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Abstract
Computed tomography (CT) is the modality of choice for imaging the lungs
in vivo. Sub-millimeter isotropic images of the lungs can be obtained within
seconds, allowing the detection of small lesions and detailed analysis of disease
processes. The high resolution of thoracic CT and the high prevalence of lung
diseases require a high degree of automation in the analysis pipeline. The
automated segmentation of pulmonary structures in thoracic CT has been
an important research topic for over a decade now. This systematic review
provides an overview of current literature. We discuss segmentation methods
for the lungs, the pulmonary vasculature, the airways, including airway tree
construction and airway wall segmentation, the fissures, the lobes and the
pulmonary segments. For each topic, the current state of the art is summarized,
and topics for future research are identified.

(Some figures may appear in colour only in the online journal)

1. Introduction

To be able to detect and quantify abnormalities in a certain anatomical structure, such as
the lungs, the first step is to localize and segment the structure of interest. Therefore, for
any automated analysis of medical images, the segmentation is an important prerequisite.
Computed tomography (CT) is currently the most sensitive way to image the lungs in vivo
and therefore the modality of choice for lung imaging. Since the advent of multi-detector CT
scanners, sub-millimeter isotropic scans of the thorax can be obtained in a few seconds. These
isotropic CT scans allow for the analysis of small lesions and changes but their availability
also increased the need for an automated analysis since each scan typically contains over 400
axial slices.

Lung diseases are highly prevalent and have a high morbidity and mortality associated
with them. In the top ten causes of death worldwide in 2010 (Lozano et al 2012), chronic
obstructive pulmonary disease (COPD) ranks no. 3, lower respiratory infections rank no. 4,
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lung cancer ranks no. 5 and tuberculosis ranks no. 10. Recently, it has become apparent that
low-dose CT screening can reduce lung cancer mortality (Aberle et al 2011), by far the most
common cause of cancer death among both men and women (Jemal et al 2011). In addition,
lung diseases such as asthma, cystic fibrosis and interstitial lung disease are often diagnosed
and monitored with CT imaging.

The objective of this review is to provide an overview of the literature on the segmentation
of anatomical structures in thoracic CT scans. The most important applications of automated
segmentation in such scans are the localization of normal anatomy for the development of
computer-aided diagnosis, detection (CAD), quantification and treatment planning. For a CAD
system to be able to aid the radiologists in the detection of lesions, e.g. lung nodules, the system
needs to know which part of the CT scan comprises the anatomical structure of interest in order
not to indicate lesions in irrelevant areas. Radiologists are very good at recognizing diseases and
qualitatively judging their severity, but exact quantitation from thoracic CT scans is challenging
for humans (Kim et al 2013) and computers generally perform better. For example, the extent
of lung emphysema, one of the manifestations of COPD, is often quantified as the percentage
of lung tissue below a certain threshold on the CT scan. For humans, precisely quantifying
this in 3D chest CT scans is almost impossible, whereas computers can do this rapidly and
precisely provided an accurate segmentation of the lungs is available. Other commonly used
quantitative measures are volume measurements. The (change in) volume of structures can
provide important diagnostic information, e.g. the diameters of the airways and the airway
walls are used in the diagnosis of COPD, asthma and cystic fibrosis. It is evident that in order
to perform reliable volume measurements of a structure, an accurate segmentation is required.

This review will discuss algorithms for the segmentation of the lungs, vessels, airways,
fissures, lobes and pulmonary segments from chest CT scans. Each section will provide an
overview of common methodology, an overview of papers published so far and a discussion
of the challenges ahead. The first few sections will provide background information on how
the literature was collected, on pulmonary anatomy and on thoracic CT imaging. This review
concludes with a general discussion on the current state of the art and the challenges ahead.

2. Literature selection

The literature for this systematic review was collected by performing the following search
in the online database PubMed: (’’computed tomography’’ OR CT) AND (chest OR
thorax OR lung OR lungs OR pulmonary OR airways) AND (segmentation OR
delineation OR extraction). This resulted in 925 hits. We took all papers through 2012
into account. The first paper was published in 1975, also the first year when a substantial
number of papers on CT appeared. The largest number of papers, 133, was published in 2012.
Figure 1 shows the steep growth of papers on the topic of this review. For reference, we have
also plotted the increase in papers found in PubMed for the three substrings in our query that
retrieve papers on CT, on lung and on segmentation, respectively. All these topics show an
increasing trend as well, partly reflecting the general increase in numbers of papers produced
by the scientific community and contained in PubMed. However, the growth in papers on
‘lung’ is slower than papers that mention on CT or segmentation. The growth in segmentation
papers in thoracic CT is markedly stronger than any of the three subqueries. In the early
2000s, a steep increase in the number of papers is observed.

For all hits, all journal publications about the segmentation in chest CT scans which
appeared in Medical Physics, IEEE Transactions on Medical Imaging, Medical Image Analysis,
Physics in Medicine and Biology, Academic Radiology, Radiology, European Radiology,
American Journal of Roentgenology and the American Journal of Respiratory and Critical
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Figure 1. Illustration of the growth in the number of papers on the segmentation of pulmonary
anatomy from thoracic CT scans. We used the compound search string provided in the text and
plot the number of publications per year divided by the average number of publications per year
in the period 1975–2012. This number was 24.8. For comparison, the same was done using the
three search queries that made up the compound queries: (‘‘computed tomography’’ OR CT)

resulted in 8031 papers per year in this period, (chest OR thorax OR lung OR lungs OR

pulmonary OR airways) generated 19 370 hits per year on average and (segmentation OR

delineation OR extraction) produced 4481 publications per year.

Care Medicine were inspected and taken into account if relevant. This selection formed
the core of papers for this review. Papers from other journals, and conference publications
from SPIE Medical Imaging, Medical Image Computing and Computer Assisted Intervention,
Information Processing in Medical Imaging and the IEEE Symposium on Biomedical Imaging
were added if they presented methods with different approaches compared to the core papers.
References in all papers were checked and added when they presented different approaches.
We used Google Scholar and IEEEXplore to search papers not listed in PubMed. In case we
encountered several papers from one author group about the same subject, we generally picked
the most detailed one for this review.

3. Pulmonary anatomy

This section provides basic information about the pulmonary anatomy that can be segmented
from a chest CT scan. Figure 2 shows a schematic drawing of the lungs and the airway tree.
In figure 3, several anatomical structures are indicated on an axial slice of a chest CT scan.

Within the thorax, the lungs are enclosed by the ribs and the base of the lungs rests on
the diaphragm. The space in between the two lungs is called the mediastinum, which contains
the heart, major blood vessels, the esophagus, the trachea and main bronchi, and several
other thoracic structures. The airways, blood vessels and nerves enter the lungs from the
mediastinum at the hilum. The lungs themselves comprise airways, vessels and a connective
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Figure 2. A schematic drawing of the lungs and airway tree in which several anatomical structures
are indicated. Image adapted from Wikipedia.

tissue framework referred to as the interstitium. The gas exchange in the lungs takes place
in the alveoli which are much too small to be visible on CT. The alveoli and the interstitium
make up the lung parenchyma, which comprises the major part of the lungs on CT and has
a density between −800 and −900 Hounsfield Units (HU), indicating that at full inspiration
lung parenchyma voxels consist of about 80–90% of air.

The starting branch of the airway tree (or bronchial tree) is the trachea. The trachea
divides into two main bronchi: one to the left lung and one to the right lung, at the anatomical
point known as the carina. The left main bronchus subdivides into two lobar bronchi and the
right main bronchus divides into three. The lobar bronchi divide into segmental bronchi, and
subsequently the airway tree divides into increasingly finer branches. The airways undergo
approximately 23 divisions between the trachea and the alveolar sacs, the functional units of
the lung where gas exchange takes place. The airways consist of a lumen, that is filled with
air, and an airway wall. On a CT scan, the lumen and wall can be separately identified and
branches can be detected up to the 16th subdivision (1–2 mm) (Prokop et al 2003).

There are two vascular trees in the lungs: the arterial tree and the venous tree. The arterial
tree supplies the lungs with blood and arteries typically run alongside the bronchi. The veins
drain blood from the lungs and typically do not run along the bronchi. Arteries and veins
cannot be separated by their appearance on a CT scan when no contrast material has been
injected into the patient.

The lungs are subdivided into lobes. The left lung consists of two lobes, the upper and
lower lobes, while the right lung has three lobes, the upper part being divided into a middle
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Figure 3. An axial slice of a CT scan with labeled anatomical structures.

and upper lobe. The physical boundaries between the lobes are the interlobar fissures, which
consist of a double layer of visceral pleura and constitute anatomical barriers to the invasion of
disease (Gülsün et al 2006). The fissures can be distinguished in CT scans as bright surfaces in
the lungs. Each lobe has a separate supply of air by the lobar bronchi; similarly, each lobe has
a separate vascular, nerve and lymphatic supplies which allows the lobes to function relatively
independent of each other. If the interlobar fissures do not completely delineate the lobar
boundary, which is often the case (Raasch et al 1982, Hayashi et al 2001, Aziz et al 2004,
Gülsün et al 2006), the different lobes are connected and might not function independently.

The lobes are further subdivided into segments. Unlike the lobes, the segments are almost
never separated by fissures, but by thin membranes of connective tissue. This tissue cannot
be distinguished on a CT scan. Occasionally, an accessory fissure forms a physical boundary
between two segments. The segments are defined based on the supply from a segmental
branch of the bronchial tree. There are ten segments in the right lung and eight in the left
lung. The segments form anatomical and functional regions of the lung parenchyma, and
therefore pathological processes may be limited to single segments. Surgical resection can
also be limited to one segment so the segmentation of these structures may be important in
treatment planning.

4. CT imaging of the lungs

One of the major sources of variation when considering the performance of automatic methods
to segment anatomical structures in chest CT scans is the acquisition protocol. It is therefore of
vital importance to supply details about the acquisition protocol in every paper that describes
segmentation methods. We discuss the most important factors here.

First of all, the section thickness and section increment need to be set when reconstructing
the raw CT data. It is strongly advised to reconstruct thin-section data, with a section thickness
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Figure 4. Illustration of cardiac motion, indicated by the black arrow. Staircase outpouchings can
be seen in coronal and sagittal reformats of the data, while in the axial plane (top right), a blurry
region around the heart is observed.

and spacing in the order of 1 mm. For the same acquisition protocol, reconstructing with
thinner slices leads to an increase in noise, and many radiologists prefer to read axial sections
that are thicker, for example 3 mm, which reduces the effect of noise. Many hospitals therefore
store only such thicker sections, but this has the unfortunate side effect that valuable 3D
information is lost in the process, coronal and sagittal reformations of the data look blurry
and the 3D computer analysis is suboptimal or even no longer possible. Since thick sections
can easily be computed from thin sections on the fly by viewing software, but not the other
way around, thin-section data should be stored always (store thin, view thick). Similarly, it is
important to choose the field of view and reconstruction matrix (usually 512 × 512, but some
centers routinely reconstruct higher resolution matrices) such that the resolution in x and y
directions is in the order of 0.5–0.8 mm. Reconstructing higher resolution data sets is typically
not useful as the inherent resolution of the data is limited by noise due to the low radiation
dose used for most clinical applications.

Most CT scanners nowadays use multi-row detectors (these detector rows are typically
referred to as ‘slices’). For chest imaging, excellent results can be achieved even on a four-slice
scanner, but scanners with more detector rows can scan quicker. This reduces the chance that
patients do not hold their breath and the scan contains breathing artifacts. For this reason, it is
always advised to start the scan below the lungs and scan upward (caudal cranially) because the
lower parts of the lungs move much more when the subject would suddenly start breathing and
these typically already have been scanned when scanning caudal cranially. Artifacts can also
be seen around the cardiac border (see figure 4), unless the scan is acquired with prospective
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cardiac gating, which is typically not done for chest CT. With older single slice scanners,
scanning the complete chest with thin-section collimation could usually not be done within a
single breath hold and it was common, especially for indications of interstitial lung disease,
to acquire a 1 mm section every 10 mm. These scans with gaps are often referred to as high-
resolution CT (HRCT) although this abbreviation is now also used for thin-section volumetric
scans. Needless to say, these HRCT scans with gaps are not suitable for the 3D analysis and
follow-up scans are depicting slightly different sections, thus making temporal comparisons
very difficult.

A very important parameter is the dose. The lower the dose, the more noisy the scan will
look. The exact relation between dose and noise is complex though, and beyond the scope of
this paper. The two main settings that can be varied are the tube voltage (kV) and current time
product (mAs). kV determines the spectrum of the x-ray beam; mAs is directly proportional
to how many x-ray photons are generated. Chest CT scans with a very low dose can still
have excellent image quality and low noise levels if the patient is slim. Modern CT scanners
allow the selection of kV and mAs and most modern scanners offer the modulation of the
mA during scanning to adjust for patient size and local anatomy (modulates on both x/y and
z). The operator selects operating parameters including control parameters for the modulation
(an image quality reference parameter or a reference exposure parameter). On top of this,
most vendors now offer advanced reconstruction algorithms that are model-based and iterative
and operate partly in the raw domain (before reconstruction) and in the image domain (after
reconstruction).

Another parameter is the so-called reconstruction kernel. ‘Sharp kernels provide higher
spatial resolution, but also give more noise and the characteristic overshoot–undershoot
patterns around edges. Reconstructions with ‘smooth’ and standard kernels produce images
with less spatial resolution but also reduced noise and possibly more reliable density values.
Vendors provide their customers with a plethora of kernels, and the choice for a particular
‘kernel’ can also mean that additional proprietary image processing is applied to the scan,
completely unrelated to the reconstruction algorithm. The effect of kernel, dose setting, iterative
reconstruction algorithms, and so on, can have a substantial influence on the outcome of image
analysis algorithms. This is illustrated in figure 5 and for example discussed in the context of
emphysema quantification by Boedeker et al (2004).

Thoracic CT scans can be obtained without administration of intravenous contrast agent
(e.g. for lung cancer screening, diffuse lung disease, interstitial lung disease, evaluation of
asthma or COPD) but for several indications, an intravenous contrast agent is administered
before scanning (e.g. cancer evaluation, detection of pulmonary embolisms). As a result,
the density of blood is increased and arteries, and often veins as well, are brighter. The
advantages are that radiologists can now better appreciate the differences between vessels
and other dense structures in the lung, they can see if there are vessels within dense lesions
and obstructions in the blood flow, e.g. filling defects caused by pulmonary embolisms, can
be detected.

Most papers in this review address volumetric chest CT scans obtained at full inspiration.
Expiratory CT scanning is also increasingly used and 4D imaging along the breathing cycle is
also gaining popularity, so far mainly for radiotherapy applications.

Since the acquisition parameters described here all have a large effect on the resulting
image quality, it is recommended that all papers describing segmentation methods thoroughly
describe the acquisition parameters of the data used for the development and evaluation since
it allows insight into the type of data for which the evaluation of the performance of the method
is valid.
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Figure 5. Illustration of the effect of reconstruction kernels and iterative reconstruction algorithms.
Four different reconstructions of the same chest CT data set are displayed. The larger images are
axial views. The side views show axial, coronal and sagittal reformations. The data set contains a
non-solid nodule that has been segmented by an automatic segmentation method based on Kuhnigk
et al (2006), using exactly the same settings for each reconstructed data set. Note how substantially
the reconstruction settings influence the result of the computerized segmentation. The mass of the
segmented lesion varies from 168 (top left) to 255 mg (top right). The scan has been acquired on
a Toshiba Aquilion ONE scanner. The top row shows reconstruction with a lung kernel (FC86)
which results in a slightly sharper image than the body kernel (FC09) used for the bottom row.
The images on the left use standard filtered back projection. The images on the right have been
reconstructed with an iterative algorithm (AIDR3D) that reduces noise while attempting to preserve
tissue boundaries.

5. Lungs

5.1. Relevance

The segmentation of the lungs from chest CT scans is a prerequisite for the subsequent
automated analysis since it allows for the estimation of lung volumes and detection and
quantification of abnormalities within the lungs. In case of erroneous lung segmentation,
findings might be missed or findings outside the lungs might be included in the analysis.
Armato et al (2004) illustrated the importance of accurate lung segmentation for the automated
detection of nodules. A standard lung segmentation algorithm was applied to a set of 60
scans followed by the automated nodule detection within the lungs. Due to erroneous lung
segmentations, 17% of nodules were excluded from the lung regions and as a consequence not
detected. After the lung segmentation algorithm was adapted for the specific task, the results
improved to only 5% of nodules missed.
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5.2. Methods

In chest CT scans of healthy subjects, lung parenchyma has a substantially lower attenuation
than the surrounding tissue. As a result, the core functionality of many lung segmentation
algorithms is based on a thresholding approach (e.g Armato and Sensakovic 2004, Leader
et al 2003, Hu et al 2001, Sun et al 2006, Brown et al 1997, 2000). These threshold-based
methods perform well in chest CT scans of patients with normal lungs but often fail in CT
scans where dense pulmonary abnormalities or artifacts are present by excluding these areas
from the segmentation. Other methods are specifically designed to handle such abnormalities,
but are often too slow or too specialized to be used in clinical practice. Meng et al (2012)
illustrated the performance of threshold-based lung segmentation algorithms in a large-scale
robustness analysis on a set of 2768 chest CT scans of 2292 subjects with various abnormalities
and scanning protocols. In all scans, an automatic threshold-based lung segmentation was
performed and visually checked. In 121 scans (4.4%), the segmentation of the lungs contained
errors, which in 75 scans (62%) were due to disease such as interstitial lung disease; in 39
scans (32.2%), the failures were due to artifacts from, for example, metal, and in the remaining
seven cases (5.8%), the errors were caused by external factors such as corrupted dicom slices.

In this section, we will provide a short overview of the threshold-based algorithms,
followed by a description of algorithms developed to overcome the problems of conventional
threshold-based algorithms. Table 1 provides an overview of published journal papers with a
focus on the evaluation of the proposed lung segmentation algorithms.

5.2.1. Threshold-based lung segmentation algorithms. A plethora of threshold-based lung
segmentation methods has been described in the literature; therefore, we focus only on those
papers published in peer-reviewed journals according to the search string provided in section 2.
Some algorithms, especially older ones, are two-dimensional and process each axial section
of the scan separately (e.g. Kemerink et al 1998, Leader et al 2003, Armato and Sensakovic
2004), which is a logical choice in the case of thick-slice CT data, but when isotropic data are
available, 3D processing is preferable to avoid inconsistencies between slices.

Most 3D threshold-based methods for lung segmentation use similar schemes. First,
the lung regions are determined, either by optimal gray-level thresholding and connected
component analysis or by 3D region growing from a seed point in the trachea. For the latter,
the trachea is first detected using circular region (2D) or tube detection (3D) in the top of
the scan. Since the detected lung regions will contain the trachea and main bronchi, these are
pruned from the result and if the lungs are connected, they are separated at the anterior and
posterior junctions. Morphological operations are commonly applied to smooth the borders
and include vessels in the segmentation result.

Hu et al (2001) were the first to publish a threshold-based lung segmentation method
that operates according to scheme described above. An optimal thresholding technique was
applied to find the main lung regions, followed by a connected component analysis to separate
the lungs from other non-body voxels; the two largest components not connected to the border
of the image were retained. The trachea and main bronchi were detected by searching for a
circular region in the top of the scan as a starting point and subsequently applying closed-space
dilation with a unit radius kernel (equivalent to slice-based region growing) and removed from
the initial lung region. Holes in the lung regions, mainly due to vasculature, were filled by
the topological analysis. In case one connected component was found for the lungs, dynamic
programming was applied on a slice-by-slice basis to separate the lungs at the anterior and
posterior junctions. The result was smoothed along the mediastinum using morphological
operations. Ukil and Reinhardt (2005) improved upon the method proposed by Hu et al (2001)
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Table 1. An overview of studies on the automatic lung segmentation is provided. For each study, the type of method, number of scans used for evaluation (no. of scans), evaluation
method and quantitative performance are provided. RMS indicates root mean square, D indicates distance, HD indicates Hausdorff distance, MASD indicates mean absolute surface
distance, MSBPR indicates mean signed border positioning error, O indicates volumetric overlap and DICE indicates the Dice coefficient.

Study Type No. of scans Evaluation method Quantitative performance

Leader et al (2003) 2D threshold-based 101 Comparison of lung average difference of
volume to results of 95 ml for thick slice and
interactive segmentation 28 ml for thin slice data

Armato and Sensakovic (2004) 2D threshold-based 60 Effect of lung segmentation modifications on
nodule detection and tumor measurements

–

Brown et al (1997), 2000) 3D threshold-based 104 visual inspection by a radiologist, no
quantitation

–

Hu et al (2001) 3D threshold-based 24 RMS to manual segmentation in 229 slices
from 12 scans

average RMS 0.54 mm

Ukil and Reinhardt (2005) 3D threshold-based 8 RMS to manual segmentation average RMS 0.87 mm
Sun et al (2006) 3D threshold-based 20 O to manual delineations average O 88.5%
Sluimer et al (2005) Atlas-based 10 O to manual segmentation for proposed

method, 3D threshold-based segmentation,
and interactive 3D threshold-based region
growing

Average O 82%, 39%, and 79%, respectively

Pu et al (2008) Threshold-based combined with
adaptive border marching

20 Volume-based over- and undersegmentation
compared to semi-automatic segmentation

0.43 % and 1.63%

Prasad et al (2008) Adaptive 3D thresholding 19 O to semi-automatic segmentation for
proposed and 3D threshold-based method

88% versus 87% for TLC, 85% versus 82%
for RV

Korfiatis et al (2008) 2D texture classification 22 O and RMS to manual segmentation for
proposed method and threshold-based
method on 140 slices

average O 95% versus 92%, average RMS
1.080 mm versus 2.345 mm, respectively

van Rikxoort et al (2009a) 3D threshold-based and atlas-based 150 O and HD to manual segmentation in 1800
slices for proposed and 3D threshold-based
method

average O 95% versus 93%, average HD
23.55 versus 25.79, respectively

Wang et al (2009) Threshold-based combined with texture
analysis

76 O, mean and maximum D to manual
delineations in 3 slices per case

averages 96.7 %, 0.84 mm, 10.84 mm,
respectively

Sofka et al (2011) Multi-stage learning 68 D to manual segmentations average D 2.0 mm
Sun et al (2012) 3D active shape model 30 DICE, HD, MSBPR and MASD to

interactive segmentation for proposed
method and a threshold-based method

0.975 versus 0.949, 20.13 mm versus
33.07 mm, 0.84 mm versus 1.89 mm,
0.59 mm versus 1.25 mm
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Figure 6. Illustration of the performance of conventional 3D threshold-based lung segmentation
methods on scans with normal lungs and scans containing dense pathological abnormalities. The
first frame provides an axial section of a scan without dense abnormalities; in the second frame, the
corresponding lung segmentation is provided. The third and fifth frames show axial slices of two
scans with dense abnormalities, with the corresponding lung segmentations in the fourth and sixth
frames, respectively. Because of the higher densities of the abnormalities compared to the density
of normal lung parenchyma, the abnormalitsies are excluded in conventional threshold-based lung
segmentation methods.

by introducing a smoothing at the mediastinal area based on the airway tree to guarantee
consistency among segmentations of different subjects and intra-subject over time. Sluimer
et al (2005) and van Rikxoort et al (2009a) describe 3D threshold-based methods largely based
on the method of Hu et al (2001).

Sun et al (2006) presented a 3D method for the segmentation of the lungs from thick-slice
CT images. First, a preprocessing was applied in which the signal-to-noise ratio was improved
by applying an anisotropic filter, followed by a wavelet transform-based interpolation method
to construct 3D volume data. In these 3D volume data, the lungs were obtained by region
growing using gray-value, homogeneity and gradient magnitude as input. Cavities inside the
resulting lung region were filled using morphological closing.

Brown et al (1997, 2000) also applied 3D region growing and morphological smoothing
operations but in addition, an anatomical model with a frame-based semantic network was
used. The anatomical model modeled the chest wall, mediastinum, central tracheobronchial
tree and the left and right lungs in terms of attenuation threshold, shape, contiguity, volume
and relative position to allow the incorporation of anatomical variation.

5.2.2. Lung segmentation specifically designed for abnormal lungs. As illustrated in figure 6,
when high density abnormalities are present in the lungs, conventional methods tend to produce
errors. Sluimer et al (2005), Pu et al (2008), Prasad et al (2008), Korfiatis et al (2008), van
Rikxoort et al (2009a), Wang et al (2009) and Sun et al (2012) developed methods to handle
such abnormalities. Each method was generally developed with a specific disease in mind and
therefore these methods are highly specialized and generally not tested on a large population.

Sluimer et al (2005) employed an atlas-based segmentation of severely pathological lungs.
A probabilistic atlas was created by registering 15 chest CT scans containing lungs without
abnormalities to a reference atlas and averaging the results. The segmentation of a new case
was initialized by elastically registering the probabilistic atlas to the scan and transforming the
lung labels. The resulting segmentation was refined by applying a voxel classification trained
with data from the scan itself around the border of the lungs.

Pu et al (2008) developed a lung segmentation method aimed at including juxtapleural
nodules in the lung segmentation since these are often not included in conventional threshold-
based segmentations. The method starts with a threshold-based lung segmentation consisting
of a smoothing, a thresholding at −500 HU and a slice-by-slice flooding of non-lung regions.
The lung border of this initial segmentation was tracked in each axial slice and adaptive border
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marching was applied to include nodules while minimizing oversegmentation into adjacent
structures.

Prasad et al (2008) developed a method for lung segmentation in cases with diffuse
lung disease to overcome the erroneous exclusion of diseased regions from the segmentation.
The proposed method is a conventional threshold-based approach in which the threshold
was adapted for each individual patient. To adapt the threshold, the curvature of the ribs
was automatically detected and the threshold used adapted until the curvature of the lung
along the rib boundary was similar to the curvature of the ribs. A clear disadvantage of this
method is that while adapting the threshold optimally near the ribs, the method might lead to
oversegmentation at the mediastinum.

Korfiatis et al (2008) used texture classification for the segmentation of lungs affected by
interstitial pneumonia in 2D slices of 3D chest CT scans. The method was initialized with a
k-means clustering based on density from which the cluster with the lowest average density
was taken as the lungs. This initial segmentation does not include areas of dense abnormalities.
To include possible areas that should be in the lung segmentation, an iterative approach was
used in which pixels around the border of the initial segmentation were classified with a
support vector machine using gray-level and wavelet coefficient statistics features.

van Rikxoort et al (2009a) proposed a hybrid lung segmentation approach. The rationale
behind the approach was that threshold-based lung segmentation methods perform well in
a large number of cases and are fast but often fail in scans where dense abnormalities
are present. Specialized methods generally work better but are too time consuming to be
applied to every scan in clinical practice. The method starts by applying a region-growing-
based lung segmentation similar to Hu et al (2001). Segmentation failure was automatically
detected based on the statistical deviation from a range of volume and shape measurements
and to scans with failures a multi-atlas-based algorithm using non-rigid registration
was applied.

Wang et al (2009) proposed a method for the segmentation of lungs affected by moderate
to severe interstitial lung disease. They started by eliminating the airways and estimating an
initial lung segmentation using thresholding techniques. This initial lung segmentation will not
include regions in the lungs affected by interstitial lung disease since their density is different
from normal lung parenchyma. To identify the abnormal lung regions, texture features were
obtained from the co-occurrence matrix. The abnormal regions identified using the texture
analysis were added to the initial lung segmentation. 2D hole filling was applied to smooth
the final lung segmentation.

Sofka et al (2011) proposed a method that utilizes knowledge of other structures
visible in the chest CT scan (ribs, carina) in a multi-stage learning-based approach which
starts by identifying the carina in the trachea. The location of the carina was used in a
hierarchical detection network to predict pose parameters of left and right lungs followed by
the detection of a set of landmarks near the lung borders mainly on ribs and the spine.
A shape model was initialized using these landmarks and was refined using a freeform
refinement.

Sun et al (2012) developed a lung segmentation method aimed at including large tumors
that are generally missed in threshold-based lung segmentation schemes. Offline, a shape
model of normal lung shapes was trained using 41 scans with segmented lungs. To initialize
the shape model in a new scan, automatically detected ribs were used. A robust matching
approach was applied to generate a segmentation from the initial shape model. Fine details in
the segmentation border not captured by the shape model were recovered using a graph-cut
approach.
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5.3. Challenges

Many methods for the automatic lung segmentation have been proposed and the segmentation
of the lungs without abnormalities in scans of good image quality is possible with high
accuracy in most cases. However, the segmentation of the lungs in cases containing pathological
abnormalities remains challenging and all of the proposed methods will likely fail in a subset
of cases. In 2011, a grand challenge on the segmentation of the lungs from chest CT scans was
held (LOLA11, www.lola11.com) in which eight different methods participated. The grand
challenge provided 55 chest CT scans from different sources containing different pathological
abnormalities. The results showed that most methods performed very well on cases with
healthy or emphysematous lungs but cases with severe abnormalities were incorrectly
segmented by all methods. In addition, there was little variation in the performance of the
different methods.

For the integration into clinical practice, the robustness of the methods is very important
since radiologists need to trust the outcome of the algorithm. A large step toward the integration
into clinical use might be algorithms that are robustly able to indicate potential failure, a first
proposal toward this was made by van Rikxoort et al (2009a), and next allow effective
interactive methodology to correct the segmentation in reasonable time. Several generic
interactive methods are available in the literature but the interactive segmentation of the
lungs from chest CT scans has received little attention in the literature so far. Kockelkorn et al
(2010b) proposed an interactive method for the lung segmentation in which the lungs were
automatically subdivided into small volumes of interest (VOIs) with homogeneous texture.
After automatically segmenting the lungs in a single slice using a trained k-nearest neighbor
classifier, the user can relabel VOIs mislabeled as lung or background. Based on the interaction
of the user, a new k-nearest neighbor classifier is trained online to segment the lungs in the
rest of the scan. The user is shown subsequent slices and can relabel VOIs until satisfied;
after every slice, the classifier is retrained until the user is satisfied with the results and there
is no need to relabel VOIs anymore. On a set of 12 scans for which a threshold-based lung
segmentation method failed in six cases, the efficiency of the method was shown.

Three of the discussed methods used cues from other structures present in a chest CT
scan, namely the ribs and vertebrae, to find the lung borders more reliably (Prasad et al 2008,
Sofka et al 2011, Sun et al 2012). Since the position of anatomical structures in the thorax is
related, this seems a very promising approach and availability of more and more automated
segmentation of several anatomical structures allows this type of integration. In addition, the
segmentation of other anatomical structures might also help indicate to the lung segmentation
method if the resulting segmentation is possibly erroneous, for example by checking the height
of the lungs compared to the ribs.

6. Vessels

6.1. Relevance

The segmentation of the pulmonary vessel trees allows the detection of vascular abnormalities
as well as the exclusion of normal vasculature from the analysis of dense abnormalities in
the lungs (e.g. Korfiatis et al 2011). Automatic segmentation of the pulmonary vessels is
often used in CAD systems, for example, to reduce the number of false positives in a nodule
detection system (Agam et al 2005). Since the different lobes in the lungs are provided by
different parts of the vessel tree, the vessels can also be used to guide the segmentation of the
lobes and segments or guide registration methods.

http://www.lola11.com
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The separation of the segmented vessel tree into arteries and veins can, for example,
be useful for algorithms being used to detect pulmonary embolisms (Zhou et al 2007) and
determine pulmonary hypertension. The separation of the vascular trees in the lungs into
arterial and venous trees is challenging since the differentiation between bifurcations and
crossings is far from trivial, especially in non-contrast enhanced scans. In a survey from 2006
on the lung image analysis (Sluimer et al 2006), the separation of arterial and venous trees
in the lungs was mentioned as ‘one of the main future challenges’. Two publications about
artery–vein separation in chest CT scans appeared since this survey (Bülow et al 2005, Saha
et al 2010).

6.2. Methods

We focus solely on methods segmenting the complete pulmonary vessel trees. For an overview
of general vessel enhancement and segmentation methods, we refer to Lesage et al (2009). The
segmentation of the vessel trees in the lungs is commonly performed using one of the following
three schemes: thresholding, vesselness filters, or tree growing or tracking. In this section, each
of the three approaches will shortly be described and studies applying the described techniques
discussed, followed by a description of the methods available for the separation of arteries and
veins.

The evaluation of vessel segmentation in the lungs is difficult since there are a lot of
vessels in the lungs, rendering it impossible to have all vessels manually delineated in a large
set of scans. In studies where the vessel segmentation is not the main goal, vessels are often
segmented by simple thresholding and the performance of the vessels segmentation is in
these studies not assessed. For the evaluation of other methods, several strategies have been
employed; some methods were evaluated by comparing to complete manual segmentations in
few scans (e.g. Zhou et al 2007), other methods were evaluated in terms of their benefit for
CAD systems (e.g. Agam et al 2005, Korfiatis et al 2011), and most methods compared to
manually indicated points inside the vessels for a larger set of scans (e.g. Ochs et al 2007,
Shikata et al 2009, van Dongen and van Ginneken 2010, Lo et al 2010, Korfiatis et al 2011,
Zhou et al 2012). An overview of the evaluation methodology and results of the different
vessel segmentation methods is provided in table 2.

6.2.1. Thresholding. In cases in which no dense abnormalities are present, the vessels can
be segmented with a simple density thresholding approach, which is often applied in papers
where the segmentation of the vessels is auxiliary to the main task such as lobar segmentation
(e.g. Lassen et al 2013).

6.2.2. Vesselness. The most common approach to vessel segmentation is the use of filters
based on eigenvalues of the Hessian matrix or the structure tensor. This type of structure
enhancement was initiated by Koller et al (1995) who described a Hessian-based analysis
for the detection of curvilinear structures and Haussecker and Jähne (1996) who introduced
the use of the structure tensor for the local structure analysis. Frangi et al (1998) were the
first to explicitly describe the construction of a vesselness measure using a combination of all
eigenvalues of the Hessian matrix. The eigenvalue analysis of the Hessian matrix provides the
principal directions in which the local second-order structure can be decomposed. Hessian-
based vesselness filters employ the grayscale curvature characteristics of bright tubes against
a dark background, where one expects one vanishing curvature parallel to the tube and two
strong curvatures perpendicular to the tube. Using these curvature expectations, a filter can be
constructed to enhance vessels while suppressing other structures such as blobs (three strong
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Table 2. An overview of studies toward automatic pulmonary vessel segmentation is provided. For each study, the type of method, number of scans used for evaluation (no. of scans), the
use of contrast material, evaluation method and quantitative performance are provided. TP(F) indicates true positive (fraction), FP(F) indicates false positive (fraction) and FN indicates
false negative.

Study Method No. of scans Contrast Evaluation method Quantitative performance

Agam et al (2005) Correlation-based vesselness
+ tree reconstruction

38 no Comparison to manual tagging in five
cases to detect FN, influence on FP in
nodule CAD

average 1% FN, 38% reduction in FP
CAD responses

Zhou et al (2007) Vesselness 2 yes Accuracy compared to manual vessel
tracking

97% and 94% for the two cases

van Dongen and van
Ginneken (2010)

Vesselness 10 no Sensitivity and specificity compared to
manually labeled points as TP and FP

sensitivity 0.71 at specificity 0.94

Ochs et al (2007) AdaBoost classification 29 mixed Area under the ROC curve compared
to 19,000 manually labeled points

area under the curve 0.953 ± 0.016

Korfiatis et al (2011) Vesselness and supervised
classification

7 – TPF and FPF compared to manual
segmentation in 30 slices per case for
proposed method and (Zhou et al
2007).

0.935 & 0.074 versus 0.968 & 0.400

Xiao et al (2011) Generalized vesselness 2 no Manual labeling in VOIs around the
fissures, area under precision/recall
curves for both scans, compared to
traditional vesselness

0.822 and 0.813 versus 0.693 and 0.612

Bülow et al (2005) Wavefront propagation – – Visual inspection, not quantitatively
evaluated for pulmonary vessels

–

Shikata et al (2009) Vesselness and tracking 44 no > 1000 manually placed TP and FP
points per scan

average 99% TP, 1% FP

Lo et al (2010) Locally optimal paths 10 no Comparison of tree length extracted to
thresholding vesselness, no TP,FP
analysis

average 55.61m versus 52.17m
extracted

Zhou et al (2012) CPR optimal paths 8 yes Comparison to manual vessel
segmentation in volumes of interest in
terms of volume error and inter-class
correlation

9.9 ± 7.9% and 0.988
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curvatures expected) and plates (only one strong curvature expected). A segmentation of the
vessels can be obtained afterward by thresholding the filter output, commonly followed by
morphological operations and/or connected component analysis. Variations on this approach
have been proposed by several researchers to detect the vessels in the lungs, e.g. Agam et al
(2005), Zhou et al (2007), van Dongen and van Ginneken (2010).

Some researchers proposed different approaches to vesselness filtering. Ochs et al (2007)
did not explicitly model the vesselness but used the eigenvalues of the Hessian matrix in
a pattern recognition approach to detect the vessels. Korfiatis et al (2011) started with
a vesselness filter followed by a supervised classification using texture features obtained
from the co-occurrence matrix to correct possible oversegmentations due to abnormalities.
Xiao et al (2011) presented a strain energy vesselness filter, designed to overcome the strict
tubular structure enhancement of common Hessian-based filters to also enhance bifurcations.
The method provides a generalized vesselness filter describing brightness, structure strength,
intensity continuity and vascular shape discrimination in a multiscale framework.

6.2.3. Growing and tracking. Since the vessels in the lungs form two trees, the arterial
and venous trees, several researchers applied tree reconstruction algorithms such as region
growing or wavefront propagation. The tree reconstruction can be performed on the original
CT data but is also often initialized using a vesselness filter. Bülow et al (2005) proposed a
general tree extraction framework ((Bülow et al 2004), inspired on (Schlathölter et al 2002))
that was applied to the segmentation of pulmonary vessel trees. The method starts from a set of
seed points from which a fast marching front propagation was started, accepting voxels above
a certain density threshold. The front was regularly checked for connectivity, when the front
splits, a bifurcation in the tree was detected and the expanding of the current tree segment
finished. The tree segments were evaluated during segment growth and rejected if their radius
exceeded certain maxima, indicating a leakage.

Shikata et al (2009) started their segmentation process with the output of a vesselness
filter. Since thresholding the output of the vesselness filter may lead to disconnected vessels,
especially around bifurcations, the output of the vesselness filter was not directly thresholded
but used to set seed points in the middle of vessel segments for a vessel traversing approach.
From the seed points, trajectories were made to the nearest junction to connect possibly
disconnected vessel segments.

Lo et al (2010) proposed a method to segment the pulmonary vessel trees using locally
optimal paths. A vesselness filter was applied as the basis of the algorithm. Local maxima
in vesselness were taken as seed points and spheres around the seed points were defined in
which the Dijkstra algorithm was applied, using a cost function based on the vesselness, to
obtain vessel candidate paths. From the obtained vessel candidate paths, the optimal paths
were selected based on criteria related to vesselness, shape, orientation and distance from
other paths.

Zhou et al (2012) proposed a method to segment the pulmonary vessels using locally
optimal paths in curved planar reformations (CPRs). The method was initialized with a
Hessian-based vesselness filter (Zhou et al 2007). The vessels detected in the vesselness filter
were straightened in the CPR volume and segmented using adaptive thresholding. Optimal
paths were traced based on Dijkstra’s algorithm.

6.2.4. Artery–vein separation. Bülow et al (2005) proposed a method to separate the arteries
and veins in the lungs given segmentations of the vessels and bronchi. The method utilized
the fact that arteries and bronchi accompany each other in the lungs by determining if a vessel
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(a) (b) (c) (d) (e)

Figure 7. Examples of thin slices ((a) and (c)) and their maximum intensity projections over 4.5 cm
((b) and (d)) and a vessel segmentation result (e). (a) and (b) were taken from a scan that does
not contain dense abnormalities, (c)–(e) were taken from a scan with dense abnormalities due to
interstitial lung disease. It can be seen that when no dense abnormalities are present, the maximum
intensity projection nicely depicts the vessels, indicating that the vessels can be extracted by a
simple threshold-based technique. However, when abnormalities are present, the vessels cannot
be distinguished from the lung parenchyma in this way. (e) illustrates the result of a thresholded
vesselness filter; it can be observed that the resulting vessel segmentation includes both vessels
and parenchymal abnormalities.

segment is close to a bronchus running in parallel orientation. The method was only visually
evaluated.

Saha et al (2010) proposed a semi-automatic method for the segmentation of arteries
and veins employing multiscale topomorphologic opening operations at locations where two
vessels were fused. The method was evaluated using a phantom and two chest CT scans in
which human observers manually indicated over 8000 points inside a vessel segmentation as
being artery or vein to serve as a reference standard. The results indicated that a 95% accuracy
was achieved for the two scans when between 25 and 40 seeds were manually placed for both
arteries and veins.

6.3. Challenges

The automated segmentation of the vessels in the lungs has received relatively little attention in
peer-reviewed journals, mainly due to the difficulty to properly validate vessel segmentation
algorithms and the fact that in cases without dense pulmonary abnormalities, the vessels
can be identified rather well by simple thresholding. However, in cases with abnormalities,
this thresholding would fail completely. This is illustrated in figure 7, where the result
of a vesselness filter on a case with dense abnormalities is also depicted. Korfiatis et al
(2011) were the first to specifically attempt to develop a vessel segmentation method
able to handle interstitial lung disease by including a voxel classification to exclude
oversegmentation, but evaluation was limited to seven cases. Robust segmentation of the
pulmonary vessels in scans containing gross pathologic abnormalities remains an open
research area. In a recent grand challenge for pulmonary vessel segmentation (VESSEL12,
http://vessel12.grand-challenge.org), a set of scans obtained from subjects varying from
healthy subjects to subjects with pathological abnormalities such as emphysema, nodules and
pulmonary embolisms were provided and 19 different vessel segmentation algorithms were
compared. The reference standard was obtained by manually labeled points inside vessels and
abnormalities. The results showed that even the best methods performed poorly in areas where
dense abnormalities were present and included these in the vessel segmentation.

The separation of arteries and veins is important for several clinical questions, e.g.
Wittenberg et al (2012) showed that many false positives of a CAD system for the detection
of pulmonary embolisms occurred in the veins, while emboli can only occur in the arteries.

http://vessel12.grand-challenge.org
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These kinds of errors not only increase the false-positive rate but also lead to less confidence
of CAD by radiologists since these are obvious false positives they would never consider
themselves. Only two methods for the artery–vein separation in the lungs are available (Bülow
et al 2005, Saha et al 2010) but they were not properly evaluated and/or require user interaction.
Therefore, the separation of pulmonary arteries and veins remains a challenge. The method
proposed by Bülow et al (2005) included anatomical knowledge and the method proposed by
Saha et al (2010) provides an elegant theoretical framework to separate vessels that appear
attached at the resolution of a chest CT scan. A framework combining both approaches might
provide a next step toward automatic artery–vein segmentation.

7. Airways

7.1. Relevance

Automated segmentation of the bronchial lumen and wall from thoracic CT scans is a
prerequisite for the analysis of airway disease: the airway lumen and wall dimensions are
often used to quantify the severity of airway disease in e.g. COPD, asthma and cystic fibrosis.
The separation of the airway wall and lumen is a very challenging task since the walls
are really thin, below the resolution of the scan at many locations, and often obscured by
partial volume effects, noise, or pathological processes. In addition, the location of the airway
tree can aid other segmentation tasks such as the subdivision of the lungs into lobes and
segments. In the past year, both an extensive review on automated airway analysis (Pu et al
2012) and an overview paper of a grand challenge toward airway segmentation (EXACT09,
http://image.diku.dk/exact) (Lo et al 2012) have been published. We therefore refer to these
papers for an extensive overview of published works and methodology. In this section, we
will discuss common approaches and challenges for the segmentation of the airway wall and
airway lumen.

7.2. Methods

7.2.1. Airway lumen segmentation. Since on a chest CT scan, the airway lumen presents as
a dark tube surrounded by a bright airway wall, a common approach to segment the airway
lumen is to use variants of gray-value-based region growing, e.g. Mori et al (1996), Sonka et al
(1996), Mori et al (2000), Swift et al (2002), Aykac et al (2003), Kiraly et al (2004), Bülow et al
(2004), Fetita et al (2004), Tschirren et al (2005), Palágyi et al (2006), Graham et al (2008),
van Ginneken et al (2008). These approaches perform very well in areas where the airway
wall is clearly distinguishable on a chest CT scan. However, the airway wall might locally
be obscured due to noise or partial volume effects or not intact due to pathological processes
such as emphysema. In these areas, airway lumen segmentation techniques only relying on the
intensity-based segmentation often ‘leak’ into the lung parenchyma surrounding the airways,
leading to false airway branches. Several approaches have been proposed to prevent region-
growing-based methods from leaking into the lung parenchyma. Mori et al (1996) proposed
‘explosion-controlled region growing’, which is an iterative region-growing method in which
the threshold value is increased until the airway volume ‘explodes’. The tree grown with the
threshold before explosion is retained. Schlathölter et al (2002) extended this idea by stopping
the segmentation locally where leakage occurs, while allowing the segmentation to continue
in other regions. A second problem with conventional region growing is that when the airway
lumen locally has a higher density on the CT scan, for example due to the presence of noise

http://image.diku.dk/exact
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in the scan or mucus in the airways, conventional intensity-based region-growing approaches
will stop and not detect distal airway branches.

The problems with intensity-based region-growing-based methodology have sparked
several researchers to investigate different techniques to segment the airway lumen. Bronchi
enhancement filters can be designed using the analysis of the Hessian matrix as described
for vessel segmentation. Ochs et al (2007) used an eigenanalysis of the Hessian matrix
as features in a pattern recognition approach, like for vessel segmentation. Tschirren et al
(2005) used a fuzzy connectivity approach in which adaptive cylindrical regions of interest
followed the airway branches during the segmentation by updating their orientation, size
and position. Within the current region of interest, the airway segmentation was performed,
allowing leakages to be detected early. Sonka et al (1996) and Lo et al (2010) employed the
segmentation from vessels running parallel to the bronchi to improve segmentation results.
Sonka et al (1996) incorporated the proximity of vessels into a region-growing approach. Lo
et al (2010) used a pattern recognition approach using spatial derivatives through second order
and Hessian eigenvalues and ratios between them as features to construct an airway probability
for each voxel. Next, an vessel orientation similarity measure was computed for each voxel and
combined with the airway probability in a region-growing approach. The method proposed
by Lo et al (2010) tackles leakage with the airway probability and early termination of
the airway tree segmentation with the vessel orientation measure. Pu et al (2011) used a
differential geometry approach which modeled all anatomical structures using matching cubes
and subsequently used principal curvatures and directions to differentiate between bronchi
and other structures in geometric space to overcome the problems of intensity-based region-
growing approaches.

7.2.2. Airway wall segmentation. Methods to segment the airway wall can roughly be
categorized into 2D and 3D methodologies. 2D airway wall segmentation methods are either
applied directly on axial slices but preferably image planes are reformatted perpendicular to the
centerline of the airway lumen. Full width at half-maximum (FWHM) is a commonly used 2D
approach for airway wall thickness measurements which assumes that the walls of the lumen
and wall are located halfway between the maximum within the airway wall and the minimum
in the lumen or lung parenchyma. FWHM is applied in 2D sections, by shooting rays from the
center of the lumen and studying the intensity profiles (Reinhardt et al 1997, Nakamura et al
2000). The FWHM method is highly dependent on, among other things, reconstruction kernel
and airway size. To overcome this problem, Reinhardt et al (1997) proposed a model for the
intensity profiles of rays from the airway lumen center based on the scanning process that
was fitted to the CT data. The method performed better than FWHM but required calibration
for each set of acquisition parameters. Several other 2D airway wall segmentation methods
have been proposed since then, for example, based on phase congruency (Estépar et al 2006),
intensity integration (Weinheimer et al 2008, Schmidt et al 2010), or model fitting (Odry et al
2006). Although when resampling perpendicular to the airway direction, the segmentation
of the airway walls can be performed throughout a segmented airway tree, 2D methods
inherently suffer from inconsistencies between slices and are incapable of producing correct
results around branching points.

To overcome this, several 3D airway wall segmentation methods have been proposed.
Liu et al (2009) started from an existing airway lumen segmentation mesh and subsequently
used an optimal graph search algorithm to simultaneously segment the lumen and airway wall
boundaries. Petersen et al (2011) proposed a new graph construction technique for the multi-
surface segmentation based on non-intersecting flow lines to be able to handle large curvatures
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as observed in the airway tree. Gu et al (2013) proposed a 3D active surface evolution that
minimizes an energy function containing external and internal energy functions to be balanced.

7.3. Challenges

A large amount of airway tree segmentation methods have been proposed in the literature over
the last 16 years. The evaluation of airway tree segmentation methods is challenging since
manually segmenting complete airway trees is not feasible. The EXACT09 grand challenge
therefore used a clever method in which segmented airway branches were visually scored by
human observers as being airway or non-airway for all methods and the results combined
into a reference standard. Evaluating the results of 15 submitted methods on 20 chest CT
scans with varying abnormalities and obtained with varying scanning protocols showed that
on average none of the methods was able to detect more than 74% of all airways. Combining
the results of all methods, this increased to 78.8% from which the organizers concluded that
there is complementary information in the different methods but also that there is room for
improvement. In general, the evaluation of airway segmentation methods on scans with gross
pathological abnormalities or obtained at full expiration and/or with (ultra-)low dose is rare.
The segmentation of the airway wall received less attention so far, but is even more challenging
to evaluate due to the small dimensions of the airway wall. Several authors have used phantom
measurements to evaluate their algorithm, next to comparison to FWHM at selected slices and
correlations with pulmonary function testing.

8. Fissures

8.1. Relevance

There are two types of pulmonary fissures: lobar fissures and accessory fissures. The lobar
fissures delineate the lobes in the lungs and are important for the localization of disease
and can stem disease spread between the lobes. Incomplete fissures can cause collateral
flow between lobes and render certain bronchoscopic intervention of chronic lung diseases
ineffective. Accessory fissures are a cleft of varying depth lined by visceral pleura (Ariyürek
et al 2001). Accessory fissures most often occur between pulmonary segments but may also
enter subsegmental or interbronchial planes. Most of the automatic fissure detection method
aim at only detecting the lobar fissures. The segmentation of the pulmonary fissures from chest
CT scans has only become feasible with the advent of multi-detector CT scanners, allowing
thin-section CT imaging of the entire lungs in a single breath hold. Since the fissures are thin
surfaces in the lungs, on thick-section CT scans, the fissures are only visible as vague bands
of increased density due to partial volume effect.

8.2. Methods

The most common approach to pulmonary fissure detection is filters based on eigenvalues
of the Hessian matrix or the structure tensor as described for vessel segmentation. Several
authors proposed modifications of the vesselness measure proposed by Frangi et al (1998)
to enhance plates such as the fissures (Sato et al 2000, Li et al 2003). For the detection of
fissures from chest CT scans, the use of these filters was first proposed by Wiemker et al
(2005), who presented two filters for the enhancement of all pulmonary fissures, one based on
the analysis of the eigenvalues of the structure tensor and another based on the eigenvalues of
the Hessian matrix. No quantitative analysis was performed but both filters visually performed
similarly according to the authors. Lassen et al (2013) presented a slightly different Hessian
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eigenvalue-based fissure enhancement filter in which not only the plateness of the fissure was
taken into account but also the strength of the image structure for better differentiation between
vasculature and fissures. The fissure enhancement filter was not separately evaluated since it
was part of a lobar segmentation method. Ochs et al (2007) proposed a pattern recognition
approach to detect all pulmonary fissures. An ensemble classifier was trained on manually
provided points in fissures, vessels and airways. Eigenvalues of the Hessian matrix and their
combinations were used as features. The method was evaluated on a set of 29 chest CT scans
from different sources and shown to reach an area under the ROC curve of 0.95 on average. van
Rikxoort et al (2008) also proposed a pattern recognition approach to enhance the pulmonary
fissures. The eigenvalues of the Hessian matrix were used as features in combination with
first- and second-order image derivatives. A two-step classification was performed trained on
manually delineated fissures. The method was quantitatively evaluated on a set of 22 scans
with manual segmentations of the fissures and shown to perform well, with an area under the
ROC curve of 0.98 compared to 0.90 for the method by Wiemker et al (2005) which was
implemented for comparison.

Methods aimed at only locating the lobar fissures, usually as a prerequisite for a subsequent
lobar segmentation, commonly start by defining an approximate location of the lobar borders
based on prior anatomical knowledge to limit the search area for fissure detection. Zhang et al
(2006) employed an anatomical lung atlas constructed using CT data of 16 subjects to initialize
fissure segmentation. The fissures in the initial area were enhanced in each axial section using
a 2D ridgeness measure. This information was combined in a fuzzy logic system to extract the
final fissure positions for the major fissures in left and right lungs. An evaluation on 22 chest
CT scans was performed by comparing the output of the method to manual tracings of the
fissures in terms of root mean square (RMS) error. The RMS error for fissure segmentation was
computed employing only the distance between each point on a manually segmented reference
fissure and the automatically segmented fissure. The RMS error for fissure segmentation is
commonly performed in this manner since the reference segmentations often only include the
lobar fissures, where methods might also segment accessory fissures. The RMS error between
the method and manual tracings was 1.96 mm on average. Wang et al (2006) presented a method
to segment the lobar fissures that started with a manual initialization in one axial section of
a chest CT scan located in the lower half of the lung. Starting from this axial section, key
axial sections were identified throughout the lung in which the fissures were segmented. The
manually traced fissure in the first section was transformed to the next closest key axial section
to initialize a fissure search region and shape prior. Within the fissure region, a ridgeness map
was computed which, combined with the shape prior, was used in a curve growing method to
delineate the fissure in the section. This process was repeated until the fissure in all key sections
was segmented, at which point a 3D linear interpolation was applied to segment the fissure in
all sections of the scan. The method was evaluated on ten chest CT scans on which fissures
were manually traced. The average distance between the automatically delineated fissure and
the manual tracing was 1.01 mm; in 2.4% of sections, manual correction was applied. Ukil and
Reinhardt (2009) combined a distance transform to segmented vessels and the original chest
CT scan as a cost image for a watershed transform guided by airway and vascular markers.
Based on the watershed segmentation, an initial search area for the pulmonary fissures was
determined. In the search area, a ridgeness measure based on the structure tensor analysis
was applied on transversal slices followed by a 3D graph search to locate the optimal surface
within the search area to be the pulmonary fissure. The method was evaluated by comparing
to manual tracings of the fissures in scans of 12 normal subjects imaged at inspiration and
expiration and 17 patients with emphysema imaged at full inspiration. The RMS errors for the
left major, right major and right minor fissure were 1.81, 1.57 1.43 mm for the inspiration data
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of the healthy subjects and 1.71, 1.88 and 2.31 mm for the data of the emphysematous patients,
respectively. Pu et al (2009a) presented a geometrical approach to fissure detection in chest
CT scans which does not incorporate anatomical knowledge other than a segmentation of the
lungs. As a first step, all voxels in the lungs were thresholded between −800 and −400 HU. To
enhance the pulmonary fissures while depressing non-fissure structures, Laplacian smoothing
was applied and the fissure was represented by small planar patches. Planar patches were
classified into fissural or non-fissural and later unified into fissure surfaces. The method was
compared to manual tracings of fissures on 100 slices from ten chest CT scans and shown to
have an average RMS of 2.0 mm for two observers.

8.3. Challenges

Several methods for the automatic segmentation of the pulmonary fissures have been presented
that all show almost sub-voxel precision as compared to manual fissure tracing in a small set of
evaluation cases. Although slightly different approaches have been used for different studies,
all approaches start from a plate or ridgeness filter potentially combined with anatomical
knowledge and/or post-processing steps to remove false responses. The main challenge for
fissure segmentation in the coming years will be to prove robustness of the methods, or a
combination of the methods, on large databases and to evaluate and possibly improve the
performance on cases with pathological abnormalities that interfere with the course of the
fissure or alter the appearance of the fissure. The main application for fissure segmentation is
to aid the segmentation of the pulmonary lobes, which is discussed in the next section.

9. Lobes

9.1. Relevance

The five pulmonary lobes are physically separated by the pulmonary fissures. In case a
pulmonary fissure completely delineates the border between two lobes, the segmentation of
the different lobes is trivial if an accurate segmentation of the pulmonary fissures is available.
However, pulmonary fissures are not only challenging to segment but the pulmonary fissures
have also been shown in several studies to frequently be incomplete. In a study on 100 lung
specimens, Raasch et al (1982) found incomplete fissures in 46% of the left lung specimens,
70% of the right major fissures were incomplete and 88% of the right minor fissures were
incomplete. Aziz et al (2004) and Gülsün et al (2006) examined the pulmonary fissures on
622 and 144 chest CT scans and both observed substantial numbers of incomplete fissures.
Figure 8 illustrates the lobar segmentation in a scan with complete and a scan with incomplete
fissures.

The segmentation of the pulmonary lobes allows the localization and quantification of the
heterogeneity of pulmonary diseases. The amount of disease activity can vary substantially
between the lobes, and some diseases generally affect only the upper or lower lobes. The
heterogeneity of the disease over the different lobes allows the quantification of the spread
of the disease and might affect treatment planning. For example, lung volume reduction
surgery (LVRS) has been shown to be significantly more effective in cases of heterogeneously
distributed emphysema with most emphysema in the upper lobes than in homogeneously
distributed emphysema. There are currently bronchoscopic lung volume reduction (BLVR)
alternatives to LVRS, where the preference for several techniques depends on the heterogeneity
of the emphysema over the different lobes. A segmentation of the lobes and fissures allows
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(a) (b) (c) (d)

Figure 8. A coronal slice of a scan with complete major fissures and corresponding lobe
segmentation ((a) and (b)), and a coronal slice of a scan with an incomplete right major fissure and
corresponding lobe segmentation ((c) and (d)). The incomplete part of the fissure is indicated with
arrows in (c).

the identification of patients with incomplete fissures, which is of importance since fissures
stem collateral flow and disease spread.

9.2. Methods

The lobe segmentation is a challenging segmentation task, mainly due to incomplete or
difficult to distinguish fissures and anatomical variation, either naturally or due to disease
altering the shape of the lobes. Several methods have been proposed to date. All methods
start by segmenting the lungs and detecting the pulmonary fissures. The main conceptual
difference between the methods is how areas with incomplete fissures are handled for which two
main strategies can be distinguished: some methods explicitly use cues from other structures
to determine the most likely position of the lobar border, while others purposely do not
include such information. The first strategy is based on the rationale that the different lobes
are separately supplied by different subtrees of the bronchial and vascular trees and these
therefore provide useful information to locate the borders between the lobes. The rationale of
not using auxiliary information from other anatomical structures is to minimize dependence
on the success of automatic segmentation of these structures. An overview of proposed lobe
segmentation methods and evaluation is provided in table 3.

9.2.1. Methods not incorporating auxiliary segmentations. After the automatic segmentation
of the lungs and fissures, for which each paper described their own technology but generally
speaking any methodology described in the sections above could be used, different authors
propose different schemes to come to a final lobar segmentation. Zhang et al (2006) and van
Rikxoort et al (2009b) presented methods that only used information of the lungs and fissures.
Zhang et al (2006) initialized the location of the lobar border using 2D ridgeness detection and
registering a pulmonary atlas based on lung and fissure locations. The fissure segmentation was
refined using fuzzy logic. In case the (detected) fissures did not cover the complete boundary
of a lobe, the method could only be run with a manual interaction. As a result, the proposed
method can only be applied automatically in cases with complete pulmonary fissures. van
Rikxoort et al (2009b) presented a voxel classification approach using distance and direction
to detected fissures and location inside the lungs as features. The method handled incomplete
fissures based on provided training examples, but the results in cases with severely incomplete
fissures were often not satisfactory (van Rikxoort et al 2010).

Pu et al (2009b) and Ross et al (2010) also described methods that did not take additional
information into account but the methods were specifically designed to be able to handle
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Table 3. An overview of studies toward the automatic pulmonary lobe segmentation is provided. For each study, the type of method, number of scans used for evaluation (no. of scans),
evaluation method and quantitative performance are provided. RMS indicates root mean square, D indicates distance and DICE indicates the Dice coefficient.

Study Method No. of scans Evaluation method Quantitative performance

Zhang et al (2006) Atlas-based + ridgeness in 2D
slices

22 Comparison to manually traced
fissures in terms of RMS and
DICE for the lobes

averages 1.96 mm and 0.988

van Rikxoort et al (2009b) Voxel classification based on
position in lobes

100 Comparison to 697 manually
labeled points

97% and 90% of points correctly
assigned in left and right lungs,
respectively

Pu et al (2009a) Fissure detection + radial basis
functions in cases with
incomplete fissures

65 Visual score by two observers good or excellent in 50.8% of
cases

Ross et al (2010) Fissure detection + thin-plate
spline

6 Comparison to manual
segmentation in cases with
incomplete fissures in terms of
average D

1.80 mm, 2.23 mm, 1.90 mm

Shamonin et al (2012) Fissure detection + B-spline 22 Comparison to interactive
segmentation in terms of DICE at
lobes (LUL,LLL,RUL,RLL,RML)
and left major, right major, and
right minor fissures

medians 0.99, 0.98, 0.98, 0.97 and
0.87 for the lobes and 0.65, 0.54
and 0.44 for the fissures,
respectively

Gu et al (2012) Fissure detection + B-spline 30 Comparison to manual
segmentation in terms of RMS,
mean D, and max D for left major,
right major, and right minor
fissures

average RMS 1.46 mm, 1.54 mm,
1.73 mm, respectively

Schmidt-Richberg et al (2012) Fissure detection + level set 9 Comparison to manual
segmentation in terms of DICE at
lobes and left major, right major,
and right minor fissures

averages 0.94, 0.83, 0.76, and
0.48, respectively

Nimura et al (2012) Fissure detection + graph-cut 6 Comparison to manual
segmentation in terms of Jaccard
index

average 79.1%
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Table 3. (Continued.)

Study Method No. of scans Evaluation method Quantitative performance

Agarwal et al (2012) Multi-atlas 23 Comparison to interactive
segmentation in terms of DICE at
fissures

median 0.60

Kuhnigk et al (2005) Vessels + intensity + watershed – No quantitative evaluation was
performed

–

Ukil and Reinhardt (2009) Fissures + airways + spline
interpolation

29 Comparison to manual left major,
right major and right minor fissure
tracing in terms of RMS, mean D,
and max D for 29 CT scans, 12 from
healthy subjects and 17 from COPD
patients, qualitative scoring of 10
cases with incomplete fissures

average RMS 2.31 mm, 1.57 mm,
and 1.63 mm for healthy subjects,
1.86 mm, 2.04 mm, 1.50 mm for
COPD patients, respectively. 4 out of
10 cases no errors

van Rikxoort et al (2010) Fissures + airways + multi-atlas 120 Comparison to manual left major,
right major, and right minor fissure
tracing in terms of RMS, mean D,
and max D for 20 CT scans,
qualitative scoring of 100 cases with
incomplete fissures

average RMS 1.28 mm, 1.88 mm,
1.98 mm, respectively. 85% scored
as good or excellent for all lobar
borders

Lassen et al (2013) Fissures + airways + vessels +
watershed

75 Comparison to manual left major,
right major, and right minor fissure
tracing in terms of mean D, and max
D for 20 CT scans and application to
LOLA11 grand challenge

averages 0.69 mm, 0.67 mm,
1.21 mm, respectively.
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incomplete fissures. Pu et al (2009b) identified the individual pulmonary fissures and in case
the fissures did not extend from lung border to lung border, implicit radial basis functions
were used to extend the fissures. The method was qualitatively evaluated on 65 scans and
rated as good or excellent in 50.8% of the cases by two observers, but the performance in
cases with incomplete fissures was not specified. Ross et al (2010) started by identifying
pulmonary fissure candidates using a particle filtering approach followed by maximum a
posteriori estimation to eliminate false responses. A thin plate spline was fitted through the
determined fissure candidate points to segment the lobar boundary and extend incomplete
fissures. The method was specifically evaluated on six cases with incomplete fissures and
performed comparable to the inter-observer variability between two pulmonologists. Similar
methods to segment the lobes with complete and incomplete fissures have recently been
proposed by Shamonin et al (2012), who employed iterative B-spline fitting that interpolates
at areas where no fissure was detected, Gu et al (2012) who applied a quadratic B-spline
weighting strategy to ensure that the segmentation is smooth, Schmidt-Richberg et al (2012)
who applied a level set segmentation guaranteeing a closed object using a vesselness filter as a
cost function and Nimura et al (2012) who applied a graph-cut segmentation using a sheetness
filter in the cost function after registering a probabilistic atlas. Agarwal et al (2012) proposed
a multi-atlas-based segmentation of the lobes with label fusion based on local weights (coined
local multilabel SIMPLE).

9.2.2. Methods incorporating auxiliary segmentations. Kuhnigk et al (2005), Ukil and
Reinhardt (2009), van Rikxoort et al (2010) and Lassen et al (2013) all described methods that
do take information of anatomical structures into account. The first paper on the automatic lobar
segmentation was presented by Kuhnigk et al (2005). The method combined information from
segmented pulmonary vessels and image intensity in the original CT as a means of detection of
the fissures to construct a cost image for an airway-guided watershed segmentation. Since the
method did not explicitly segment the fissures, the method did not always exactly follow the
fissures even when visible in the CT scan. To overcome this, an interactive watershed method
was developed to allow for manual correction. Ukil and Reinhardt (2009) utilized information
obtained from segmentations of the fissures and airways to come to a lobar segmentation.
3D chest CT scans were processed slice by slice, starting with 2D fissure detection. In cases
of incomplete fissures on 2D axial sections, a spline interpolation was used to complete
the lobar border guided by information from the airway tree. Manual interaction could be
performed in cases where the airway tree did not provide enough information to guide the
spline interpolation. Evaluation showed that in 25% of the cases, manual interaction was
needed. van Rikxoort et al (2010) developed a second lobe segmentation method using the
multi-atlas segmentation specifically designed to handle cases with incomplete fissures. As
atlases, five cases with complete fissures were selected, and the lung boundaries and fissures
were combined into an atlas image for each case. For test cases, the lungs, fissures and bronchi
were automatically segmented and combined into a cost image, where information of the
bronchi was only taken into account in regions with incomplete fissural information. The most
suitable atlas was automatically determined as the atlas that was able to most closely match the
fissures to the test image after a fast initial registration and this selected atlas was elastically
registered to the test case and the lobar border propagated. The method was evaluated on 20
cases and shown to closely follow the fissures where present. In addition to a specific evaluation
on 100 cases with incomplete fissures, an observer rated the quality of the segmentations on
a five-point scale, 55 cases got an excellent score for all lobar borders and in 85 cases, all
borders were rated as good, only two lobar borders out of 300 were scored as poor. Lassen
et al (2013) built upon the work of Kuhnigk et al (2005) by extending the method to include
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information from fissure segmentation and the bronchial tree into the cost image for watershed
segmentation. The method was compared to the methods by Kuhnigk et al (2005) and van
Rikxoort et al (2010) on a set of 20 chest CT scans and shown to outperform both.

9.3. Challenges

The segmentation of the pulmonary lobes is one of the most challenging segmentation tasks
in the lungs. Radiologists utilize information from the bronchial tree and vasculature when
determining the lobar borders in cases with incomplete fissures, but robustly incorporating this
information into automated methodology is difficult since the segmentation of the bronchial
tree and vasculature are also difficult themselves. Approaches not utilizing this anatomical
information might be more robust against segmentation failures, but at the same time are more
prone to anatomically incorrect segmentations. A combination of the two strategies might be
beneficial.

Most methods were evaluated on a small set of cases, if at all, and usually the scans
used were obtained from healthy subjects. As a result, the performance of lobar segmentation
methods proposed so far are hard to compare. Lassen et al (2013) compared their method to two
previously proposed method on a small set of cases but the performance of the other methods
cannot be directly compared. In 2011, a grand challenge was organized on lobar segmentation
(LOLA11, www.lola11.com) in which only two methods participated (van Rikxoort et al 2010,
Lassen et al 2013). The grand challenge contained a substantial amount of severely diseased
cases and showed that both methods were not able to handle these cases successfully, and it
is unlikely that other methods proposed so far will. Since the robust automatic segmentation
of the lobes in diseased cases needs to be studied and probably is not feasible yet, a method
that allows fast interactive correction of lobar segmentation results is desirable. Lassen et al
(2011) proposed an interactive lobar segmentation method that was submitted to the LOLA11
grand challenge as well and shown to perform very well with minimal user interaction.

Even though the development of automatic lobar segmentation tools is far from finished,
their use in clinical research, clinical trials and even clinical practice is growing fast. Many
radiologists and pulmonologists are interested in the spread of diseases over the different
lobes and its influence on phenotyping and progression of the disease. One example of the
use in clinical trials is BLVR treatments with valves. Patient eligibility is determined based on
emphysema distribution as well as fissural completeness. In particular, fissural completeness is
time consuming to determine for radiologists and given a fissure and lobar segmentation can be
automated (Pu et al 2010, van Rikxoort et al 2012). A large challenge for lobar segmentation
for the coming years is to develop methods that perform well and robust in large studies
containing scans with pathological abnormalities.

10. Segments

10.1. Relevance

The pulmonary lobes are further subdivided into the pulmonary segments, which have
no physical boundaries visible on CT but are defined based on bronchial supply. The
pulmonary segments are used by radiologists and pulmonologists to indicate the localization
of abnormalities in the lungs and guide interventions. Although the pulmonary segments
function less independent within the lung than the lobes, pathological abnormalities might
still be confined to a single or several segments, which allows the removal of segments instead
of complete lobes. Laros et al (1988) performed a 30-year follow-up study of 30 patients in

file:www.lola11.com
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which ten or more lung segments were removed. The results showed that as long as at least six
healthy lung segments were present, the functionality of the lungs did not deteriorate over the
course of 30 years. Where the segmentation of the lobes is more and more used, the pulmonary
segments are rarely used for the quantification since determining the segmental boundaries is
hard and time consuming in 3D CT data. Automated tools might allow for more segmental
quantification.

10.2. Methods

In a survey of lung analysis in 2006 (Sluimer et al 2006), the automatic segmentation
of pulmonary segments was listed as a completely open research area. Since then, the
segmentation of the pulmonary segments still received little attention; only two studies are
available. The first study is by Kuhnigk et al (2005) who, one year before the previous survey,
proposed a method to divide the lobes into segments by assigning each voxel in the lobes to
the closest branch of an anatomically labeled bronchial tree in the same lobe. The method
was evaluated in vitro with CT scans of two specimens of the left lungs and showed that 80%
of voxels were assigned to the correct lobe, no evaluation was performed for the right lung.
A second method was proposed by van Rikxoort et al (2009b) as an extension of their lobar
segmentation. A voxel classification approach was used using a relative position in the lobe
and distance and direction to the fissures as features. The method was trained on manually
labeled points of segmental lesions and tested on 100 scans for which two observers manually
annotated the segment in which 697 lesions resided. The method performed equally well as
the two human observers.

10.3. Challenges

The segmentation of the pulmonary segments remains an open research area. The main
difficulty in developing methods for the segmentation of the segments is the reference standard;
since there are no physical borders between the segments, obtaining a reference standard on
CT data is difficult. Another reason for the little attention for this task is that clinically there
does not seem to be an urgent need for the segmentation of the segments at this time.

11. General discussion and conclusion

An automated segmentation of the anatomical structures is a necessary prerequisite for any
subsequent analysis of medical imagery. In this review, the automated segmentation of the
lungs, vessels, airways, fissures, lobes and segments from thoracic CT scans was discussed. In
this general discussion, we attempt to explain the gap between the published literature and the
use of segmentation algorithms in clinical practice describes an outlook for the developments
in the next years, and draw overall conclusions.

11.1. Evaluation and clinical practice

CT is the most sensitive way to image the lungs in vivo. Multi-detector spiral scanning has
been available for over 15 years now, and a sizable effort has been made to develop automatic
segmentation methods, which is evident from the large number of studies discussed in this
review. Most studies report good to excellent results for the segmentation task at hand, often
with segmentation results comparable to human experts. In clinical routine, however, almost
none of the automatic segmentation tools are used. This gap between clinical practice and
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reported results in experimental studies is for a large part due to the variation in chest CT scans
obtained in clinical practice compared to the usually small, homogeneous evaluation set of
scans used for the evaluation of the performance of segmentation methods. Patient data often
contain abnormalities but even healthy, normal anatomy differs widely. Moreover, imaging
protocols (as briefly described in section 4) vary between and even within institutions. It is
common practice to develop and test methods on data from a single data source, and often
the scans used for development and evaluation of segmentation methods are free of disease,
or contain only one type of abnormalities. This leads to good results on the evaluation set, but
often to disappointing results on other types of data as encountered in clinical routine.

A very important step to bridge the gap between reported results in the literature and
experience in clinical practice is quantitative evaluation of the automatic segmentation results
on large numbers of scans with different characteristics to ensure that at least the performance
is known for each type of scan. However, the quantitative evaluation in 3D chest CT scans is
challenging in large cohorts since delineating structures in 3D CT scans in order to construct
a standard of reference is time consuming, tedious and tiring for human observers. Several
authors opted for evaluating on a subset of slices for which manual segmentations were
obtained. Due to the variation in normal anatomy, pathology and other factors, it is preferable
to evaluate in a limited set of slices for a large set of scans over completely manually segmenting
a small set of cases.

It is not only important to thoroughly evaluate the performance of one specific method, but
also to be able to compare the strengths and weaknesses of the different proposed methods. A
good opportunity for this is the grand challenges in medical imaging that have been organized
since 2007 (www.grand-challenge.org). These grand challenges provide a set of data to apply
the methods to, and evaluation is performed centrally, allowing authors to directly compare
the results of their method to other methods using the same data and evaluation strategy. For
the segmentation of pulmonary structures, grand challenges have been organized for the lungs,
vessels, airways and lobes. The grand challenges do not only provide information on which
type of methodology might be most suitable for certain tasks, but also reveal that different
methods have different strengths and that combining the results of different methods might
greatly improve the results (Lo et al 2012). The amount of data used in the grand challenges
is currently relatively small, mainly since the organizers also need to obtain manual reference
standards to allow for evaluation. Repeating the grand challenges by adding data from different
sources and with different (pathological) abnormalities to the databases, every couple of years
might be a good way to keep evaluating the progress of automated segmentation tasks.

Even in the absence of a grand challenge, it is any way advisable to test algorithms
on publicly available data. The publicly available LIDC database, downloadable through the
United States National Cancer Institute Imaging Archive web site at http://ncia.nci.nih.gov,
provides around 1000 chest CT scans from multiple institutions, in which four radiologists
have detected and outlined pulmonary nodules.

11.2. Outlook

Unifying the discussion sections of the different anatomical structures, the following areas
appear to be most prominent for future research:

• Employing contextual information
• Automatic error detection
• Interactive tools
• Evaluation on data containing abnormalities.

http://www.grand-challenge.org
http://ncia.nci.nih.gov
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The different anatomical structures are not always complete or completely visible on chest
CT scans, making automated segmentation challenging. However, the structures in the thorax
are all related: the position, size and shape of one anatomical structure can provide important
clues about the possible positions and shapes of other structures. Since automated segmentation
algorithms are available for many anatomical structures in the thorax, it becomes possible
to develop methods that combine different segmentations to obtain a reliable segmentation
result. Several methods discussed in this review already incorporated contextual information,
e.g. Prasad et al (2008), Sofka et al (2011), Sun et al (2012) for the segmentation of lungs,
Sonka et al (1996), Lo et al (2008) for the segmentation of the airways, Bülow et al (2005) for
the separation of arteries and veins and for the segmentation of the lobes Kuhnigk et al (2005),
Zhang et al (2006), Ukil and Reinhardt (2009), van Rikxoort et al (2010), Lassen et al (2013).
The key to designing such methods is to combine information in a robust and optimal way. The
methods proposed so far mainly use the segmentation of auxiliary structures as a given input to
enhance the performance of the new segmentation task at hand. In future research, it could be
beneficial to attempt to update the segmentation of a set of related structures simultaneously.
Another form of contextual information could come from previous scans from the same subject
for which segmentations are available, possibly approved or interactively corrected by human
experts.

Methods that are able to indicate the probability that the resulting segmentation is correct
could be beneficial for the integration of automatic segmentation tools into clinical practice
since it might enhance the level of radiologists’ trust in the results. An example of automatic
error detection for the automatic lung segmentation is provided by van Rikxoort et al (2009a), in
which a relatively simple error detection method was developed based on statistical deviations
from volume and shape measurements of a set of training scans. This error detection was
shown to perform well. Although several scans were indicated as possibly containing errors
while in reality the results were correct, this is preferable to the reverse situation in which errors
are missed. In cases where the method indicates a possible problem with the segmentation
and the radiologist confirms this, effective interactive tools should be available to quickly
correct the errors. Effective interactive segmentation tools have been proposed for the lungs
and lobes (Kockelkorn et al 2010a, Lassen et al 2011, Sun et al 2012) but need to be further
developed. Given the high variability in acquisition protocols and pathological abnormalities,
it is unlikely that fully automatic segmentation tools will be available in the near future
that are able to correctly segment the anatomical structures of interest in every single case.
Therefore, for the acceptance of automated analysis into clinical practice, the development
of good interactive segmentation tools is vital. An extension to the automatic error detection
could not only indicate a possible error but also localize the error and possibly classify into an
error category to allow specialized (automatic) methods to locally improve the results.

Finally, methods should be routinely evaluated on rich data sets including scans obtained
with different protocols and scans containing abnormalities that range from mild to severe. The
data set of the LOLA11 grand challenge is the first to do this for lung and lobe segmentation.
In the near future, the amount of publicly available test data is expected to increase rapidly.

11.3. Conclusion

The segmentation is a prerequisite for any automated analysis of lung diseases. Many
studies have been reported in the literature, but the completely automatic segmentation
of the pulmonary anatomical structures cannot be considered solved yet, although clear
improvements have been made over the last decade. The main challenges remain the robustness
of segmentation methods on large sets of data, made evident by the recent publications by
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Pu et al (2012) for lung segmentation, and the performance on cases containing pathological
abnormalities. Most methods have been evaluated on small sets of data, usually with no or
only mild disease. The grand challenges that have been organized for the segmentation of
lungs, airways, vessels and lobes are an important step to be able to compare strengths and
weaknesses of different approaches and it would be good to repeat the grand challenges every
couple of years by extending the databases of cases with large amounts of new cases to allow
continuous monitoring of the progression of the field.
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