Imagerie ultrasonore

Sonia Dahdouh

Télécom ParisTech - CNRS LTCI - WHIST Lab

• • • • • • • • • • • •

Octobre 2014

-

Un petit retour en arrière..

1822 : Jean-Daniel Colladon et Charles-Francois Sturm utilisent une cloche sous marine pour mesurer la vitesse du son dans le lac de Genève.

Figure: www.ob-ultrasound.net

 \Rightarrow Vitesse mesurée de 1435 m/s.

SD (TSI)

Un petit retour en arrière..

- 1877 : Publication de "The Theory of Sound" par Lord Rayleigh Description des principes fondamentaux de la physique des *vibrations sonores* et de leurs réflexion et transmission.
- 1880 : Découverte de l'*effet piézo-électrique* par les frères Curie

• • = • •

Caractérisation des ondes ultrasonores

Fréquence des ultrasons

SD (TSI)	Ultrasons	Octobre 2014	4 / 90
----------	-----------	--------------	--------

Les ondes sonores ou acoustiques

Propriété des ultrasons

Ondes **mécaniques** nécessitant un milieu **matériel** et **élastique** \Rightarrow L'ultrason ne fait pas partie du spectre EM \Rightarrow Milieu de propagation considéré = solide élastique isotrope

Les ondes sonores ou acoustiques

Les ondes transversales ou ondes de cisaillement

- propagation perpendiculaire à celle de la vibration
- viennent d'une résistance au cisaillement ⇒ ne peuvent exister que dans les solides
- aux fréquences US, très rapidement atténuées ⇒ ignorées dans la modélisation classique US ⇒ équivalent milieu fluide et plus solide

Les ondes sonores ou acoustiques

Les ondes longitudinales

- Propagation de proche en proche d'une déformation
 - \Rightarrow ondes de **pression** longitudinales
 - \Rightarrow variations de pression **locales** et oscillation des molécules autour de leur point d'équilibre
- Passage de l'onde induit des zones de dépression et de compression

Figure: source: www.cegep-ste-foy.qc.ca

(승규) (승규

Les ondes sonores

Propriétés des ondes sonores ou acoustiques

• Vitesse du son :

$$c = \lambda * f$$

Longueur d'onde λ = distance entre compression et dépression

Fréquence f = Nombre de fois où l'onde oscille sur un cycle chaque seconde

Dans un milieu homogène, l'onde ultrasonore est une onde **cohérente**: \Rightarrow pas de superposition décalée de plusieurs ondes de f et λ identiques.

Les ondes sonores

Propriétés des ondes sonores ou acoustiques

	Milieu	Densité $ ho$	c en m∕s
Vitesse du son <i>c</i>	air	1.3	343
 défini la longueur d'onde 	poumons	300	600
• dépend du milieu:	graisse	924	1410-1470
$c = f(B, \rho)$	foie	1061	1535-1580
B: incompressibilité du milieu	muscle	1068	1545-1631
	OS	1913	2100-4080

\Rightarrow En imagerie US, on utilise la valeur moyenne de 1500 m/s

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

Impédance acoustique

- Caractéristique de la réponse du milieu aux ultrasons
- Caractérise l'aptitude du milieu à reprendre sa forme originelle après déformation

$$Z = \rho * c \tag{1}$$

Octobre 2014

10 / 90

La séparation entre deux milieux d'impédances différentes s'appelle une **interface** (!!! pas une interface physique).

Interfaces caractérisées par:

- Importance liée aux impédances des deux milieux
- Forme: plane ou incurvée
- Orientation par rapport au faisceau
- Rugosité
- Taille par rapport à la longueur d'onde

Des différences d'impédance entre tissus génèrent des différences dans la transmission et introduisent une réflexion de l'onde.

Réflexion et réfraction

Angle de réfraction: $\frac{\sin(\theta_t)}{\sin(\theta_i)} = \frac{Z_2}{Z_1} = \frac{\rho_2 c_2}{\rho_1 c_1}$

$$R = \left(\frac{Z_2 \cos(\theta_i) - Z_1 \cos(\theta_t)}{Z_2 \cos(\theta_i) + Z_1 \cos(\theta_t)}\right)^2 \qquad T = \frac{4Z_2 Z_1 \cos(\theta_i)^2}{(Z_2 \cos(\theta_i) + Z_1 \cos(\theta_t))^2}$$

SD (TSI)

3

< ロ > < 同 > < 三 > < 三

Réflexion et réfraction en échographie

En échographie on travaille en incidence normale

Figure: source: E. Angelini

$$R = (\frac{Z_2 - Z_1}{Z_2 + Z_1})^2$$
 $T = \frac{4 * Z_2 * Z_1}{(Z_2 + Z_1)^2}$ $R + T = 1$

 \Rightarrow Source d'artéfacts dans l'image

SD (TSI)

Réflexion et réfraction en échographie

Pour obtenir une image échographique il faut que les impédances des deux milieux soient **différentes**:

• Si
$$Z_1 \simeq Z_2$$
 alors $R \simeq 0$ et $T \simeq 1 \rightarrow$ pas de réflexion

mais pas trop:

- Si $Z_1 \ll Z_2$ alors $R \simeq 1$ et $T \simeq 0 \rightarrow$ le faisceau incident est presque totalement réfléchi et ne traverse pas l'interface
- Si $Z_1 >> Z_2 \rightarrow$ le faisceau incident est presque totalement transmis

Réflexion et réfraction en échographie

Milieu	Densité $ ho$	c en m/s	Z
air	1.3	343	$4.5 * 10^2$
poumons	300	600	$1.8 * 10^5$
graisse	924	1410-1470	$1.33 * 10^{6}$
foie	1061	1535-1580	$1.6 * 10^{6}$
muscle	1068	1545-1631	1.7 * 10 ⁶
OS	1913	2100-4080	7.7 * 10 ⁶

 \Rightarrow Pas d'imagerie des poumons

SD	(TSI	
	(

3

< ロ > < 同 > < 三 > < 三

Figure: P. Laugier, LIP & M. Tanter, LOA

00	1-	~ · ·
SIN 1		51
50		5

- 32

<ロ> (日) (日) (日) (日) (日)

Figure: P. Laugier, LIP & M. Tanter, LOA

00	/ -	CI
SD I		51
	<u>ر</u>	

3

<ロ> (日) (日) (日) (日) (日)

Échos de diffusion

- diffusion des ultrasons par les microstructures des tissus de taille inférieure à la longueur d'onde
- plus petits et plus stables que les échos de réflexion
- trois types de diffusion:

- rétrodiffusion: d >> λ
- antégrade: $d = \lambda$
- multidirectionnelle: d << λ

Échos de diffusion

- Echos renvoyés dans de multiples directions ⇒ Faisceau doit être perpendiculaire pour étude des contours mais pas de la structure
- ${f \bullet}$ Tissus \simeq multiples diffuseurs disposés de manière aléatoire
- Création d'interférences aléatoires liées à la formation d'ondelettes ultrasonores
 - 1 Interférences constructives
 - Interférences destructives
 - Ondes stationnaires
 - \Rightarrow Statistique de la distribution des diffuseurs dans les tissus masquées par ce phénomène: le **speckle**.

SD	(TSI
	\ -

Absorption: définition

- Conversion de l'énergie de l'onde en chaleur liée à des mécanismes de conduction thermique et de viscosité.
- $\bullet\,$ Quand propagation de l'onde ultrasonore \rightarrow énergie cédée au milieu
 - \rightarrow **absorption** de l'énergie ultrasonore
 - \rightarrow diminution de l'intensité du faisceau

Absorption: propriétés

• Obéit à une loi exponentielle:

$$I = I_0 e^{-\alpha x}$$

$$\alpha = k * f^2$$
: coefficient d'absorption
x : distance à la source
 I_0 : intensité initiale

 \Rightarrow La fréquence des ultrasons a une **influence déterminante** sur la **profondeur maximale** d'exploration

SD (TSI)

Plus la fréquence est élevée, plus l'onde sonore est rapidement absorbée... Exemples

Fréquence (MHz)	Profondeur max (cm)
2.5 - 3.5	> 15
5	10
7.5	5 -6
10 - 12	2 - 3

3

< ロ > < 同 > < 三 > < 三

Phénomène d'atténuation

Absorption + Diffusions + Réflexions \Rightarrow Atténuation

Figure: Atténuation de l'onde ultra-sonore dans des milieux hétérogènes $_{\rm source:\ www.med.univ-rennes1.fr/}$

Règle approximative pour les tissus mous: 0.5 dB/cm/MHz

SD (TSI)

Échelle de fréquence/longueur d'onde/
profondeur d'exploration

1MHz	10 MHz	20	MHz	100 MHz 🤰	
1.5 mm<λ<150μι	m 1	50µm<λ<75µm		75µm<λ<15µm	
Applications					
Abdomen		Œil (10 MHz)		Peau (20 MHz)	-
Cou, pédiatrie		Endocavitaire		Endovasculaire	
Muscles/tendor	าร	(7.5-12 MHz)		(30-50 MHz)	
(3.5-7.5 MHz)				Œil (80 MHz)	

SD (TSI) Ultrasons Octo	ore 2014 24 / 90
-------------------------	------------------

Figure: Image avant et après simulation échographique

	. ₹	a >	< ≣ >	◆夏≯	₹.	900
SD (TSI)	Ultrasons		Oct	obre 2014		25 / 90

Des ondes à l'image..

Figure: http://www.ob-ultrasound.net/

SD	(TSI)

Ultrasons

(日) (四) (王) (王) (王)

Un peu d'histoire ..

Les premières technologies ultrasonores

- 1915 : Invention de l'hydrophone puis du SONAR (Sound Navigation And Ranging) par Paul Langevin et Constantin Chilowski
- 1930 : Détecteur ultrasonique de défauts métalliques
- 1935 : Dépôt du brevet du RADAR (RAdio Detection And Ranging) par Robert Watson-Watt

Figure: Source:Simrad

A (10) < A (10) </p>

Un peu d'histoire ..

Du militaire au civil..

- 1941: Publication d'un article expliquant le principe de l'hypersonogram par Karl Theodore Dussik
- 1953: Le chirurgien John Wild et l'ingénieur John Reid développent une machine ayant pour but la visualisation des tumeurs cancéreuses et présentent les premières images 2D de tumeurs
- 1958: lan Donald réalise la première échographie obstétrique

Des ondes à l'image..

Schéma général de fonctionnement

SD	(TSI	
	\ -	

Octobre 2014 29 / 90

3

<ロ> (日) (日) (日) (日) (日)

Figure: Sondes linéaire et sectorielle

Figure: Sondes philips

A (1) > A (2) > A

L'effet piézo-électrique

Définition

Capacité de certains matériaux à transformer une énergie électrique en énergie mécanique, i.e. une onde électrique en onde acoustique et inversement.

L'effet piézo-électrique

Propriétés

La piézo-électricité est:

- liée aux symétries de la structure cristalline
- un phénomène réciproque et réversible

Exemples d'éléments piézo-électriques

Le quartz, certains sels, certains polymères de synthèses, certaines céramiques etc. Utilisation du Plomb Zirconate de Titane (PZT) dans les sondes échographiques.

Fréquence de résonance

- Dépend du matériau et de l'épaisseur D du PZT
- $\lambda = 2D$

L'interface de couplage

- Utilisation d'un gel d'impédance proche de celle des tissus mous
- Couplage PZT/patient d'impédance intermédiaire et de dimension $\frac{\lambda}{4}$

Les matériaux d'atténuation

- Absorbe les vibrations de la sonde
- Absorbe l'énergie des ultrasons dirigés vers l'arrière

Fonctionnement de la sonde

- Mise sous tension du PZT \rightarrow Génération d'une onde de compression En mode écho pulsé, 150V tous les 1 μ sec.
- Q Génération d'ultrasons transmis dans le corps
- S Réflexions, diffusions etc. des ultrasons dans les tissus
- Coupure de l'alimentation
- S Conversion de la pression des ultrasons réfléchis en voltage

 \Rightarrow La sonde passe **99%** de son temps en réception!
Fonctionnement du transducteur en émission

Eléments du

		 	-
SD (TSI)	Ultrasons	Octobre 2014	37

3

/ 90

Fonctionnement du transducteur en émission

transducteur ∧Echos transmis-Point focal Impulsion Fronts d'ondes convergents Loi de retard

Eléments du

Image: A match a ma

-

Fonctionnement du transducteur en émission

Fonctionnement du transducteur en réception

→ < 3 →

Fonctionnement du transducteur en réception

Propriétés

- Décalage des signaux dans le temps pour mettre en phase des réponses acoustiques provenant d'une profondeur donnée d'une même ligne
- Sommation pour estimer la signature acoustique d'un volume élémentaire du milieu à une profondeur donnée
- Lois de retard en réception s'adaptent dynamiquement en fonction des profondeurs des lignes ⇒ focalisation dynamique en réception

Des ondes à l'image..

Schéma général de fonctionnement

0.0	1-	~ .
SD	(SI
50	<u>۱</u>	<u> </u>

Octobre 2014 42 / 90

3

<ロ> (日) (日) (日) (日) (日)

De la réception de l'écho au signal numérique 1D

Le bloc d'acquisition

- Compensation de gain dans le temps (TGC): amplifie les échos reçus via un amplificateur linéaire ⇒ compensation de l'atténuation en profondeur
- Numérise les échos amplifiés

Figure: source: A. Durand

De la réception de l'écho au signal numérique 1D

Traitement du signal

- **Filtrage** afin de s'affranchir des bruits de type bruit électronique et speckle (seuillages..)
- Démodulation du signal et détection d'enveloppe
- Compression logarithmique puis compression linéaire afin de s'adapter à la gamme des moniteurs vidéos. Réduction de 20 dB pour amplifier les petites valeurs et diminuer les grandes valeurs.

Figure: source: A. Durand

Des ondes à l'image..

Schéma général de fonctionnement

0.0	1-	· · · ·
SIL	1	51
50		5

Octobre 2014 45 / 90

3

<ロ> (日) (日) (日) (日) (日)

Du signal numérique 1D à l'image échographique 2D

Système de coordonnées

SD (TSI)

Ultrasons	Octobre 2014	46 / 90
-----------	--------------	---------

Du signal numérique 1D à l'image échographique 2D

Ultrasons

Octobre 2014 47 / 90

De l'image échographique 2D à l'image 3D

Plusieurs types de balayages

(b) Rotation

Figure: Grille 2D de PZT déphasés (source: E. Angelini)

Des ondes à l'image..

Petite illustration simplifiée

Figure: www.ostralo.net

<u> </u>	(- c)
<u></u>	
50	
	· · ·

<ロ> <問> <問> < 回> < 回>

Caractérisation d'une image échographique

La résolution

La résolution est la capacité à différencier deux points proches spatialement et deux points d'échogénéicités proches.

La résolution spatiale peut-être décomposée en deux:

- La résolution axiale
- La résolution latérale

Caractérisation d'une image échographique

La résolution axiale

- Détermine la capacité de la sonde à différencier deux cibles distinctes situées dans l'axe du faisceau ultrasonore
- Dépendante de la durée de l'impulsion ultrasonore
- Plus l'impulsion transmise est brève, plus la bande passante est importante et la résolution axiale élevée.

Figure: Source: J.M. Bourgeois, M. Boynard, P. Espinasse

Caractérisation d'une image échographique

La résolution latérale

- Définie par la capacité du système à séparer deux échos situés sur un même plan, perpendiculaire à l'axe de ce même faisceau
- Optimale à la distance focale
- Dépend de la géométrie du faisceau
- En général, la résolution axiale est meilleure que la résolution latérale.

Mode A

Le mode A ou amplitude

- Le **mode le plus ancien** : correspond au mode de fonctionnement des profondimètres (sonars simples des navires)
- Affichage de l'amplitude du signal recueilli par la sonde en fonction de la profondeur i.e. du temps d'arrivée
- Utilisation d'un seul faisceau de direction constante
- Distance entre 2 pics = épaisseur d'une structure
- Absence d'échos entre 2 pics = présence de liquide

SD (TSI)

$\mathsf{Mode}\ \mathsf{A}$

Avantages et Inconvénients

- Mesures précises de la dimension des objets
- Information unidimensionnelle
- Pas d'enregistrement du mouvement

Exemples d'applications cliniques

- Contrôle de la symétrie-cérébrale du nouveau né par échographie trans-fontanellaire
- Imagerie ophtalmologique

Mode B

Le mode B ou Brillance

- Le mode de représentation le plus utilisé
- L'amplitude est traduite par le niveau de gris d'un point
- La profondeur du tissu est représentée sur l'axe des ordonnées et la position le long du transducteur sur l'axe des abscisses
- Résolution temporelle limitée par le débit d'images (autour de 20-30/s)

Exemples d'applications cliniques

- Obstétrique
- Echographie abdominale, rénale

$\mathsf{Mode}\ \mathsf{B}$

SD (TSI)	
----------	--

Ultrasons

Octobre 2014 56 / 90

・ロン ・雪 と ・ 田 と ・ 田

$\mathsf{Mode}\;\mathsf{TM}$

Le mode TM Temps/Mouvement

- Représente la distance entre la sonde et les structures échogènes en fonction du temps (mode unidimensionnel)
- Pas de visualisation en coupe
- Information unidimensionnelle
- Très bonne résolution temporelle
- Moindre importance depuis l'apparition de l'imagerie Doppler

Exemples d'applications cliniques

• Echocardiographie (examen des valves cardiaques..)

SD	(TSI

Le mode TM Temps/Mouvement

Le mode TM Temps/Mouvement

Figure: Visualisation du mouvement de la valve Aortique

 \Rightarrow Éclipsé par l'imagerie de flux Doppler, comment?

<u> </u>	(TCI)
<u></u>	
20	
	· - /

A D > A A P >

Définition

L'effet Doppler ou Doppler-Fizeau correspond au décalage de fréquence observé entre la mesure à l'émission et la mesure à la réception d'une onde acoustique ou électromagnétique dans le cas d'un émetteur ou d'un récepteur en mouvement.

Émetteur et récepteur fixes

Si la source et le récepteur sont fixes, la fréquence mesurée est identique à celle de la source:

$$f_s = f_r \ et \ \lambda_s = \lambda_r \tag{2}$$

avec f_s et λ_s et f_r et λ_r respectivement la fréquence et la longueur d'onde de la source et de l'onde reçue

Émetteur et/ou récepteur en mouvement

Dans le cas d'une source en mouvement rectiligne avec une vitesse inférieure à celle du son:

$$\lambda_r = \lambda_s + / - \Delta\lambda \tag{3}$$

avec

$$\Delta \lambda = \frac{v_s}{f_s} \tag{4}$$

Figure: Source: http://www.obshp.fr/lumiere/page15.html

(日) (同) (三) (三)

 \Rightarrow Fréquence supérieure à celle de la source en cas d'approche (son plus aigu) et inférieure en cas d'éloignement (son plus grave).

CD.	/TCI
	וכוו
	(

Octobre 2014 61 / 90

Dans le cas du mouvement du récepteur

$$f_r = f_0 \frac{(c + / - v_r)}{c}$$

+: approche

-: éloignement

Dans le cas du mouvement de la source

$$f_r = f_0 \frac{c}{(c + / - v_r)} \tag{6}$$

-: approche

+: éloignement

SD	(TSI)
	· · ·

.

(5)

Principe

- Globules rouges diffusent les ultrasons en provenance du sang
- Globules rouges en mouvement

 \Rightarrow Fréquence des ondes diffusées modifiées conformément à l'effet Doppler (globules rouges alternativement sources et récepteurs)

- Etude de l'onde diffusée dans la même direction que l'onde incidente = onde rétrodiffusée
- \Rightarrow Utilisation du faisceau rétrodiffusé et non réfléchi par le doppler

La visualisation des globules rouges dans les vaisseaux se fait par combinaison des deux effets: récepteur puis source mobile en approche ou éloignement.

Approche

$$f_r = f_0 \frac{c + v_r}{(c - v_r)}$$
(7)

$$\Delta f = f_r - f_0 = \frac{2v_r}{(c - v_r)} f_0$$
(8)
Onde émise
Sonde

00	1-	~ · ·
SIN 1		51
50		5

La visualisation des globules rouges dans les vaisseaux se fait par combinaison des deux effets: récepteur puis source mobile en approche ou éloignement.

Eloignement

$$f_r = f_0 \frac{c - v_r}{(c + v_r)}$$
(9)

$$\Delta f = f_r - f_0 = \frac{-2v_r}{(c + v_r)} f_0$$
(10)

$$\Delta f = f_r - f_0 = \frac{-2v_r}{(c + v_r)} f_0$$

イロト イポト イヨト イヨト

65 / 90

SD (TSI)	Ultrasons	Octobre 2014

La visualisation des globules rouges dans les vaisseaux se fait par combinaison des deux effets: récepteur puis source mobile en approche ou éloignement.

En pratique

c >> v

$$|\Delta f| = \frac{2v}{c} f_0 \tag{11}$$

イロト イポト イヨト イヨト

90

SD (TSI)	Ultrasons	Octobre 2014 66
----------	-----------	-----------------

Figure: E. Angelini

 \Rightarrow Mesure indirecte du sang dans les vaisseaux

$$v = \frac{c|\Delta f|}{2f_0 \cos\theta}$$
(12) problèmes 30°<6<60° [Δf]
de réfraction trop petit

L'imagerie Doppler

Echo-Doppler

 Simultanéité des images échographiques et doppler (2 transducteurs): *full doppler* (en réalité léger décalage mais visualisation simultanée)

Figure: http://www.supersonicimagine.fr/

L'élastographie

Module de Young E

- S: contrainte externe
- $\epsilon:$ déformation, dépendante de l'élasticité du tissu

\Rightarrow Mesure la rigidité des tissus

SD (TSI)

• = • •

L'élastographie

Principe

Mesure de la vitesse V_c de cisaillement pour déduire le module de Young

Vitesse de cisaillement

$$V_c = \sqrt{rac{\mu}{
ho}}$$

 μ : module de cisaillement ρ : densité du milieu (environ 1000 kg/mm³)

$$\Rightarrow \mu = \rho V_c$$

or $E = 3\mu$

SD (TSI)

L'élastographie

Figure: Classification: Mathilde Wagner

|--|

Ultrasons

Octobre 2014 71 / 90

3

Shear Wave Elastography

76 / 90

Ultrasons

Shear Wave Elastography

Etape 3

Octobre 2014

77 / 90

Bruit et Artefacts ultrasonores

Bruit et Artefacts ultrasonores

Des images encore imparfaites...

• • • • • • • • • • • •

Bruit et Artefacts ultrasonores

Approximations réalisées lors de l'acquisition ultrasonore

- l'onde transmise est plane et sans diffraction
- la vitesse de propagation est uniforme et constante
- le coefficient d'atténuation est uniforme dans le corps
- le corps = ensemble isotrope de sources spéculaires

\Rightarrow Source de nombreux artefacts dans l'image

Bruit dans les images

Le bruit blanc

Dû

- aux éléments piézo-électriques
- aux matériaux du système d'amplification

Le speckle

- Se réfère aux interférences des ondes ultrasonores provenant des différents diffuseurs
- Aspect dual car mesure du milieu
- Statistique dépend du nombre de diffuseurs par cellule de résolution et de l'espacement entre les diffuseurs

Bruit dans les images

Le speckle

Figure: Influence du nombre de diffuseurs sur le résultat final: 1000 vs 10000 diffuseurs

SD (TSI)

Exemples d'artefacts ultrasonores

Les échos en trop

Exemples: les échos retardataires, les artefacts des lobes secondaires, l'effet miroir, l'effet de volume partiel

Figure: L'effet miroir source: E. Angelini

		▲ 置き ▲	ヨト	₹.	$\mathcal{O}\mathcal{A}\mathcal{O}$
SD (TSI)	Ultrasons	Octob	re 2014		82 / 90

Exemples d'artefacts ultrasonores

Les échos en moins

Exemples: les cônes d'ombre

Figure: Les cônes d'ombre source: E. Angelini

	< ۵	⊐ ►	< 🗗 >	<	★■▼	æ	996
SD (TSI)	Ultrasons			Oc	tobre 2014		83 / 90

Exemples d'artefacts ultrasonores

Les déformations d'image

Exemples: les artefacts de vélocité, les images de dédoublement

Figure: Artefact de vélocité source: E. Angelini

SD	(TSI	
	(

Octobre 2014 84 / 90

Des images difficiles à traiter...

Des images difficiles à traiter...

- méthodes classiques de segmentation difficiles à mettre en oeuvre
- bruit très particulier
- \Rightarrow Nécessité de mettre en place des méthodes spécifiques
 - travaux sur la réduction du speckle, augmentation du contraste etc.
 - travaux sur le suivi du speckle
 - segmentation et suivi de tissus

Des images difficiles à traiter...

Exemples de filtrages d'image

Ultrasons

Ultrasons à visée thérapeutique

Hyperthermie

Absorption de l'onde sonore génère de la chaleur dans les tissus, dissipée par le flux sanguin entre autres.

Phénomène très marqué à l'interface tissu / os (forte absorption). Utilisation de la chaleur émise lors de l'absorption des US par les tissus pour:

- Traitement des rhumatismes, inflammations (entorses, etc.), escarres,..
- Traitement complémentaires dans certains cancers

Ultrasons à visée thérapeutique

Vibrothérapie

Utilisation du côté vibratoire des ondes US pour:

- Casser calculs rénaux ou biliaires
- Action antalgique: douleurs et contractures, pathologies post-traumatiques

Cavitation

Génération, croissance et interaction de petites bulles de gaz dans le champ de l'onde sonore durant la raréfaction.

- Utilisation pour nettoyer du matériel médical dans des cuves remplies de liquide
- Evidage de grosses tumeurs cérébrales

Recherche en ultrasons

Figure: Images en 1985 - 1990 - 1995

De nombreux domaines de recherches

- Imagerie ultrarapide: vaisseaux, etc.
- Simulation ultrasonore (cf. TP)
- Amélioration d'image
- Recherche sur les sondes (ex: sondes 3D)

Figure: source: GE Healthcare

SD (TSI)

Octobre 2014 89 / 90

Un petit exemple d'application en recherche

00	1-	
513		5
20		5