fuzzy approach to exact and in-
exact (sub)graph matching. As in [4], we use a type of relax-
ation technique. Fuzzy assignments are used in each iteration
to avoid premature convergence to local minima. We update the

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 9, NO. 1, FEBRUARY 2001 181

TABLE XI
FGM RESULTS ONINEXACT MATCHING OF ATTRIBUTED GRAPHS AT NOISELEVEL � = 0:1. AVERAGE NUMBER OFMISMATCHED NODES, NUMBER OFCORRECT

MATCHES, AND CPU TIME IN MIN

TABLE XII
FGM RESULTS ONINEXACT MATCHING OF ATTRIBUTED GRAPHS AT NOISELEVEL � = 0:2. AVERAGE NUMBER OFMISMATCHED NODES, NUMBER OFCORRECT

MATCHES, AND CPU TIME IN MIN

fuzzy assignments based on fuzzy compatibilities, giving rise
to a relaxation procedure. We incorporate robustness into the
matching process by adding dummy nodes to the two graphs
being matched. The computational complexity of the algorithm
is .

The GA algorithm solves several assignment problems using
a continuation method to obtain a double stochastic match ma-
trix after each iteration. The control parameter () of the contin-
uation method is slowly increased to obtain a crisp solution for
the match matrix. In the case of FGM, the use of a fuzzy objec-
tive function eliminates the use of a continuation method. FGM
first uses a greedy method to compute compatibilities between
nodes, these compatibilities are then used to solve the assign-
ment problem. These two steps are iterated until convergence.
The use of the greedy method and the crisp match matrix ensure
that consistency constraints are satisfied. In the GA algorithm,
the authors use a first-order expansion to simplify the analysis
and derive the update equations. No such approximation needs
to be made in the case of FGM. Nevertheless, as in the case of
GA, convergence to a global optimum is not guaranteed in the
case of FGM. Thus, the only possible way to compare them is
through experiments. Our experiments unequivocally indicate
that the matching accuracy of FGM is consistently higher for
graphs of various sizes and connectivity levels. We also believe
that FGM can be speeded up considerably. Rather than imple-
ment some of the routines required in the optimization process,
we borrowed third-party code for quick testing. Thus our code
is not at all optimized. Changes to the code are difficult now due
to logistic reasons.

The low computational complexity of the FGM algorithm
makes it suitable for several real-time computer applications.
FGM is easy to implement, and has a matching accuracy that
is higher than the GA algorithm. We are currently looking into
ways of improving the speed of the algorithm, and applying it to
content-based retrieval of images [24], [25]. Another attractive
feature of FGM is that when the algorithm converges, the value
of the objective function can be used as a measure of similarity
between the two graphs. This is useful in many applications,
such as clustering.

ACKNOWLEDGMENT

This work was performed while one of the authors (R. Krish-
napuram) was with the Colorado School of Mines, Golden, CO
USA.

REFERENCES

[1] M. A. Eshera and K. S. Fu, “An image understanding system using
attributed symbolic representation and inexact graph-matching,”IEEE
Trans. Pattern Analysis Machine Intell., vol. 8, pp. 604–619, Sept. 1986.

[2] M. R. Garey and D. S. Johnson,Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York: Freeman, 1979.

[3] M. A. Abdulrahim, “Parallel algorithms for labeled graph matching,”
Ph.D. dissertation, Colorado School of Mines, Golden, CO, 1998.

[4] S. Gold and A. Rangarajan, “A graduated assignment algorithm for
graph matching,”IEEE Trans. Pattern Analysis Machine Intell., vol.
18, pp. 377–387, Apr. 1996.

[5] D. G. Corneil and C. C. Gotlieb, “An efficient algorithm for graph iso-
morphism,”J. ACM, vol. 17, pp. 51–64, 1970.

[6] A. Rosenfeld, R. Hummer, and S. Zucker, “Scene labeling by relaxation
operations,”IEEE Trans. Syst., Man, Cybern., vol. 6, pp. 420–433, June
1976.

182 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 9, NO. 1, FEBRUARY 2001

[7] S. Peleg, “A new probabilistic relaxation scheme,”IEEE Trans. Pattern
Analysis Machine Intell., vol. 2, pp. 362–369, July 1980.

[8] O. Faugeras and M. Berthoud, “Improving consistency and reducing am-
biguity in stochastic labeling: An optimization approach,”IEEE Trans.
Pattern Analysis Machine Intell., vol. 4, pp. 412–424, July 1981.

[9] M. Pelillo, “Replicator equations, maximal cliques, and graph isomor-
phism,”Neural Computat., vol. 11, no. 8, pp. 1933–1955, 1999.

[10] T. W. Chen and W. C. Lin, “A neural network approach to csg-based 3-d
object recognition,”IEEE Trans. Pattern Anal. Machine Intell., vol. 16,
pp. 719–725, July 1994.

[11] P. Suganthan, E. Teoh, and D. Mital, “Pattern recognition by graph
matching using the potts mft neural networks,”Pattern Recog., vol. 28,
pp. 997–1009, 1995.

[12] M. Krcmar and A. Dhawan, “Application of gentic algorithms for graph
matching,” inProc. IEEE Int. Conf. Neural Networks (ICNN): IEEE
Press, 1994, pp. 3872–3876.

[13] A. Rangarajan and E. Mjolsness, “A Lagrangian relaxation network for
graph matching,”IEEE Trans. Neural Networks, vol. 7, pp. 1365–1381,
1996.

[14] A. Rangarajan, S. Gold, and E. Mjolsness, “A Lagrangian relaxation
network for graph matching,”IEEE Trans. Neural Networks, vol. 7, pp.
1041–1060, 1996.

[15] A. Finch, R. Wilson, and E. R. Hancock, “An energy function and con-
tinuous edit process for graph matching,”Neural Computat., vol. 10, pp.
1873–1894, 1998.

[16] A. Cross and E. R. Hancock, “Graph matching with a dual-step em al-
gorithm,” IEEE Trans. Pattern Anal. Machine Intell., vol. 20, no. 11, pp.
1236–1253, 1998.

[17] R. Wilson and E. R. Hancock, “Structural matching by discrete relax-
ation,” IEEE Trans. Pattern Anal. Machine Intell., vol. 19, pp. 634–648,
1997.

[18] A. Finch, R. Wilson, and E. R. Hancock, “Symbolic graph matching with
the em algorithm,”Pattern Recog., vol. 31, pp. 1777–1790, 1998.

[19] R. Krishnapuram and S. Medasani, “A fuzzy approach to graph
matching,” inProc. Int. Fuzzy Syst. Assoc. Congress, Taipei, Taiwan,
August 1999, pp. 1029–1033.

[20] M. P. Windham, “Numerical classification of proximity data with as-
signment measure,”J. Classificat., vol. 2, pp. 157–172, 1985.

[21] J. C. Bezdek,Pattern Recognition with Fuzzy Objective Function Algo-
rithms. New York: Plenum Press, 1981.

[22] R. Sinkhorn, “A relationship between arbitrary positive matrices and
doubly stochastic matrices,”Ann. Math. Statistics, vol. 35, pp. 876–879,
1964.

[23] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin,Network
Flows. Englewood Cliffs, NJ: Prentice-Hall, 1993.

[24] S. Medasani and R. Krishnapuram, “A fuzzy approach to content-based
image retrieval,” inProc. IEEE Conf. Fuzzy Syst., Seoul, Korea, Aug.
1999, pp. 1251–1257.

[25] , “Content-based image retrieval using fuzzy attributed relational
graphs,” inProc. IEEE Conf. Multimedia Syst., Florence, Italy, June
1999, pp. 964–968.

