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Abstract

We propose a mathematical framework for object detection using logic operations as a
structure for defining multi-channel segmentation. The model combines object information
from the different channels into any logic combination. We consider active contour methods
which use one initial contour that would evolve from the information given in each channel
simultaneously. Specific models are derived based on the single-channel region based ‘‘active
contours without edges’’ [IEEE Trans. Image Process. 10 (2) (2001) 266] model. Numerical
experiments show that the method is able to find general intersections, unions, and comple-
ments of the regions of objects of both synthetic and realistic images.
� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Much has been written on active contour segmentation of multi-channel images.
There are papers that discuss methods for color images (Sapiro, 1997; Zhu and
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Yuille, 1996; Dibos and Koepfler, 1997), texture images convolved with filters (Chan
et al., 2002; Sapiro and Ringach, 1996; Paragios and Deriche, 1999), multispectral
images with occlusion in some channels and noise in others (Chan et al., 1999),
and image sequences (Guichard, 1998; Yezzi and Soatto, 2003). Many of these mod-
els attempt to extract parts of an object from each of the channels and to recombine
this information in a logical fashion. In most of these cases, the segmentation is some
combination of occluded objects, or a combination of noisy images.

An example of occluded channels is given in Fig. 1. Most models for multi-chan-
nel segmentation would find a triangle that is the union of both channels as the de-
sired segmentation.

While taking the union is reasonable, our view is that this is too limiting. We want
to define a general framework, which allows the user to choose any logical combina-
tion of object information from each channel depending on the specific application.
These segmentations can be described using combinations of intersection, union, and
negation of the objects in the images. The user decides which logic operator is appro-
priate for the segmentation. In Fig. 2, examples of logic segmentation are given using
union, intersection, and negation.

In this paper, we would like to stress two areas of interest that we cover. We define
a logic framework for multi-channel image segmentation, as a general idea, regard-
less of the segmentation model used. This opens up solutions that have not been gi-
ven previously, and explains the segmentation solutions that have been solved by
other models. We then apply the logic framework to a region based model, Active
Contours without edges (Chan and Vese, 2001). For a region based model, we found
that models which treat inside the region and outside the region in the same manner,
will have these two sides competing. For example, if we want the union of the objects
Fig. 1. A synthetic example of an object (a triangle) in two different channels. In A1, the lower left corner
is missing. In A2 the upper corner is missing. Most multi-channel models converge to the union of the
objects that are in the channels.

Fig. 2. Different logical combinations for the sample image, A1[A2 is the union of the objects in each
channel, A1\A2 is the intersection, A1 \ :A2 the object in A1 that is not in A2.
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in two channels, it is equivalent to say that we want the intersection of the outside of
the objects. The union and intersection will not be achieved using the same formu-
lation, and these differences need to be taken into consideration.

We will use synthetic and real images to illustrate our examples. The synthetic
images are used to illustrate how the models work. No details of the numerical
implementation will be given. These are standard and can be found in (Aubert
and Kornprobst, 2001; Chan and Vese, 2001; Osher and Fedkiw, 2002).

The outline of the paper is as follows: in Section 2, we describe a logic framework
for multi-channel image segmentation, in Section 3 we review the background for the
active contours without edges model. In Section 4, we will develop the logical exten-
sion of the active contours without edges model. In Section 5 we give examples using
synthetic and real images of logic operators that are developed in Section 4. In Sec-
tion 6, we compare the logic model of active contours without edges to the vector
valued model in Chan et al. (1999). Section 7 is the conclusion which summarizes
the work and discusses possible further work on the topic.
2. A logic framework for multi-channel image segmentation

There are a number of multi-channel papers written. Most of them extend a sca-
lar segmentation model to multi-channel by giving a single formulation that com-
bines the seperate channels together. A common example that we have seen is of
summing a scalar model over the channels. Examples of such models include: region
competition algorithm by Zhu and Yuille (1996), stereoscopic segmentation (Yezzi
and Soatto, 2003), and vector valued active contours (Chan et al., 1999). By limiting
themselves to a single model, these algorithms limit the possible solutions that may
be obtained. Using a logic formulation, we extend the possibilities of multiple solu-
tions. Putting them into a logic framework allows the user the power of choice,
without searching for a new model or heuristic. The logic framework presents the
different possibilities as part of the model. We compare the logic model with the
vector valued model described in Chan et al. (1999) in Section 6. Other models
which also sum a scalar model over channels would yield similar explanations
and results.

An example where several different logic operations would be of interest is a hypo-
thetical case of tumor detection in medical images. A sequence of two brain images
of the same subject taken over time is given in Fig. 3. Several different scenarios of
segmentation may be relevant. For example, to observe a new tumor growth we
might want to detect objects in the second image that are not present in the first,
i.e., :A1 \ A2 where A1 is the original image and A2 is the second image in a time se-
quence. Another possibility is to observe the shrinking of a tumor, looking at objects
in the first image that are not in the second, i.e., A1 \ :A2. The user decides what is of
interest and uses the model that corresponds to the appropriate logic operation. This
particular example would not be solved by the models mentioned above (Chan et al.,
1999; Yezzi and Soatto, 2003; Zhu and Yuille, 1996), because these models want to
combine the objects together.



Fig. 3. An example of an MRI of a brain over time. The first image is a brain with a synthetic tumor in
one place, while in the second image taken at a later time, the synthetic tumor is in a different place.
Information of interest could be finding the tumor in the first image that is not in the second, A1 \ :A2 or
the tumor in the second image that is not in the first, :A1 \ A2.
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It has been suggested that parsing the image into objects of different textures and
colors, as in Tu et al. (2003), would achieve a similar conclusion. However, parsing
the image into different textures leaves out channel location of the object. Logic
operations take intensity contrasts as well as channel location. The purpose of this
paper is to develop a general framework that accommodates different possibilities
of segmentation, not to explore one particular segmentation model.

One direct way of accomplishing logic segmentations is to segment each channel
independently, by the model of your choice, followed by bitwise logic operations.
However, there are some drawbacks to this approach. First, if there are many
images, it is cumbersome and costly to perform all the segmentations separately.
On a deeper level, such an approach often gives undesirable segmentations because
the information in the channels is not taken together. Assuming that each image is
independent of the other, each channel is segmented separately, causing valuable
information to be lost or spurious information to be retained. In Fig. 4, such a sit-
uation is illustrated. In the two channels, the images (a triangle) are occluded and
noisy. When each one is segmented separately, due to the noise, the segmentation
has jagged boundaries. We then do bitwise logic operations A1\A2, A1[A2, and
A1 \ :A2. While the union and intersection of objects are successful, the one involv-
ing negation gives false points because of the jagged boundaries.

Another possibility, is to perform logic operations on the channels forming a
combined image, followed by a segmentation of the image. This is attempted on
the occluded triangle images that are in Fig. 1. The contrast values in the images
are 0 or 1. If the intensity of the object is known ahead of time to be 1 inside the
object and 0 outside the object, direct bitwise logic operations can be performed
on the pixels to get the desired solution (see Fig. 5A) Using the same pixel logic rules
for channels that have 0 inside the object and 1 outside the object the outcome re-
verses the segmentation solutions, the union performs an intersection and vice versa
(see Fig. 5B). If the intensity value 0 is inside the object in one channel and 1 inside
the object in the other channel, the outcome is inconsistent with either of the previ-
ous solutions (see Fig. 5C). In order to do pixel logic, it is necessary to know the



Fig. 4. In this example the segmentation is done independently on each channel. Using the active contours
without edges model, the two images are combined using bitwise OR and AND. In A1 \ :A2 spurious
points arise as a result of noise in the channels.

Fig. 5. Pixel logic operations will yield different results depending on the intensity values inside and
outside the object (A–C). To get consistent results using pixel logic the intensity values must be known for
inside the object in each channel.
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intensity of the object in each channel, otherwise the results will be unpredictable. To
perform pixel logic consistently, the contrast value inside and outside the object must
be known in each channel. This is a lot of information to have ahead of time. Thus,
other methods need to be investigated for logic operations on multi-channel images.

In this paper, we investigate object detection using a single contour for all the
channels in the image set using active contour models. Many active contour models
for scalar images have the following variational form

inf F ðu0;CÞ ¼ k
Z
C
J þ R;

where u0 is the image, C is the evolving curve, �C J is the term related to the image,
and R is the regularization term. We will use the active contours without edges model
developed by Chan and Vese (2001). The derivation of the logic model is based on
extending the functional J to a form suitable for multi-channel images. Implementa-
tion of the logic operations is achieved by various combinations of the channels. The
Chan–Vese model will have one initial contour to find one ‘‘object’’ in the image.
The model has a natural extention for several contours and thus several ‘‘objects’’
in the image (Vese and Chan, 2002), which can also be extended for use in multi-
channel logic operations.
3. Background for the scalar active contours without edges model

LetXbe a boundedopen subset ofR2, with oX the boundary. Let u0 be a given image
such that u0 : X ! R. Let CðsÞ : ½0; 1� ! R2 be a piecewise parameterized C1 curve.

We first recall the Chan–Vese model (Chan and Vese, 2001), which has the follow-
ing form

inf
cþ;c�;C

F ðcþ; c�;CÞ;

where

F ðcþ; c�;CÞ ¼ ljCj þ kþ
Z
inðCÞ

ju0 � cþj2 dxþ k�
Z
outðCÞ

ju0 � c�j2 dx; ð1Þ

where |C| denotes the length of C, c+, and c� are constant unknowns representing the
‘‘average’’ value of u0 inside and outside the curve, respectively. The parameters
l > 0, and k+,k� > 0, are weights for the regularizing term and the fitting term,
respectively.

Minimizing the fitting error in (1), the model approximates the image u0 with a
piecewise constant function, taking only two values, namely c+ and c�, and with
one edge C, the boundary between these two constant regions. The object to be de-
tected will be given by one of the regions, and the curve C will be the boundary of the
object. The additional length term is a regularizing term, and has a scaling role. If l
is large, only larger objects are detected, while for small l, objects of smaller size are
also detected. Because the model does not make use of a stopping edge-function
based on the gradiant, such as the snakes model developed by Kass et al. (1988) it
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can detect edges both with and without gradient. It is well known that (1) can be
viewed as a special case of the Mumford-Shah segmentation (Mumford and Shah,
1989).

For curve evolution, the level set method has been used extensively, in particular
where the motion is governed by mean curvature, as in Osher and Sethian (1988). This
formulation behaveswell evenwith cusps, corners, and automatic topological changes.

We rewrite the original model (1) in the level set formulation. Let the evolving
curve C be embedded as the zero level set of a Lipschitz continuous function /,
i.e., C (/) = {(x,y)2X:/(x,y) = 0}, with / having opposite signs on each side of C.
Following Zhao et al. (1996) and Chan and Vese (2001), the energy can be written as

F ðcþ;c�;/Þ¼ ljCð/Þjþkþ
Z
/P0

ju0ðx;yÞ� cþj2dxdyþk�
Z
/<0

ju0ðx;yÞ�c�j2dxdy:

Using the Heaviside function H, defined by

HðzÞ ¼
1 if z P 0;

0 if z < 0;

�

and the Dirac Delta function dðzÞ ¼ ðd=dzÞHðzÞ (in the sense of distributions), we
can rewrite the energy functional as follows:

F ðcþ; c�;/Þ ¼ l
Z
X
dð/ðx; yÞÞjr/ðx; yÞj þ kþ

Z
X
ju0ðx; yÞ � cþj2Hð/ðx; yÞÞdxdy

þ k�
Z
X
ju0ðx; yÞ � c�j2ð1� Hð/ðx; yÞÞÞdxdy:

Minimizing F (c+,c�,/) with respect to the constants c+ and c�, for a fixed /,
yield the following expressions for c+ and c�, function of /

cþ ¼ averageðu0Þ on / P 0;

c� ¼ averageðu0Þ on / < 0:

�

Minimizing the energy F (c+,c�,/) with respect to /, for fixed c+ and c�, using a
gradient descent method, yields the associated Euler-Lagrange equation for /, gov-
erned by the mean curvature and the error terms (see Chan and Vese, 2001 for more
details).

o/
ot

¼ d� lr � r/
jr/j

� �
� kþðu0 � cþÞ2 þ k�ðu0 � c�Þ2

� �
ð2Þ

in X, and with the boundary condition

d�ð/Þ
jr/j

o/
o~n

¼ 0

on oX, where ~n denotes the unit normal at the boundary of X.
Using a level set formulation with this model allows the initial contour to find any

number of objects from an initial contour anywhere in the image. For general infor-
mation, one may consult (Osher and Fedkiw, 2002) and (Sapiro, 2001). A multiphase
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extention has been documented in Vese and Chan (2002), and a texture segmentation
in Chan et al. (2002).
4. Logic operations on region based active contours

The Chan–Vese active contours without edges method is a region based method.
This is a significant benefit, as it is especially important when finding logical combi-
nations of objects. That is why we chose the model presented in Section 2.

Fig. 5 is an example to show why active contours without edges does a good job of
multi-channel segmentation. Rather then comparing contrast of the object, it com-
pares the fitting errors of each channel. The model does not care that each channel
has different intensity values, instead it wants a contour that will minimize the fitting
errors based on the average value for each channel.

We will look at an example for two channels. To find the union of an object, one
can take the union of the objects designated as the black values in the first row of
Fig. 6. But another way to look at it is to look at the intersection of the outside
of the objects, designate in black in the second row in Fig. 6. Adding the information
together will give us the union of the object. From the perspective of the object both
as a region in C, as well as, the complement of the region outside C.

To set up the logical framework we define two separate logic variables, zini and zouti ,
to denote whether a point (x,y) is in C or not:

zini ðui0; x; y;CÞ ¼
0 ifðx; yÞ 2 C and ðx; yÞ inside the object in channel i;

1 otherwise;

�

zouti ðui0; x; y;CÞ ¼
1 ifðx; yÞ 62 C and ðx; yÞ is inside the object in channel i;

0 otherwise:

�

Fig. 6. Logic operations inside and outside the object. The upper triple of images show that the union of
the inside (black) region gives the union of the two objects in A1 and A2. The bottom triple shows that the
intersection of the outside (black) region gives the complement to the union of two objects.
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A natural way to define zini and zouti for the Chan–Vese model is as follows:

zini ðui0; x; y;CÞ ¼
jui0ðx; yÞ � ciþj

2

maxðx;yÞ2ui
0
ui0

;

zouti ðui0; x; y;CÞ ¼
jui0ðx; yÞ � ci�j

2

maxðx;yÞ2ui
0
ui0

:

ð3Þ

Note that we use ‘‘0’’ as the ‘‘true’’ value, and ‘‘1’’ as the ‘‘false’’ value, which is the
reverse of the usual convention. This is more convenient because our framework is
based on a minimizing of an objective function and thus we want the ‘‘0’’ value cor-
respond to ‘‘true.’’

For the complement of the object in channel i we define

zin
0

i ¼ 1� zini ;

zout
0

i ¼ 1� zouti :
ð4Þ

Following the structure of logic operators, we now want to define a truth table for
the logic model the the variables described above. Table 1 shows the binary inputs
and outputs of the truth table for three logic operations A1[A2, A1\A2, and
A1 \ :A2. We treat the points inside C separately from those outside C.

Continuing with the two channel example A1[A2, we define it in truth table form.
The truth table needs to reflect the union of zini and the intersection of zouti . For the
point (x,y)2C the variable zini is defined. If the point (x,y)2C is in the object in
either channel the logic model returns 0, otherwise it returns 1—this reflects the un-
ion of the inside of the object. If (x,y)2XnC, the variable zouti is defined. The logic
model returns 0 if (x,y) is not in the object in either channel, otherwise it will return
1—this represents the intersection of the outside of the object. The column marked
A1[A2 relates this information. The logic operations A1\A2, and A1 \ :A2 are cal-
culated in a similar fashion. For intersection of objects, we take the intersection of
the inside of objects and the union of the outside of objects. For negation we substi-
tute z0i for zi as shown in (4).
Table 1
The truth table for the active contours without edges model

Truth table for two channels

zin1 zin2 zout1 zout2 A1[A2 A1\A2 A1 \ :A2

(x,y)2C 1 1 1 1 1 1 1
1 0 1 1 0 1 1
0 1 1 1 0 1 0
0 0 1 1 0 0 1

(x,y)2XnC 1 1 1 1 1 1 0
1 1 1 0 1 0 1
1 1 0 1 1 0 0
1 1 0 0 0 0 0
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Table 1 summarizes the different logic models with input parameters zini and zouti ,
but this table only has binary values. In practical implementation, we have to allow
these variables to take on real values as this can happen in (3).

Therefore it is necessary to find interpolation functions for the union and
intersection of variables zi for i = 1, . . . ,n. In Table 2 the functional dependence
on z1 and z2 is stated for the union and intersection. We will find an interpo-
lation function that will fit these points and maintain monotonic values between
0 and 1.

There are many functions that could interpolate Table 2. For the union function
of logic variables we choose

f[ ¼ ðz1 � z2Þ1=2:
For intersection interpolation function we choose

f\ ¼ 1� ðð1� z1Þð1� z2ÞÞ1=2:
The square roots of the products are taken to keep them of the same order as the
original scalar model.

Combining the interpolation functions for union of inside the objects, and inter-
section outside the objects we get the union of objects

fA1[A2
ðx; yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zin1 ðx; yÞzin2 ðx; yÞÞ

q
þ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� zout1 ðx; yÞÞð1� zout2 ðx; yÞÞ

q
:

Likewise, to get the intersection of objects, we combine the intersection of the inside
with the union of the outside, resulting in the following objective function for the
intersection of objects

fA1\A2
ðx; yÞ ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� zin1 ðx; yÞÞð1� zin2 ðx; yÞÞ

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zout1 ðx; yÞzout2 ðx; yÞÞ

q
:

An example of a logical operation involving three channels that combines union,
intersection and negation of objects is ðA1 \ :A2Þ [ A3. To derive the corresponding
objective function, one can treat the term in parenthesis first, and then incorporate
the objective function for that with the union operation with A3. We first calculate
the logic operation A1 \ :A2

fðA1\:A2Þ ¼ 1� ðð1� zin1 Þzin2 Þ
1=2 þ ðzout1 ð1� zout2 ÞÞ1=2:

Then we take the union of fðA1\:A2Þ with A3 and get the following:
Table 2
The table for the interpolation functions of zini s and zouti s

Table of points for interpolation function

z1 z2 z1[z2 z1\z2

1 1 1 1
1 0 0 1
0 1 0 1
0 0 0 0
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fðA1\:A2Þ[A3
¼ðð1�ðð1� zin1 Þzin2 Þ

1=2Þzin3 Þ
1=2þ1�ð1�ððzout1 ð1� zout2 ÞÞ1=2Þð1� zout3 ÞÞ1=2:

ð5Þ
In the above, we have used the interpolation functions to directly derive the objective
functions corresponding to a given logical expression. Even though we have by-
passed the corresponding truth table, it can be easily verified that the resulting objec-
tion functions do interpolate the function values given in the truth table.

It is straightforward to extend the two channel case to n channels. First consider
the union case. Let the logic operation be expressed as:

L1ðA1Þ [ L2ðA2Þ [ � � � [ LnðAnÞ;
where Li (Ai) is either Ai or :Ai. The objective function for this is as follows:

fL1ðA1Þ[���[LnðAnÞ ¼
Yn
i¼1

li zini
� � !1=n

þ 1�
Yn
i¼1

1� li zouti

� �� � !1=n

;

where

liðzini Þ ¼
zini if LiðAiÞ ¼ Ai;

zin
0

i if LiðAiÞ ¼ :Ai:

(

Similarly, for the intersection case:

L1ðA1Þ \ L2ðA2Þ \ � � � \ LnðAnÞ;
the objective function is:

fL1ðA1Þ\���\LnðAnÞ ¼ 1�
Yn
i¼1

1� li zini
� �� � !1=n

þ
Yn
i¼1

li zouti

� � !1=n

:

The functionals to be minimized in the model can now be written as:

F L1ðA1Þ[���[LðAnÞ ¼ ljCj þ k
Z
insideðCÞ

Yn
i¼1

li zini
� � !1=n

dx

2
4

þ
Z
outsideðCÞ

1�
Yn
i¼1

1� li zouti

� �� � !1=n
0
@

1
Adx

3
5;

and

F L1ðA1Þ\���\LnðAnÞ ¼ ljCj þ k
Z
insideðCÞ

1�
Yn
i¼1

1� li zini
� �� � !1=n

0
@

1
Adx

2
4

þ
Z
outsideðCÞ

Yn
i¼1

li zouti

� � !1=n

dx

3
5:

The functional may be written using the level set formulation as described in Section 2.
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Now we can rewrite the functional F for a general f ðzin1 ; zout1 ; . . .Þ using the level set
function /.

The objective function for the variational model is

F ð/; cþ; c�Þ ¼ ljCð/Þj þ k
Z
X
finðzin1 ; . . . ; zinn ÞHð/Þ

�
þfout zout1 ; . . . ; zoutn

� �
ð1� Hð/ÞÞdx

	
: ð6Þ

Derivation of the Euler–Lagrange equation are similar to that of the scalar model and
yield the following differential equation (which at steady state gives the solution):

o/
ot

¼ dð/Þ lr � r/
jr/j

� �
� kðfinðzin1 ; . . . ; zinn Þ � foutðzout1 ; . . . ; zoutn ÞÞ

� �

with the boundary condition

dð/Þ
jr/j

o/
o~n

¼ 0

on oX, where~n denotes the unit normal at the boundary of X. For example, for the
two logic models presented earlier, the corresponding Euler–Lagrange equations are:

o/L1ðA1Þ[���[LnðAnÞ

ot
¼ d�ð/Þ lr � r/

jr/j

� �
� k

Yn
i¼1

li zini
� � !1=n

0
@

2
4

þ1�
Yn
i¼1

1� li zouti

� �� � !1=n
1
A
3
5;

o/L1ðA1Þ\���\LnðAnÞ

ot
¼ d�ð/Þ lr � r/

jr/j

� �
� k 1�

Yn
i¼1

1� li zini
� �� � !1=n

0
@

2
4

þ
Yn
i¼1

liðzouti Þ
 !1=n

1
A
3
5:

Even though the form is complicated, the implementation is very similar to that of the
scalar model that is in (2). The details for this scheme can be found in Chan and Vese
(2001).
5. Experimental results

In this section, we show some examples of the performance of the logical active
contours models described in Section 3. First, simple images are shown to illustrate
the basic principles of the framework. Then more complicated and realistic images
are introduced to demonstrate the robustness of the model.
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Fig. 7 shows two different occlusions of a triangle. Using our new model, we are
able to recover the union, intersection, and negation of the objects in the channels
using the functionals described above. In this case, where there is no noise, the con-
stant k is set to be the order of the ðmax ui0ðx; yÞÞ

2. When there is noise in the image, k
is set to be smaller so that the noise is not included in the segmentation.

Fig. 8 shows a time evolution on two channels which had the contrast reversed.
Active contours without edges model has a contrast invariant nature. Unlike using
logic on two images followed by segmentation (shown in Fig. 5), this model is able
to find the object regardless of contrast differences.

In Fig. 9, a 3 channel example is used to illustrate more possibilities of different
logic operations, including combinations of union and intersection. We ran the mod-
el for four cases. The first two are A1\A2\A3 and A1[A2[A3:

fA1\A2\A3
¼ 1�

Y3
i¼1

ð1� zini Þ
 !1=3

þ
Y3
i¼1

zouti

 !1=3

;

fA1[A2[A3
¼

Y3
i¼1

zini

 !1=3

þ 1�
Y3
i¼1

ð1� zouti Þ
 !1=3

:

The other two cases have examples with negation and mixing of unions and intersec-
tions. The first case is ðA1 \ :A2Þ [ A3. This is a particularly complicated case as the
union, intersection, and negation are all mixed in. We used the interpolation func-
tions defined previously:

fðA1\:A2Þ[A3
¼ ðð1� ðð1� zin1 Þzin2 Þ

1=2Þzin3 Þ
1=2 þ 1� ð1� ððzout1 ð1� zout2 ÞÞ1=2Þ

� ð1� zout3 ÞÞ1=2:

In this case the example has negation and intersection for three channels
ðA1 \ :A2Þ \ A3, defined below

fðA1\:A2Þ\A3
¼ 1� ðð1� zin1 Þzin2 ð1� zin3 ÞÞ

1=3 þ ðzout1 ð1� zout2 Þzout3 Þ1=3:

The three channel examples give an idea of the many possible logic combinations
possible for more than two channels.
Fig. 7. The basic example for a two channel logic model. The first two images are the initial images with
the initial contour. The three rightmost images show the resulting segmentation.



Fig. 8. A time evolution for a 2 channel image with channels having reverse contrast. The active contours
without edges model is contrast invariant, thus the logic model is able to segment to desired object.
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The logic model�s robustness can be seen in the next two examples in Figs. 10 and
11. The initial contour does not have to surround the object in order to find the ob-
ject desired, as can be seen in Fig. 10. Likewise the model finds an unregistered image
segmentation in Fig. 11.



Fig. 9. An example for the 3 channel case of the logic model. The model found the desired segmentations
using the functions defined in Section 3.

Fig. 10. Region based logic model with initial contour inside the object. Even though the initial contour is
inside the object, the desired segmentation A1[A2 is found.

Fig. 11. Region based logic model for unregistered images. The logic model still find A1[A2 and A1\A2

successfully, since the model is looking at the regions of union and intersection. Notice that when A1 \ :A2

is found, it contains a part of the object that is due to the images being unregistered rather than the
intrinsic object difference.
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All the examples so far have images which are piecewise constant. The parameters
zini and zouti will have two possible values each, a larger and smaller value. Thus it
mimics the truth table values.



Fig. 12. Region based logic model for noisy images. This is the same example as that for the channel-by-
channel case (Fig. 4). While the union of the two channels is of comparable quality, the intersection is
better when done using the logic operations method.
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In the next example, the synthetic images are not piecewise constant. In Fig. 12,
noise was added. The logic model found the logic operations A1[A2, A1\A2, and
A1 \ :A2 with the same consistency as the synthetic examples without noise. No spu-
rious data is detected, which is an improvement over Fig. 4 which was done using
channel by channel segmentation.

Now we come to the examples with real images. The only parameter that was used
was l to control the contour in the cases when the image became very noisy. These
solutions had the same weight for inside the contour C, as well as outside the contour
C. Using logic operators allows a more global solution. Thus for logic operators the
solution will give the union, intersection or complement, as requested, in most situ-
ations regardless of initial contour, and without weighing of inside/outside contour
C separately.

Fig. 13 shows two brain images seen previously in Fig. 3. They are two MRIs of
the brain taken in a time sequence, each with a synthetic tumor placed in a different
spot. Using logic operation A1 \ :A2 the tumor in the first image may be extracted,
i.e., the logic operations find the object in the first image that is different from the
second. The reverse is also true. Using the logic model that describes :A1 \ A2, the
model finds the object in the second image that is not in the first. This happens to
be a very complicated example as there are a lot of features and textures. Not only
does the model finds the tumor, using logic operations gives the user the capability to
define more precisely how the information from the different channels are to be com-
bined in order to obtain a desired segmentation, as well as the freedom to use all pos-
sible logical combinations using a systematic framework.

In Fig. 14, we take two airplane images with a noisy environment and add syn-
thetic occlusions in each channel. In Figs. 15–17, logic operations A1[A2, A1\A2,
and A1 \ :A2 are performed on the images. In the logic operations of A1 \ :A2 the
model finds the object that is in A1 and not in A2 which includes the occlusion in A1.

For our final example, we present a segmentation of a textured image which
has been convolved with a Gabor transform. In Fig. 18, an image of two zebras



Fig. 13. Time evolution of region based logic model on a MRI scan of the brain. The first channel A1, has
a synthetic brain tumor in one place, the second image the synthetic brain tumor is in a different place. The
images are registered. By design we want to find the tumor that is in A1 and not A2, A1 \ :A2. Likewise we
want to find the tumor in A2 that is not in A1 and :A1 \ A2.
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with a grassy background. The image is convolved with Gabor transforms. The
best transforms are chosen, the heuristics of this are discussed in Chan et al.
(2002). Finally the union of the images would be take to produce the segmenta-
tion of the textures. This is done with a large l in order to ignore noise that is
produced, but the functions inside C and outside C are weighted equally, thus it
was simple to implement.



Fig. 14. The original airplane images, each channel with a different occlusion.

Fig. 15. Time evolution of active contours for airplane images using the logic model to obtain A1[A2. The
last image is the final segmentation of the object.

Fig. 16. Time evolution of active contours for airplane images using the logic model to obtain A1\A2. The
last image is the final segmentation of the object.
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Fig. 17. Time evolution of the active contours for the airplane images that obtains A1 \ :A2. The
segmentation finds the occluded object in A2, which includes the occlusion in A1. The last image is the final
segmentation of the object.
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6. Comparison of logic active contour model with the vector valued active contour model

In the next section, we compare the logic operations to the vector valued active
contours (Chan et al., 1999) which is pde based. Vector valued active contours is
very similar to other multi-channel segmentation models which sum across the
channels such as region competition algorithm by Zhu and Yuille (1996) and stereo-
scopic segmentation (Yezzi and Soatto, 2003). These algorithms offer a valid seg-
mentation solution to a single solution. We applied logic operations to the active
contours model, as we described above. Below we compare how these algorithms
interact with the sample images we have shown in the section on experimental
results.

The objective of this paper is related to that of the vector valued active contours
model in Chan et al. (1999). Both papers try to combine information from different
channels of an image in order to derive an active contour segmentation. The vector
based model in Chan et al. (1999) is as follows:

inf
C;cþ ;c�

F ðC;cþ;c�Þ¼ ljCjþkþ
Z
inðCÞ

Xn
i¼1

jui0� cþi j
2dxþk�

Z
outðCÞ

Xn
i¼1

jui0� c�i j
2dx:

Empirically, this model appears to give the union of the objects in the different chan-
nels. In this section, we will try to compare the two different approaches. While the
model in (1) may seem very different from the model presented in Section 3, with a
little calculation we will see that it does follow a logic based format. Taking a Taylor
expansion of the interpolation function that finds the intersection of a region, gives
the vector valued functions, i.e.



Fig. 18. The original image of a zebra, followed by time evolution of active contours on two Gabor
transforms using logic operator A1[A2.
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1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� z1Þð1� z2Þ

p
¼ z1 þ z2

2
þOðz1z2Þ:

The leading order term z1 + z2 corresponds to the vector based model. Thus within
the framework of our logic model, the vector model is similar to taking the intersec-
tion of the inside of the contour and the intersection of the outside of the contour.
From this perspective, there is a conflicting objective of the function inside the con-
tour, and the function outside the contour, in the vector model.

We want to illustrate the difference between the vector model and the logic mod-
els. We do this is in two ways: first as a 1-D analysis in which we can work the func-
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tional out analytically, second, a carefully chosen example to illustrate the
differences.

Let us consider the 1-D example in Fig. 19. In this example, a is the length of the
object in Channel A1, b is the length of the object in A2, T is the total length of the
channels. We will calculate the functionals for the vector valued and the logic mod-
els. In this example, t is the position at which the contour is located. The intensity
values are c inside the object, and d outside.

For this example we can find the exact solution for the functionals in terms of a, b,
c, d, t, and T. The exact form of the variational formulations can be derived for both
the vector model and the logic models. We will compare the fitting terms so we
set l = 0 for the functions in (6) and (1). Three segments need to be considered to
calculate the functional.

For t < a, we have:

F vecðtÞ ¼
ðc� dÞ2

T � t
ððT � aÞða� tÞ þ ðT � bÞðb� tÞÞ;

F A1[A2
ðtÞ ¼ ðc� dÞ2

T � t
T � ðc� dÞ2

T � tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðT � ða� tÞðT � aÞÞðT � ðT � bÞðb� tÞÞ

p
;

F A1\A2
ðtÞ ¼ ðc� dÞ2

T � t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðT � aÞða� tÞðT � bÞðb� tÞ

p
:

For a 6 t 6 b, we have:

F vecðtÞ ¼ ðc� dÞ2 aðt � aÞ
t

þ ðT � bÞðb� tÞ
ðT � tÞ

� �
;

F A1[A2
ðtÞ ¼ ðc� dÞ2

T � t
T � ðc� dÞ2

T � t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T ðT � ðT � bÞðb� tÞÞ

p
;

F A1\A2
ðtÞ ¼ ðc� dÞ2

t
T � ðc� dÞ2

t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T ðT � aðt � aÞÞ

p
:

For b < t < T , we have:
Fig. 19. This a 1-D example where channel A1 and A2 both start from the same point. a is the length of A1,
b is the length of A2, T is total length of the channels. The intensity inside the image is c and outside is d.
A1\A2 = A1, while A1[A2 = A2.
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F vecðtÞ ¼
ðc� dÞ2

t
ðaðt � aÞ þ bðt � bÞÞ;

F A1[A2
ðtÞ ¼ ðc� dÞ2

t
T �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðabðt � aÞðt � bÞÞ

p
;

F A1\A2
ðtÞ ¼ ðc� dÞ2

t
T

� ðc� dÞ2

t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� aðt � aÞÞð1� bðt � bÞÞ

p
:

When we graph the functionals (see Fig. 20), we find that Fvec has two minima:
one at t = a the other at t = b. One of the minima is global and the other is local
depending on a, b, and T. If the contour C starts inside the smaller object, the func-
tional will go to the minimum that corresponds to is the intersection of the objects
while if the contour starts outside the smaller object, it converges to t = b which cor-
responds to the union of the two objects. If the contour is in between, it will go to the
closest edge.

Graphing F A1\A2
in Fig. 20B, we see that the only minimum occurs at the intersec-

tion of the two objects, in our case it is at t = a. Likewise, the minimum for F A1[A2

occurs at the union of the two channels, which is at t = b. The above observations
are verified in Fig. 21, which shows the actual results of segmentation using the vec-
tor model and the two logic models.

This 1-D example gives some insight into the differences between the vector and
logic models. We see that the vector model segments the image depending on the ini-
tial contour, rather than according to a global logic criteria. The logic models do not
depend on the initial contour to find the global results, in a piecewise constant image.

On the other hand, to use the logic models properly, one needs to know a priori
which logic operator to use. If the initial contour is chosen carefully, the vector mod-
el can do a good job in choosing a desirable solution. An example of such a situation
Fig. 20. (A) This is the graph of the objective function for the vector valued model. The t-axis denotes the
position of the contour in the model. It has 2 local minima, one at the intersection of the two objects
located at (a,F (a)), and the other is located at (b,F (b)) which corresponds the union of the objects. The
minima depends on where the initial contour is located. If it is inside the smaller object, the model
converges to the intersection, otherwise it converges to the union. (B) This graph is the region based logic
model that finds the A1\A2 of the two objects. Its global and only minimum occurs at (a,F (a)). (C) This
graph is the region based logic model that finds A1[A2 of the two objects. Its global and only minimum
occurs at (b,F (b)).



Fig. 21. This is a simple example that shows the object found for the vector model depends on the initial
contour for the segmentation, if the contour begins inside the object, it will find A1\A2 of the images,
otherwise it will find A1[A2 of the images. Calculating the logic model using A1\A2, the same
segmentation is found for the initial contour inside or outside the object. Likewise A1[A2 is found for the
initial contour inside and outside the object.
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is given in Fig. 22. This is an example of the Kanisza face/vase image which has been
artificially occluded. Looking at the dark inside object, one sees a vase, but looking
at the outside object one sees two faces.

In Fig. 23 we have information we want to preserve that is both inside and outside
the object. The occlusion can be of the ‘‘inside’’ object, which we will define as the
vase, when we would want the intersection of the outside object (i.e., faces). How-
ever, the occlusion can also be of the ‘‘outside’’ (faces) object, in which case we want
the intersection of the inside. We can make the vector model look for the intersection
of the vase (i.e., A1\A2) if the initial contour is small and inside both channels. If the
initial contour surrounds the objects in both channels it will act as the logic model
for the union of the vase (A1[A2), or intersection of the faces. Since the vector mod-
el depends on the initial contour, we can choose an initial contour close to the
Fig. 22. In this example, we show when the vector model might be more appropriate than the logic model.
In the first set of images, we need to take A1[A2 to recover the Kanizsa face vase image, while in the
second we need to take A1\A2 to get the same image back. This requires a priori knowledge at the time the
image is being segmented, while the vector model finds the desired object using the same initial contours in
both cases.



Fig. 23. In this example, we show how using the vector model one can get different logic models through
the manipulation of the initial contours. For (A) the initial contour is inside the object in both cases, and
the vector model computes the intersection of the inside objects which is the logic equivalent of A1\A2.
For (B) the initial contour is outside the object in both cases and the vector model computes the the
intersection of the outside objects which is the logic model equivalent to A1[A2.

356 B. Sandberg, T.F. Chan / J. Vis. Commun. Image R. 16 (2005) 333–358
boundary of the inside object (vase) or the outside object face to get the desired
affect.

Rather than choosing which logic operation to use, a careful choice of the initial
contour for the vector model can give the desired result, which can correspond to
either the union or the intersection of the inside object.

From these examples, we can draw the following general conclusion, the logic
models will give a robust segmentation for union and intersection of the images,
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as well as any logical combination of channels. However in situations when one does
not know ahead of time which model is preferable, a careful guess of the initial con-
tour using the vector model may give the best compromise.
7. Conclusion

A generalized model for multi-channel images has been presented. It allows the
user to choose the information that is extracted from the set of images using general
logic combinations of union, intersection, and negation. This was presented for re-
gion-based models. We demonstrated the viability of the model using region-based
models using the particular example of the Chan and Vese (2001) active contours
without edges model, is able to find the unions and intersections of regions (objects).

Experiments on two channel and three channel systems were presented. They
demonstrated the ability of the models to detect the objects as described by the logic
operations accurately and robustly. This model assumes the same scalar segmenta-
tion model on all channels (in our case active contours without edges). For a given
set of images, we expect this model to work, if the scalar model applied to the chan-
nels seperately will identify the objects successfully. The parameters of the model are
chosen based on the noise level of the images.

We compared the logic models to the vector model derived previously. This
showed some interesting elements to the concept of a global minimum versus multi-
ple minima. An example was made that shows that perhaps sometimes a local min-
imum, i.e., a vector model is preferable.

It would be interesting and straightforward to apply this model to object tracking
in movie sequences, and in registration of multi-channel images.
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