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Abstract. Automatic medical image segmentation is an unsolved problem that has captured the 
attention of many researchers. The purpose of this survey is to identify a representative set of methods 
that have been used for automatic medical image segmentation over the past 35 years and to provide an 
opportunity to view the transitions that have occurred as this research area has developed. To facilitate 
this, the existing research is divided into three generations, each generation adding an additional level 
of algorithmic complexity. These generations indicate progress towards accurate, fully-automatic, 
medical image segmentation and their identification provides a framework for classifying the wide 
variety of methods that have been devised. The first generation is composed of the simplest forms of 
image analysis such as the application of intensity thresholds and region growing. The second 
generation is characterized by the application of uncertainty models and optimization methods, and the 
third generation incorporates knowledge into the segmentation process. The progress toward accurate, 
fully-automatic segmentation is discussed and sources of segmentation software from industry and 
academia are identified, along with databases for segmentation validation. 
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1. Introduction 
Segmentation of structural, medical images is an important step in the formation of realistic tissue 

models, such as those used in EEG source localization [Michel et al., 2004]. Structural, medical images, 
can be obtained from magnetic resonance (MR) imaging and X-ray computed tomography (CT), and 
are commonly held as two-dimensional (2D) arrays of picture elements (pixels) or three-dimensional 
(3D) arrays of volume elements (voxels, also called pixels).  Segmentation is the process of dividing 
these images into constituent subregions and can be performed by the identification of a surface for 
each tissue class, or by the classification of each pixel in the image volume. Manual segmentation is 
possible but is a time-consuming task and subject to operator variability. Reproducing a manual 
segmentation result is difficult and the level of confidence ascribed to it suffers accordingly. Automatic 
methods are, therefore, preferable [Clarke et al., 1995]; however, significant problems must be 
overcome to achieve segmentation by automatic means and it remains an active research area. 

Segmentation of medical images involves three main image-related problems. The images may 
contain noise that can alter the intensity of a pixel such that its classification becomes uncertain. Also, 
the images can exhibit intensity nonuniformity where the intensity level of a tissue class varies 
gradually over the extent of the image. Third, the images have finite pixel size and are subject to 
partial volume averaging where individual pixel volumes contain a mixture of tissue classes so that the 
intensity of a pixel in the image may not be consistent with any single tissue class. 

These image-related problems and the variability in tissue distribution among individuals in the 
human population means that some degree of uncertainty must be attached to all segmentation results. 
This includes segmentations performed by medical experts where variability occurs between experts 
(inter-observer variability) as well as for a given expert performing the same segmentation on multiple 
occasions (intra-observer variability). Despite this variability, image interpretation by medical experts 
is generally considered to be the only available truth for in vivo imaging [Clarke et al., 1995].  
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Medical image segmentation can, therefore, be viewed as an underdetermined problem where the 
known information is not sufficient to allow the identification of a unique solution. The challenge in 
developing automatic segmentation methods is in the selection of mathematical models, algorithms, 
and related parameter values to compensate for the missing detail and produce a solution that is judged 
to be acceptable by one or more medical experts.  

We classify the medical image segmentation literature into three generations, each representing a 
new level of algorithmic development. The earliest and lowest-level processing methods occupy the 
first generation. The second is composed of algorithms using image models, optimization methods, and 
uncertainty models, and the third is characterized by algorithms that are capable of incorporating a 
priori knowledge. The second generation has followed the first, chronologically, as computing power 
increased, whereas the third has begun in parallel with the second, often utilizing methods from the 
first and second generations. These generations indicate progress toward accurate, fully-automatic 
medical image segmentation and their identification provides a framework for classifying the wide 
variety of methods that have been devised. 

We focus primarily on the segmentation of 2D and 3D MR and CT images of the human head 
although many of the methods can also be applied to other image types and to images from other 
modalities. 

Automatic segmentation methods have been previously classified as either supervised or 
unsupervised [Bezdek et al., 1993]. Supervised segmentation requires operator interaction throughout 
the segmentation process whereas unsupervised methods generally require operator involvement only 
after the segmentation is complete. Unsupervised methods are preferred to ensure a reproducible result 
[Clarke et al., 1995]; however, operator interaction is still required for error correction in the event of 
an inadequate result [Olabarriaga and Smeulders, 2001].  

Also, objects within the images can be identified either by labeling all pixels in the object volume, 
or by identifying boundaries of the objects. Some segmentation methods may also be categorized in 
this manner, as volume identification methods or as boundary identification methods.  

Most publications concern segmentation of magnetic resonance (MR) images as opposed to CT 
images. More soft tissue detail is possible with MR imaging, and multispectral images, each with 
different relative tissue intensity levels, can be obtained in a single acquisition session. Multispectral 
images are often used in segmentation methods based on clustering or other pattern recognition 
techniques. 

The number of publications regarding medical image segmentation is quite large and as a result the 
following information is intended to be representative rather than exhaustive. Previous review articles 
[Bezdek et al., 1993; Clarke et al., 1995; McInerney and Terzopoulos, 1996; Bezdek et al., 1997; Jain 
et al., 1998; Duncan and Ayache, 2000; Haacke and Liang, 2000; Jain et al., 2000; Pham et al., 2000; 
Montagnat et al., 2001; Olabarriaga and Smeulders, 2001; Suri et al., 2002a; Suri et al., 2002b; 
Angenent et al., 2006] and references cited in the text are sources for related articles and additional 
details. 

The remainder of this review is organized as follows. The three generations of medical image 
segmentation are identified along with a representative set of examples for each. This is followed by a 
description of available segmentation software and of available, on-line image databases having 
ground truth segmentations suitable for algorithm evaluation. Finally, the segmentation methods are 
summarized and the progress of automatic medical image segmentation toward equivalence with 
human-expert segmentation is discussed. 

2. First Generation 
The first generation includes low-level techniques applied by an operator to create one-time, ad 

hoc segmentations and low-level techniques that utilize heuristics. The application details (e.g. 
threshold levels, homogeneity criterion) are determined by the operator. Simple methods like these are 
subject to all three of the main image segmentation problems. Further description can be found in 
textbooks on image processing (e.g. Pratt (1991), Pitas (1993), Weeks (1996), and Nikolaidis and Pitas 
(2001)). 

2.1. Thresholds 
A threshold can be applied to an image to distinguish regions with contrasting intensities and thus 

differentiate between tissue regions represented within the image. But, in images where intensity 
nonuniformity and noise are present it may be difficult or impossible to find one or more thresholds to 
segment the image without serious misclassification. The application of thresholds is extremely simple 
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and they continue to be used when the nature of the problem permits or when augmented by additional 
processing steps. 

2.2. Region Growing 
Starting at a seed location in the image, adjacent pixels are checked against a predefined 

homogeneity criterion. Pixels that meet the criterion are included in the region. Continuous application 
of this rule allows the region to grow, defining the volume of an object in the image by identification 
of similar, connected pixels. 

Region growing continues to be used where the nature of the problem permits and developments 
continue to be reported [Hojjatoleslami and Kittler, 1998; Hojjatoleslami and Kruggel, 2001; Wan and 
Higgens, 2003]. 

2.3. Region Split/Merge 
The region split/merge segmentation algorithm (e.g. see Nikolaidis and Pitas (2001)) operates on 

an image in a recursive fashion. Beginning with the entire image, a check is performed for 
homogeneity of pixel intensities. If it is determined that the pixels are not all of similar intensity then 
the region is split into equal-sized subsections. For 3D images, the volume is split into octants 
(quadrants for 2D images) and the algorithm is repeated on each of the subsections down to the 
individual pixel level. This usually results in over-segmentation where homogeneous regions in the 
original image are represented by a large number of smaller subregions of varying size. A merge step 
is then performed to aggregate adjacent subregions that have similar intensity levels. 

2.4. Edge Tracing 
Edge detection, a commonly used image processing technique, is typically not suitable for image 

segmentation on its own since the edge pixels identified are based on local intensity variations and are 
not necessarily well-connected to form closed boundaries [Haacke and Liang, 2000; Nikolaidis and 
Pitas, 2001]. However, edge detection can be used to supplement other segmentation techniques. 

Edge tracing is a boundary identification method where edge information is extracted and edge 
pixels with adjacent-neighbour connectivity are followed sequentially and collected into a list to 
represent an object boundary [Martelli, 1976; Lineberry, 1982; Pitas, 1993]. Evaluation of a cost 
function, possibly involving a variety of local and global image features, is performed in the search for 
neighbouring pixels. The application of heuristics, for algorithmic simplicity and to reduce 
computation time, can produce suboptimal results. Additionally, these algorithms tend to be very 
sensitive to noise that creates gaps or diversions in the object boundary. Methods for extracting 3D 
surfaces, by stacking 2D contours [Cappelletti and Rosenfeld, 1989] and by a 3D edge following 
procedure [Qu and Li, 1996], have also been developed. 

 
 

a b

 
a) Slice of a 3D volume; and, b) Segmentation result using a statistical pattern recognition method. 
Red corresponds to white matter, green to g

Figure 1. 
ray matter and blue to cerebrospinal fluid. (FAST 

segmentation from FSL, MR image from IBSR.) 
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3. Second Generation 
Research in automatic image segmentation diverges from the first-generation algorithms with the 

introduction of uncertainty models, reliance on optimization methods, and a general avoidance of 
heuristics. Segmentation methods can often still be identified as being primarily one of either volume 
identification or boundary identification and as either supervised or unsupervised. 

 

3.1. Statistical Pattern Recognition 
Statistical pattern recognition [Bezdek et al., 1993; Jain et al., 2000] has been applied extensively 

in medical image segmentation. A mixture model is used where each of the pixels in an image is 
modeled as belonging to one of a known set of classes. For head images, these will be tissue classes 
such as gray matter, white matter, and cerebrospinal fluid. A set of features, often involving pixel 
intensity, is evaluated for each pixel. This forms a set of patterns, one for each pixel, and the 
classification of these patterns assigns probability measures for the inclusion of each pixel in each class.  

As part of the process, class conditional probability distributions describing the variation of each 
pixel feature are often required for each class. These are generally not known and can be determined 
manually or automatically. For example, in supervised, statistical classification these distributions can 
be calculated from operator-selected regions acquired from each tissue class in the image. Alternatively, 
in unsupervised, statistical clustering, the distributions are automatically estimated from the image data, 
usually requiring an iterative procedure.  

The total number of classes present in the image and the a priori probability of occurrence of each 
class within the image are assumed to be known prior to the segmentation operation. For each pixel in 
the input image, the a posteriori probability that the pixel belongs to each tissue class is generally 
computed using Bayes’ rule [Bezdek et al., 1993] and a maximum a posteriori (MAP) rule is applied, 
where the pixel is assigned to the class in which its a posteriori probability is greatest, to complete the 
segmentation. 

Parametric approaches in statistical pattern recognition are those where the forms of the class 
conditional distributions are known, as, for example, when Gaussian distributions are assumed, and 
nonparametric approaches are those where the forms of the class conditional distributions are not 
known. Certain nonparametric approaches (e.g. k-Nearest Neighbour classifier) do not require class 
conditional distributions.  

Bayesian classifiers [Bezdek et al., 1993], discriminant analysis [Amato et al., 2003], maximum 
likelihood [Clarke et al., 1993] and k-Nearest Neighbour classifiers [Bezdek et al., 1993; Clarke et al., 
1993; Anbeek et al., 2005] are examples of methods that have been applied in supervised segmentation. 

Unsupervised, volume identification has been performed using parametric, statistical clustering 
implemented with expectation maximization (EM), a two-step, iterative procedure, and where a 
mixture of Gaussians is assumed for the pixel intensity data. This has allowed segmentation and 
nonuniformity gain field estimation to occur simultaneously [Wells et al., 1996; Held et al., 1997; Van 
Leemput et al., 1999], addressing the intensity nonuniformity problem.  

The application of a Markov random field (MRF) [Chellappa and Jain, 1993] to introduce 
contextual information by allowing neighbour pixels to influence classification and by modeling a 
priori information regarding the possible neighbours for each tissue class, has helped to reduce 
misclassification errors arising from noise and partial volume averaging [Held et al., 1997; Van 
Leemput et al., 1999]. An extension to further address the partial volume problem is found in Van 
Leemput et al. (2003). A generalization of the EM-MRF approach which uses a hidden Markov 
random field and EM is reported by Zhang et al. (2001). This method has been used to form the 
segmentation shown in Fig. 1.  

A computationally efficient method for automatically determining the MRF control parameter 
which determines the amount of spatial regularization is described by Woolrich and Behrens (2006). A 
segmentation method using a variant of the EM algorithm and which estimates a separate bias field for 
each tissue class is described by Marroquin et al. (2002). The relatively high computational cost of the 
EM approach, though, has spurred the search for speed enhancements [Ng and McLachlan, 2004; 
M’hiri et al., 2007] and alternatives [Marroquin et al., 2003].  

Statistical models to describe partial volume averaging have been developed, for example that of 
Tohka et al. (2004) and also González Ballester et al. (2002), where a statistical representation for the 
volume of the segmented object is also computed. 
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3.2. C-means Clustering 
C-means cluster analysis [Bezdek et al., 1993] permits image pixels to be grouped together based 

on a set of descriptive features. For example, intensity could be used as a feature, causing pixels to be 
grouped according to intensity levels. Other features which describe individual pixels (e.g. the texture 
of a local neighbourhood) can also be used to improve cluster separation. The numerical value of each 
feature is generally normalized to between 0 and 1. 

C-means cluster analysis operates in the p-dimensional feature space, where p is the number of 
features used. Each pixel produces one point in the feature space and a cluster is a region in the feature 
space having a high density of such points. For each cluster, a cluster centre, or prototype, can be 
defined. The membership of a pixel in a particular cluster depends on the distance between its feature-
space representation and the cluster prototypes.  

The number of clusters, c, is assumed to be known. Equations for iterative computation of the 
positions of the cluster prototypes and the memberships of each pixel in a cluster are determined by 
minimizing an objective function based on the sum of the distances (i.e. some measure of similarity) 
between the cluster prototypes and each of the p-dimensional data points. During algorithm operation, 
there is no guarantee that a global minimum will be attained. The algorithm execution is terminated 
when the first local minimum is reached. 

Hard c-means algorithms assign to each pixel absolute membership in one of the clusters whereas 
fuzzy c-means algorithms assign to each pixel a degree of membership within each of the clusters. 
Hardening of the fuzzy result is often done by assigning each pixel to the cluster in which it has 
highest membership. 

Adaptive methods based on fuzzy c-means clustering (FCM) have been used for unsupervised, 
volume identification [Pham and Prince, 1999; Pham, 2001]. The adaptive technique is implemented 
by modifying the FCM objective function and provides compensation for the intensity nonuniformity 
problem. Alternatives that reduce computational complexity and add spatial constraints, for reduction 
of errors due to noise, have also been reported [Ahmed et al., 2002; Liew and Yan, 2003; Zhang and 
Chen, 2004]. 

 
 

 
 

Figure 2. 3D visualization of a brain white matter surface produced by a level set-based deformable model. 
(Formed with the SNAP segmentation application, MR image from IBSR.) 

3.3. Deformable Models 
Deformable models, including active contours (2D) and active surfaces (3D), are artificial, closed 

contours/surfaces able to expand or contract over time, within an image, and conform to specific image 
features.  

One of the earliest active contours is the snake [Kass et al., 1988], used for supervised, boundary 
identification in 2D images. The snake is endowed with physical elasticity and rigidity features and 
intensity gradients in the image are used to derive external forces acting on the snake. During iterative 
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update of an energy-minimization evolution equation, the snake moves to the nearest edge and is able 
to conform to it, identifying the boundary of an object within the image.  

In the early stages of development, the snake needed to be initialized very near to the boundary of 
interest, had difficulty entering narrow concavities, and had problems discriminating between closely 
spaced objects. Attempts to overcome these problems resulted in many modifications [McInerney and 
Terzopoulos, 1996]. Extensions to allow 3D volume segmentation were also developed as was the 
ability to change topology to handle objects with bifurcations or internal holes [McInerney and 
Terzopoulos, 1996; McInerney and Terzopoulos, 1999]. New snake models continue to be developed 
[Xu and Prince, 1998, Meegama and Rajapakse, 2003; Wang and Li, 2003; Wei et al., 2004; Li and 
Acton, 2007; Sum and Cheung, 2007]. 

Level-set methods were introduced to deformable models by casting the curve evolution problem 
in terms of front propagation rather than energy minimization [Malladi et al., 1995; Caselles et al., 
1997a,b; Sethian, 1999]. With level sets, the contour or surface moves in the direction of its normal 
vectors. The speed of the contour is an important component for maintaining consistent contour 
propagation and for halting at regions of high gradient. Local contour curvature, intensity gradient, 
shape, and contour position can be used in the speed term although the selection need not be limited to 
these [Sethian, 1999]. The development of the level set approach simplified topology adaptation so that 
a contour or surface could split and merge as it evolved, allowing it to identify boundaries of complex 
objects. A topology-preserving level set method has also been developed where the topology of the 
final surface matches that of the initial surface [Han et al., 2003]. Efforts have also been made to 
reduce the computational burden [Xu et al., 2004]. The segmentation shown in Fig. 2 was performed 
using a level-set algorithm. 

Mumford-Shah segmentation techniques [Mumford and Shah, 1989], rather than intensity gradient, 
have been used to form the stopping condition [Chan and Vese, 2001] producing a region-based, active 
contour and this has been further developed to produce a deformable model that finds multiple object 
boundaries with simultaneous image smoothing [Tsai et al., 2001]. Mumford-Shah segmentation 
assumes a piecewise smooth image representation and defines a problem in variational calculus where 
the solution produces simultaneous smoothing and boundary identification in an image [Mumford and 
Shah, 1989].  

The application of radial basis functions collocation, as an alternative to the usual finite-difference 
solution of the underlying level-set evolution partial differential equation (PDE), has been reported. 
Benefits include propagation constraints and the smoothness and continuity of the solution [Gelas et al., 
2007]. 

Most deformable models propagate toward a local optimum and thus exhibit sensitivity to initial 
conditions. Work to develop globally optimal active contours has been performed [Bresson et al., 
2007]. A method for finding globally optimal surfaces by simulating an ideal fluid flow under image-
derived, velocity constraints is described by Appleton and Talbot (2006). 

3.4. Graph Search 
For image analysis, a graph is constructed from an image where image pixels become nodes in the 

graph and the nodes are interconnected to neighbouring nodes, mapping the corresponding pixel 
associations in the image. The interconnections can be directed, where there is an implied direction for 
transitioning from one node to another, or undirected. Costs for each interconnection are determined 
based on a cost function which can include both boundary and region components. Minimum-cost 
solutions to the problems of boundary identification and object volume identification are obtained 
using algorithms from combinatorial optimization. 

Graph searching has been applied to form optimal edge-linking strategies in a supervised, 
boundary-identification method known as “Live Wire” [Barrett and Mortensen, 1997; Falcão et al., 
1998; Falcão et al., 2000]. An initial seed pixel and a destination pixel are specified and the cost for 
transfer between pixels in the intervening trellis is computed based on a given cost function. The 
minimum-cost path between the initial pixel and the destination pixel can then be determined and the 
pixel sequence collected into a list. Repetition of this procedure where each destination pixel is used as 
the initial pixel in a subsequent operation allows an operator to guide the formation of an object 
boundary. Dynamic programming is used for determining the minimum-cost path [Falcão et al., 1998]. 
An extension to permit user-guided, 3D boundary formation has also been developed [Falcão and 
Udupa, 2000].  

A graph cut is a set of interconnections between nodes in a graph which, when removed, partition 
the graph into two distinct sets. The sum of the costs of the graph cut is the cost of the cut. Minimal-
cost cuts are desired and produce a globally-optimal segmentation of the graph which, given 
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appropriate interconnection costs, identifies an object from its background in the image.  Graph cuts 
are related to active contours and level sets, among the deformable models, which are their continuous-
space analogs [Boykov and Funka-Lea, 2006]. Whereas most deformable models propagate toward a 
local optimum, graph cuts produce globally-optimal boundaries with an attendant advantage in 
robustness. Graph cuts can be used for surface identification in N-dimensional images [Boykov and 
Funka-Lea, 2006].  

A generalization unifying all optimal, graph-search algorithms is provided by Falcão et al. (2004). 

Fuzzy Connectedness 
Fuzzy representations of connectedness between the pixels comprising an object in an image, 

drawn from early work on fuzzy image analysis by Rosenfeld [Rosenfeld, 1983; Rosenfeld, 1984], 
have been developed for use in medical image segmentation [Udupa and Samarasekera, 1996; Udupa 
and Saha, 2003]. Given a seed pixel within an object in an image, the object containing the seed is 
determined by computing a connectedness measure for all pixels in the image relative to the seed pixel. 
Final object selection is performed using a threshold on the resulting fuzzy connectedness map. When 
multiple objects are considered, a seed pixel is required for each object and the fuzzy connectedness of 
all image pixels to each seed are computed. Pixels are then assigned to the object of highest 
connectedness. Intensive computation may be required because connectedness is defined based on an 
optimal path to the seed pixel. Dynamic programming is used to determine the optimal paths.  

Fuzzy connectedness has been used in intra-operative tumour segmentation where a rectangular, 
operator-selected region of interest surrounding the tumour has also been applied to reduce 
computation time [Hata et al., 2005].  Fuzzy connectedness is closely related to other graph-search 
algorithms [Falcão et al., 2004]. 

Watershed Algorithm 
The watershed algorithm is a boundary identification method in which gray-level images are 

modeled as topographic reliefs where the intensity of a pixel is analogous to the elevation at that point 
[Vincent and Soille, 1991]. In a real landscape, catchment basins, e.g. lakes and oceans, are regions 
each associated with a local minimum. In a similar way, a gray-level image has local minima. The 
watershed concept can be understood by imagining that a hole is cut at each local minimum in the 
relief and then the relief is immersed, minima first, into water. As the relief is immersed, water rises 
from the holes in the local minima. At each point where water would flow from one catchment basin to 
another, a “dam” is constructed by marking those points. When the entire relief has been immersed in 
water, the “dams” ring each catchment basin in the image, identifying the boundaries of the local 
minima. The tendency is to oversegment the image since every local minimum will be identified 
including those resulting from noise. Thresholds are generally used to suppress shallow minima. Often 
edge detection is used to produce a gradient magnitude image for input to the watershed algorithm 
since the catchment basins will then be the objects of interest, that is, regions not associated with edges 
in the image. The watershed algorithm has been classified as a graph-search algorithm [Falcão et al., 
2004]. 

3.5. Neural Networks 
Artificial neural networks have been used in medical image segmentation [Bezdek et al., 1993], 

typically in unsupervised, volume identification but also in boundary identification [Barrios et al., 
1994]. The network must first be trained with suitable image data, after which it can be used to 
segment other images. For volume identification, the neural network acts as a classifier where a set of 
features is determined for each image pixel and presented as input to the neural network. The network 
uses this input to select the pixel classification from a predefined set of possible classes, based on its 
training data. The classification operation is like that performed in statistical pattern recognition and it 
has been noted that many neural network models have an implicit equivalence to a corresponding 
statistical pattern recognition method [Jain et al., 2000]. 

Investigations of biological neurons in animal models have shown that neurons of the visual cortex 
produce stimulus-dependent synchronization [Eckhorn, 1999]. This has led to the suggestion that the 
synchronous activity is part of the scene segmentation process. Neural networks have been formed 
using artificial neurons derived, with significant simplification, from the physiological models and 
used for unsupervised, volume identification. Examples are pulse coupled neural networks (PCNNs) 
[Johnson and Padgett, 1999] and the locally excitatory globally inhibitory oscillator network 
(LEGION) [Shareef et al., 1999]. The artificial neurons are usually arranged in a one-to-one 
correspondence to the image pixels and have linkages to a neighbourhood of surrounding neurons. 
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Each neuron produces a temporal pulse pattern that depends on the pixel intensity at its input and also 
on the local coupling. The linkages between neurons permit firing synchrony and the time signal from 
a group of neurons driven by the same object in an image is specific to that object. The local coupling 
helps to overcome intensity nonuniformity and noise. Implementations of PCNNs as hardware arrays 
have been considered, with the intent of producing real-time, image-processing systems [Johnson and 
Padgett, 1999].  

Unsupervised, volume identification has also been performed by a method utilizing vector 
quantization and a deformable feature map where training required one manually segmented dataset 
[Wismuller et al., 2004]. 

Neural networks have also been used as an autoassociative memory to identify lesions [Raff and 
Newman, 1992]. The network is trained using images from normal subjects. When an image 
containing an abnormality is presented to the network, the abnormality is recognized as different from 
the training images. 

Neuro-fuzzy systems, combinations of neural networks and fuzzy systems, have also been used in 
image segmentation. Boskovitz and Guterman (2002) provide a brief survey and propose a system 
which performs image segmentation by neural network-controlled, adaptive thresholds applied to a 
“fuzzified” version of the input image obtained by fuzzy clustering. 

3.6. Multiresolution Methods 
Multiresolution, multiscale, and pyramid analysis are terms referring to the use of scale reduction 

to group pixels into image objects. These methods are typically used for unsupervised, volume 
identification but have also been used in unsupervised, boundary identification. The segmentation is 
performed by first forming a set, or stack, of images by recursively reducing the scale of the original 
image by blurring followed by down sampling. The result is a sequence of images that if stacked one 
above the other from highest resolution to lowest resolution would form a pyramid of images, each 
determined from the one below. The lowest resolution image (apex of the pyramid) may be as small as 
2x2x2 pixels, for 3D images, and the highest resolution image (base of the pyramid) is the original. 
The pixels are then linked from one layer to the next by comparing similarity attributes, such as 
intensity features. Pixels that have similar features and location are labeled as belonging to the same 
object, completing the segmentation. 

Simple edge tracing methods have been augmented by further processing using multiresolution 
pyramids to connect edge discontinuities [Soltanian-Zadeh and Windham, 1997] and boundaries have 
been refined using a multiscale approach [Raman et al., 1991]. Vincken et al. (1997) and Neissen et al. 
(1999) give examples of volume identification using multiresolution pyramids. 

3.7. Geodesic Minimal Path 
Unsupervised, boundary identification by edge following has been performed by computing 

geodesic contours, as used in deformable models based on the methods of level sets [Cohen and 
Kimmel, 1997]. A geodesic contour is defined as the shortest line on a surface between two points on 
the surface. Minimal paths are determined by minimizing a weighted distance measure that is lowest 
along high-intensity gradients in the image Computation involves the numerical solution of partial 
differential equations. The minimal-path approach described by Cohen and Kimmel (1997) has also 
been extended to 3D surface extraction. An initialization step to define two constraining contours is 
required and the final surface contains all minimal paths between the two constraining contours [Ardon 
et al., 2007]. 

User-guided, edge following in 2D images has also been implemented using geodesic contours 
where minimal paths are determined between a series of consecutively-placed, user-defined, boundary 
points [Chung and Sapiro, 2000].  

3.8. Target Tracking 
Automatic, target-tracking algorithms employing the discrete Kalman filter for automatic, 

recursive boundary estimation from edge data have been applied to edge following [Abolmaesumi and 
Sirouspour, 2004; Withey, 2006]. An example is shown in Fig. 3. Target tracking algorithms are 
notable for their data fusion capabilities, integration of information from a variety of sources.  

3.9. Method Combinations 
Examples of combining second-generation, volume identification with second–generation, 

boundary identification are: multiresolution concepts with watershed algorithm [Letteboer et al., 2004], 
neural network classification and active contours [Middleton and Damper, 2004], fuzzy clustering and 

 132



an active contour method [Amini et al., 2004], statistical methods and active contours [Kapur et al., 
1996; Ashton et al., 1995; Chakraborty et al., 1996]. 

A combination of two boundary identification methods, snakes and Live Wire, the graph-search 
method of Falcão et al. (1998), was proposed for supervised, boundary identification [Liang et al., 
2006]. The Live Wire methods are used for snake initialization and to interactively introduce hard 
constraints on the snake evolution. 

 

       

ba 

Figure 3. Result from an edge-tracing segmentation method based on statistical target tracking.                        
a) Original image; b) Image with automatically-delineated tissue boundary. (MR image from MNI 
brainweb.) 

4. Third Generation 
It is important to recognize that medical image segmentation is a challenge even for human experts 

who have knowledge, training, and awareness at a level that has not been replicated in computer 
programs. Furthermore, trained experts may disagree on details regarding a particular segmentation 
[Clarke et al., 1995]. This suggests very strongly that the problem of accurate, fully-automatic image 
segmentation will not be solved by a second-generation algorithm and that while optimization methods 
and uncertainty models are important and should be used, they are not sufficient in themselves to 
produce accurate, automatic segmentations, in the general case. Recent work has led to the 
development of methods that incorporate higher-level knowledge such as a priori information, expert-
defined rules, and models (e.g. shape) of the desired object. These constitute the third generation of 
medical image segmentation methods. 

4.1. Atlas-based Segmentation 
An atlas is a segmented image of a single individual, or, a composite head image formed from 

segmented, co-registered head images of several subjects. In the latter case, a probabilistic atlas is 
formed and provides information on population variability. Several types are possible, including:  
1) an average intensity atlas where each pixel value is determined from its average across all subjects; 
2) a tissue type atlas where each pixel contains the probability of belonging to each of a set of tissue 
classes; and, 3) a structure atlas where the atlas contains the distributions of several structures of 
interest, as determined from the subject segmentations [Shattuck et al., 2008]. The use of probabilistic 
atlases has permitted segmentation of the entire brain, including subcortical structures [Fischl et al., 
2002]. A detailed example of probabilistic atlas formation is given by Shattuck et al. (2008) and a 
variety of atlases can be obtained online from http://www.loni.ucla.edu/Atlases/. 

Single-subject atlases have been used for segmentation-by-registration where a 3D mapping is 
determined between the atlas and an unsegmented image and the labeling found in the atlas is used to 
identify the labeling applied to complete the segmentation [Collins et al., 1995; Dawant et al., 1999].  

Probabilistic atlases have been used to improve the selection of a priori probabilities for statistical 
pattern recognition [Ashburner and Friston, 1997; Van Leemput et al., 1999; Marroquin et al., 2002]. 
A mapping between the atlas and the unsegmented image is determined by a registration step 
(warping) and the atlas provides prior probabilities for the pattern recognition algorithm. In a further 
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development, the required registration step has been incorporated into a statistical clustering 
framework that also performs simultaneous intensity nonuniformity correction. The expectation-
maximization method is used for parameter estimation and the model assumes that the pixel intensities 
are drawn from a mixture of Gaussians [Ashburner and Friston, 2005]. In most cases, the use of an 
atlas requires distinct steps for registration and for segmentation. A method for performing atlas 
registration and segmentation jointly has also been reported [Pohl et al., 2006]. 

Nonparametric classifiers, where no assumptions are made regarding the pixel intensity 
distributions, have also been used with atlases [Cocosco et al., 2003; Kim et al., 2005; Jiménez-Alaniz 
et al., 2006; Vrooman et al., 2007].  

Results from a number of single-subject atlases have been combined by first registering each with 
the unsegmented image to produce a set of possible segmentations. The modal value of the distribution 
of the assignments for each pixel is used to form the final segmentation. A model for predicting the 
improvement in segmentation given the number of atlases is also provided [Heckemann et al., 2006]. 

Atlas-based statistical pattern recognition has been enhanced to include a model of the MR image 
formation process in order to reduce sensitivity to the image acquisition parameters. The integration of 
image acquisition into the process also facilitates the derivation of MR imaging sequences that are 
optimal for the purposes of segmentation [Fischl et al., 2004].  

Although fully-automatic registration is desirable, semiautomatic registration is also used where 
manually-defined landmark points constrain the deformation and improve segmentation accuracy 
especially in cortical regions where substantial inter-subject variability exists [Dade et al., 2004].   

In a manner analogous to probabilistic atlases, fuzzy templates have been formed and used for 
segmentation of subcortical brain structures [Zhou and Rajapakse, 2005].  

The use of an atlas does not necessarily produce superior performance when compared with other 
segmentation approaches. For example, in at least one comparison that included atlas-based methods, 
the second-generation, statistical-clustering method of Zhang et al. (2001) was judged to have best 
overall performance, although most methods in the evaluation performed well [Bouix et al., 2007]. It 
should also be noted that this comparison involved identification of three tissue classes, gray matter, 
white matter, and cerebrospinal fluid and did not attempt to identify subcortical structures, where atlas-
based methods would be expected to excel. 

Atlases have been incorporated into many other algorithms, for example, to enhance edge tracing 
for supervised, boundary identification in 2D image slices [Färber et al, 2007], to improve fuzzy 
connectedness segmentation [Zhou and Bai, 2007], in neural network-based classification algorithms 
[Magnotta et al., 1999; Powell et al., 2006], and also in fuzzy c-means classification [Bazin and Pham, 
2007b]. 

4.2. Rule-based Segmentation 
Automatic, rule-based guidance of unsupervised image segmentation has been explored in an 

attempt to improve the results from unsupervised segmentation methods and yet maintain an automated 
approach to the segmentation task. Image primitives are usually derived from first-generation and 
second-generation algorithms and then interpreted using anatomical and image knowledge applied as a 
set of rules. The wide variety of methods that have been developed can usually be categorized by the 
types of image information that are extracted, by the types of knowledge that are introduced, and by 
the method used for implementation of that knowledge.  

First-generation methods were often used in early, rule-based systems for image data extraction 
[Raya, 1990; Ehricke, 1991; Natarajan et al., 1991; Suzuki and Toriwaki, 1991; Li et al., 1995] and 
although these are relatively simple, low-level processing methods, the methods used for interpretation 
are not necessarily so. An oversegmented image and a rule-based merging algorithm is used by 
Natarajan et al. (1991) to segment the lateral ventricles and left caudate nucleus in CT images of the 
brain. The process incorporates high-level domain knowledge, including an anatomical model. 

A brain model describing the structures and features in each 2D slice of a 3D image for object 
recognition in CT images is described by Li et al. (1995). The method includes a blackboard, that is, a 
temporary database containing prior and current information that is updated as the segmentation 
proceeds, and also utilizes data fusion, the combination of multiple data sources to improve decision 
confidence.  

More recently, Xia et al. (2007) describe a system that uses region growing and anatomical 
knowledge to identify the caudate nucleus from T1-weighted MR images. 

Second-generation methods have also been used to extract image primitives for rule-based systems 
[Sonka et al., 1996; Chen et al., 1998; Clark et al., 1998; Solaiman et al., 1999; Barra and Boire, 2001; 
Algorri et al., 2004]. An automatic system for segmentation and labeling of glioblastoma-multiforme 
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tumours in MR images where gadolinium had been used as a contrast agent is described by Clark et al. 
(1998) with further evaluation by Mazzara et al. (2004). Adaptive thresholds, fuzzy c-means clustering, 
and a rule-base built from a set of training images are key components of the multistage system. All 
steps in the system are performed automatically.  

Knowledge of anatomical shapes and relative object locations along with a hypothesize-and-verify 
approach driven by a genetic algorithm has been used to identify basal nuclei, ventricles, and other 
substructures in 2D, MR, brain images [Sonka et al., 1996].  

 Possibilistic clustering, a generalization of fuzzy c-means clustering, and fuzzy logic have been 
used to segment the thalamus, putamen, and the head of the caudate nucleus from brain images of 
healthy volunteers [Barra and Boire, 2001]. The features used in the clustering process consist of a set 
of 3D wavelet coefficients extracted from the MR image at each pixel. The clustering is followed by a 
fuzzy logic step to refine the segmentation by incorporating linguistic descriptions, obtained from a 
human expert, describing object position and features.  

Pitiot et al. (2004)  describe a system where a set of mesh surfaces are simultaneously deformed, 
guided by a series of rules based on the dynamics of the evolving surfaces and on medical knowledge 
of the shape and texture of the objects of interest. The rules are implemented as constraints on the 
surface deformation. 

4.3. Coupled Surfaces 
The simultaneous identification of multiple surfaces with a known spatial relationship has been 

used to improve segmentation using deformable models [Zeng et al., 1999] and graph-cut methods [Li 
et al., 2006].  

4.4. Shape Models 
Statistical, model-based segmentation with nondeformable, shape models was explored as a guide 

to segmentation by region growing [Arata et al., 1995] but the use of deformable shape models 
increased greatly in popularity after the development of the active shape model (ASM) [Cootes et al., 
1995]. This was inspired by active contours but with the added intention of limiting the extent of the 
model deformation to within reasonable limits for a given class of object. Since objects of a given class 
display shape variability, a point distribution model (PDM) is formed using points attached to specific 
landmarks on a particular object. In the PDM, each landmark point has a statistical distribution 
determined from a set of N  co-registered, example objects, ideally describing the full range of shape 
variability. Assuming 2D coordinates and  landmark points in the PDM, the ASM can be viewed as a 
point cloud of  points in a -dimensional space. A mean contour is determined and the deviation 
from the mean is computed for each of the  contours and a 

n
N n2

N nn 22 ×  covariance matrix is formed. 
Principal components analysis is then used to identify the modes of greatest variability in this high-
dimensional space. The ASM, thus trained, is then used to identify objects of the same class within 
other images. The process is initialized by identifying an orientation and scale for the mean contour 
and then permitting it to deform within the image in a manner analogous to that of active contours. In 
this case, the movement of each landmark point is to the nearest intensity gradient in a direction normal 
to the contour. Deformation is restricted to within the bounds of the statistical model, usually held to 
within three standard deviations from the mean.  

The ASM has inspired enhancements, including boundary models [Duta and Sonka, 1998; van 
Ginneken et al., 2002], and a hierarchical formulation utilizing the wavelet transform [Davatzikos et al., 
2003; Nain et al., 2007]. A shape-variant Hough transform has been used to automatically approximate 
the position of the object of interest in the image [Brejl and Sonka, 2000].  

A level-set shape representation that does not require explicitly-defined PDMs, and that also 
permits surface topology modification as the model deforms, has been introduced [Leventon et al., 
2000; Tsai et al., 2003]. The removal of the need for PDMs simplifies the extension of the shape model 
to 3D images. This approach has been further extended to permit simultaneous, coupled deformation of 
multiple shape models [Tsai et al., 2004].  

Alternate, shape-based approaches to image segmentation have also been developed. Syntactic 
pattern recognition was applied to limit the deformations of snakes [Olstad and Torp, 1996]. Curve and 
surface representations using a set of basis functions and related parameters, where shape information 
is encoded in the parameters, have been used as deformable models. The shape can be changed to 
match an image object by allowing the parameters to evolve within statistical distributions derived 
from a training set. Examples include sinusoidal basis functions [Staib and Duncan, 1992; Staib and 
Duncan, 1996], spherical harmonics [Kelemen et al., 1999], and B-splines [Pitiot et al., 2002]. Medial 
(skeleton) representation of shape [Pizer et al., 2003; Yushkevich et al., 2006b] has also been used in 
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deformable model-based segmentation. Additionally, an approach based on information theory was 
used to combine pixel classification, edge detection, and shape constraints for multiple simultaneous 
boundary extraction in 2D CT images [Hibbard, 2004]. 

4.5. Appearance Models 
An active appearance model (AAM) is a further development of the ASM where shape plus 

intensity of an object, referred to as an image patch, and corresponding variability are integrated into a 
statistical model [Cootes et al., 2001]. Level-set implementations of shape-plus-intensity models in 3D 
are described by Yang and Duncan (2004) and by Hu and Collins (2007). A brief survey describing a 
number of AAM variants along with a method for increasing AAM robustness is given by Beichel et al. 
(2005). 

4.6. Deformable Organisms 
Artificial organisms have also been applied to segmentation of MR images [McInerney et al., 

2002]. These represent further developments of deformable models. They include a body capable of 
taking the shape of the desired image object and having distributed sensors and rudimentary brains 
with centres for perception, cognition, and motor control. They are capable of voluntary movement and 
alteration of body shape based on sensory input from the image and anatomical knowledge. As such, 
the artificial organism released into the image environment will seek out and conform to the object of 
interest. 

5. Segmentation Software 
Medical image segmentation software is available commercially from a number of sources, 

typically as a subset of a larger software package intended for general, interactive, image processing. 
Also, over the past few years, the amount of software provided without charge has grown rapidly. 
Supported by government, academic institutions, and individuals, this software often includes the 
high–level language computer program, referred to as open source.  

A sampling of the available software is given in the following sections. A larger list is maintained 
in the Internet Analysis Tools Registry (http://www.cma.mgh.harvard.edu/iatr/) by the Center for 
Morphometric Analysis (CMA) at the Massachusetts General Hospital (MGH), an affiliate of Harvard 
University. Additionally, the Neuro Image Analysis group at the University of North Carolina at 
Chapel Hill maintains a webpage with links to a number of related sites where free software can be 
downloaded (http://www.ia.unc.edu/dev/download/). Also, free image display, analysis, and file-
conversion software is available through http://www.idoimaging.com, the personal project of one 
radiology programmer. 

5.1. BIC Software Toolbox 
The McConnell Brain Imaging Centre (BIC) of the Montreal Neurological Institute (MNI) at 

McGill University freely offers a variety of software for medical image analysis 
(http://www.bic.mni.mcgill.ca/software/). Included are tools for automatic registration (ANIMAL), 
segmentation (INSECT), intensity nonuniformity correction (N3), sulcus extraction and labeling 
(SEAL), and cortex extraction. Tools for PET and fMRI analysis are also available as are a number of 
display and image-editing functions. A description of some of the software modules and a technique 
for application to the analysis of large image databases is described by Evans (2005). Demonstration 
videos of atlas-based software are available at http://www.bic.mni.mcgill.ca/demos/animal/. 

Source code is available. All image data are stored in Medical Image NetCDF (MINC) file format. 
An interface to Matlab® (http://www.mathworks.com/products/matlab/) (EMMA) is also available. 

5.2. BrainSuite 
The BrainSuite software (http://brainsuite.usc.edu/) is produced and freely distributed as a joint 

project between the Laboratory of Neuro Imaging (LONI) at the University of California at Los 
Angeles (UCLA) (http://www.loni.ucla.edu/) and the Biomedical Imaging Research Lab of the Signal 
and Image Processing Institute within the Electrical Engineering department at the University of 
Southern California (USC) (http://neuroimage.usc.edu/). It allows skull and scalp surface extraction, 
cortical surface extraction, surface topology correction, and surface/image visualization. It is 
compatible with the BrainStorm software, also from USC, a free Matlab® toolkit for EEG and MEG 
data visualization and processing. 
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5.3. SPM 
Statistical Parametric Mapping (SPM) developed at the Wellcome Department of Cognitive 

Neurology, University College of London, England, is freely-available software intended for analysis 
of brain imaging data sequences (http://www.fil.ion.ucl.ac.uk/spm/). It runs under Matlab®. Supported 
modalities include fMRI, PET, SPECT, EEG, and Magnetoencephalogram (MEG).  

Segmentation in SPM has developed as the product has developed. The current revision, SPM5, 
uses the atlas-based method described by Ashburner and Friston (2005). The previous revision, SPM2, 
used the maximum-likelihood, statistical-clustering method described by Ashburner and Friston (1997). 
This segmentation algorithm has been included in a quantitative evaluation [Zaidi et al., 2006] where it 
was compared with the method of Van Leemput et al. (1999).  Improvement in the segmentation 
accuracy of SPM2 has also been reported when an initial skull stripping step is performed [Fein et al., 
2006]. 

5.4. FSL 
The FMRIB Software Library (FSL) was developed by the Oxford Center for Functional Magnetic 

Resonance Imaging of the Brain (FMRIB) at the University of Oxford, England. The software is a 
library of statistical and image analysis tools for fMRI, structural MRI, and Diffusion Tensor Imaging 
(DTI) data [Smith et al., 2004]. The FSL software is freely available for noncommercial use 
(http://www.fmrib.ox.ac.uk/fsl/). 

Segmentation is performed by application of an automated, brain extraction tool (BET) based on a 
deformable model. This is followed by automatic segmentation of gray matter, white matter, and 
cerebrospinal fluid using the hidden Markov random field and expectation–maximization, statistical-
clustering approach of Zhang et al. (2001). The segmentation in Fig. 1(b) has been formed using this 
method. A method for segmentation of subcortical brain structures is also available along with a set of 
brain atlases. Additionally, inner skull, outer skull, and outer scalp surface representations can be 
obtained although this feature performs best when both T1- and T2-weighted MR images are available.  

A PET partial-volume correction study employed the FSL segmentation method in comparison 
with the segmentation algorithm from SPM2 [Kloet et al., 2006]. Also, the BET software has been 
comparatively evaluated [Fennema-Notestine et al., 2006; Hartley et al., 2006]. 

5.5. EIKONA3D 
Eikona3D (http://www.alphatecltd.com/eikona3d/imageprocessing3d.html) is a commercial 

software package developed by Alpha Tec, Ltd., located in Thessaloniki, Greece. The software 
contains a core set of image processing and visualization tools. Interactive image segmentation can be 
performed by threshold and by region-based methods such as region growing and region split-merge. 
A number of edge detection features are also available. 

5.6. FreeSurfer 
FreeSurfer (http://surfer.nmr.mgh.harvard.edu/) [Dale et al., 1999; Fischl et al., 1999; Fischl et al., 

2001; Ségonne et al., 2004] is a software package developed by CorTechs Labs 
(http://www.cortechs.net/) and the Athinoula A. Martinos Center for Biomedical Imaging 
(http://www.nmr.mgh.harvard.edu/martinos/) at the Massachusetts General Hospital, an affiliate of 
Harvard University. The software employs automatic and manual segmentation methods for 
semiautomatic reconstruction of the cerebral cortex from structural, MR images and also allows 
overlay of fMRI and EEG data onto the reconstructed surface.  

A quantitative evaluation of the cortical reconstruction obtained from FreeSurfer is described by 
Lee et al. (2006), where comparison is made with the method of Kim et al. (2005). Additionally, the 
technique used in FreeSurfer for removing the scalp and skull has also been compared with the BET 
software from FSL [Fennema-Notestine et al., 2006]. A study evaluating the surface-flattening 
algorithm, part of the FreeSurfer software, has also been performed [Ju et al., 2005]. 

5.7. Insight Segmentation and Registration Toolkit 
The insight segmentation and registration toolkit (ITK) (http://www.itk.org/) and its companion 

the visualization toolkit (VTK) (http://public.kitware.com/VTK/) have been developed by the United 
States National Library of Medicine in support of the Visible Human Project. Development began in 
1999 and is ongoing. The toolkits are open-source, freely available, software modules written in the 
C++ computer language and supported by Kitware (http://www.kitware.com/), a professional software 
development corporation, and also by qualified volunteers. The software modules are intended for use 
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in image segmentation and registration computer-software applications but are not full-fledged 
applications, themselves. 

The segmentation modules include a variety of low-level methods such as thresholds and region 
growing as well as higher-level segmentation using the watershed algorithm, level-set deformable 
models, fuzzy connectedness, and statistical classifiers. 

A stand-alone, segmentation software application called SNAP [Yushkevich et al., 2006a], for 
Snake Automated Partitioning, was developed using level-set algorithms in ITK and is freely 
distributed as open-source software (http://www.itksnap.org/). The 3D surface shown in Fig. 2 was 
formed using the SNAP application. 

5.8. Analyze 
Analyze (http://www.analyzedirect.com/Analyze) is a commercial, image analysis, software 

package developed by the Biomedical Imaging Resource at the Mayo Foundation based in Rochester, 
Minnesota, USA. Of all available software it appears to have the longest history, beginning in the early 
1970’s, and has impressive capabilities for volume and surface visualization, including the ability to 
generate cine fly-through image sequences for virtual endoscopy. 

The software supports segmentation by thresholds, region growing, pixel classification, 
morphological operations, and interactive, manual operations. Segmentation using ITK modules is also 
included and a 3D brain atlas is also available. 

5.9. 3D Slicer 
The 3D Slicer software (http://www.slicer.org/) is developed by the MIT Artificial Intelligence 

Lab and the Surgical Planning Lab at Brigham and Women’s Hospital, an affiliate of Harvard Medical 
School. It is open-source, freely-available software based on ITK and VTK. It contains functions for 
formation, visualization, and quantification of 3D surfaces and volumes. Segmentation is performed 
via a variety of methods including low-level, manual and semiautomatic tools, as well as level-sets, 
and atlas-based, statistical clustering using the expectation-maximization algorithm. 

5.10. CAVASS 
The Computer Assisted Visualization and Analysis Software System [Grevera et al., 2007] is 

freely available from the Medical Image Processing Group (http://mipgsun.mipg.upenn.edu/~cavass/) 
within the Department of Radiology at the University of Pennsylvania. It is a major revision of the 
3DVIEWNIX software, previously available from the same group. It contains tools for image analysis, 
visualization, and object manipulation as well as interfaces to ITK, Matlab®, and CAD/CAM software 
packages. Its segmentation features include fuzzy connectedness [Udupa and Samarasekera, 1996] and 
semiautomatic edge tracing using Live Wire [Falcão et al., 1998]. 

5.11. MIPAV 
The Medical Image Processing, Analysis, and Visualization software package is freely available 

from the Center for Information Technology (http://mipav.cit.nih.gov/) within the United States 
National Institutes of Health. It has been supported by software developed at the Laboratory for 
Medical Image Computing (http://medic.rad.jhmi.edu/) at Johns Hopkins University (e.g. [Bazin et al., 
2007a]). The software enables quantitative analysis and visualization of medical images from a number 
of modalities, including MR and CT. Its segmentation functions incorporate atlas-based tissue labeling, 
deformable models, and fuzzy c-means clustering, including the robust, adaptive approach of Pham 
(2001). A number of manual and semi-automatic tools and an interface with ITK are also available. 

6. Databases for Segmentation Validation 
The use of automatic segmentation methods requires evaluation against a truth model to obtain a 

quantitative measurement of the efficacy of a given algorithm. Evaluation of results from segmentation 
of in vivo images is usually accomplished by comparison with segmentations made by experts. 
Additional evaluation of an algorithm is possible by the analysis of synthetic images or images of 
physical phantoms [Pham et al., 2000]. 

6.1. MNI 
The McConnell Brain Imaging Centre of the Montreal Neurological Institute has developed a 

synthetic image database, called brainweb (http://www.bic.mni.mcgill.ca/brainweb/). The synthetic 
images were produced by passing a manually segmented head image through an MR simulator, 
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permitting the formation of synthetic images with specified levels of noise and intensity nonuniformity. 
The initial configuration contained two anatomical models, one of a normal brain and the other of a 
brain with multiple sclerosis lesions. The ground truth (manual) segmentation identified nine normal 
tissue classes and specified partial-volume content levels for each image pixel. A further twenty 
normal models have been recently added based on 11 normal tissue classes [Aubert-Broche et al., 
2006a,b]. The image shown in Fig. 3(a) is from the MNI brainweb database. 

6.2. IBSR 
The Internet Brain Segmentation Repository (IBSR) (http://www.cma.mgh.harvard.edu/ibsr/) is an 

on-line database of MR images with manually-guided segmentations and is maintained by the Center 
for Morphometric Analysis (CMA) at the Massachusetts General Hospital (MGH). Head images of 
more than 40 subjects are available. In some images the segmentation identifies three tissue classes, 
gray matter, white matter, and cerebrospinal fluid (CSF). In others, up to 43 individual structures have 
been manually identified. IBSR images have been used in the formation of Fig. 1 and Fig. 2. 

6.3. SBIA 
The Section for Biomedical Image Analysis (SBIA) in the department of Radiology at the 

University of Pennsylvania (http://www.rad.upenn.edu/sbia/) has developed software for generating 
simulated inter-subject head deformations. This is intended for validation studies of atlas-based 
segmentation methods [Xue et al., 2006]. 

7. Discussion 

7.1. Method Summary 
Figure 4 shows a summary of all segmentation methods listed in the description of the three 

generations of medical image segmentation. The methods are grouped into two categories, defining the 
primary segmentation output, volume or boundary, for each type of method. Some methods, i.e, graph 
search, neural networks, multiresolution, atlas-based, and rule-based approaches, can be applied to 
form either category of output.  

Figure 5 shows an alternate summary of the same methods organized into three categories based 
on the primary mode of operation: Region-based methods, boundary-following methods, and pixel-
classification methods. These are the three categories that characterize the first generation. For each 
category, the methods corresponding to each generation are listed and the linkages between 
generations become visible. As with Fig. 4, some methods can be applied in more than one category. 
For example, the Watershed algorithm and Fuzzy Connectedness are applications of graph-search 
methods where the mode of operation is related to region growing, while Live Wire is an application of 
graph searching that operates in a mode related to that of first-generation edge tracing.  

The region-based and pixel classification categories have seen intense research up to, and 
including, the third generation where shape models and atlas-based, statistical clustering have been of 
particular interest. One notable item is the relative scarcity of third-generation, boundary-following 
methods where only one method, that of Färber et al. (2007), has been identified. Further development 
in this category may be useful when it is considered that boundary following is an important part of the 
segmentation methodology used by medical experts.  

7.2. Texture Features 
For a given pixel in an image, texture features can be computed from the distribution of pixel 

intensity levels in a local region surrounding the pixel. Although regions of relatively uniform intensity 
have often been important for segmentation, other texture features have also been used to assist in the 
segmentation process. Texture features have been used for determining seed pixel selection and as a 
homogeneity criterion in region growing (e.g. Kim and Park (2004), Rivera-Rovelo and Bayro-
Corrochano (2007)), and in second-generation, feature-based classification schemes including neural 
networks and genetic algorithms [Delibasis et al., 1997, Tsai D-Y et al., 2004]. Texture is incorporated 
explicitly in active appearance models [Hu and Collins, 2007], among the third generation methods, 
and has also been used in rule-based systems [Pitiot et al., 2004]. A history of the development of 
texture characterization and feature computation can be found in Arivazhagan and Ganesan (2003) 
along with the description of a texture segmentation system utilizing wavelet-based feature extraction. 
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7.3. Electrical Modelling 
One of the applications where segmentation results are of particular use is in the formation of 

patient-specific, realistic, tissue models such as those used in EEG source analysis. The segmentation 
process takes a structural, medical image as input and identifies regions associated with a set of tissue 
classes. Given conductance values for each such class, an electrical conductivity model, specific to the 
individual represented in the image, can be produced from the segmentation data. It has been shown 
that the use of realistic, electrical, head models produces improvements in the accuracy of EEG source-
localization techniques [Roth et al., 1993; Cuffin, 1996; Huiskamp et al., 1999]. 

While the emergence of new technologies such as diffusion tensor imaging (DTI) [Tuch et al., 
2001], electrical impedance tomography (EIT) [Goncalves et al., 2003] and others [Gutierrez et al., 
2004] might one day lessen the importance of segmentation in head modeling, it is not likely that this 
supplantation will be complete any time soon.  DTI, on one hand, provides exquisite images of the 
diffusivity of water molecules in gray and white matter in the brain that can be used to estimate tissue 
conductivity, but its utility for providing this information for skull tissue is very poor.  On the other 
hand, while the utility of EIT for measuring the conductivity of skull tissue is good, the spatial 
resolution provided by this technology leaves much to be desired.  Automatic and precise segmentation 
of head images for EEG source analysis will remain an important tool for at least the head, skull and 
brain boundaries and also for the gray matter - white matter interface.  This interface is critical for 
accurately defining the solution space required for estimating the source activity in the cerebral cortex 
underlying the EEG.

7.4. Segmentation Development 
The goal of automatic medical image segmentation research is that of a fully–automatic, 

unsupervised solution with accuracy matching a human medical expert. It is clear that first-generation 
methods were not successful and it becomes more and more evident that second-generation methods, 
despite obvious improvements and mathematical superiority, will likewise prove to be insufficient. The 
second generation has produced fully-automatic segmentation systems; however, obvious 
misclassification may still occur. The application of optimization methods alone cannot guarantee that 
segmentation results will be anatomically meaningful, and results are, therefore, strongly data 
dependent. Segmentation output from all second-generation methods can be expected to require 
manual correction to be clinically useful. 

Among the third-generation algorithms, certain atlas-based methods have been shown to produce 
automatic segmentations that are competitive with manual segmentations when an overlap metric (e.g. 
the ratio of the intersection of two segmentations to their union) is used for the comparison [Fischl et 
al., 2002; Zijdenbos et al., 2002; Carmichael et al., 2005]. There is indication, though, that such 
favourable comparison may only occur under certain conditions [Carmichael et al., 2005]. Factors that 
can affect algorithm performance include: 1) the image acquisition parameters; 2) the method for 
registering the atlas with the test image where registration methods capable of greater deformation 
produce better comparison results; 3) the manual tracing protocol used by the investigator, which, 
when identifying normal brain structures, must match that used in the atlas formation for best 
comparison; and, 4) demographics and disease where differences in brain structure between the test 
subjects and the subjects included in atlas formation may cause significant errors. In addition, the 
overlap metric may not adequately identify errors in cases where discrepancies between the two 
segmentations under examination have relatively small volume. These errors could still be spatially 
significant, for example, in the case of a narrow projection occurring in only one of the segmentations.  

8. Conclusion 
The three generations of medical image segmentation show the dramatic growth in algorithmic 

capability over the past 35 years and provide a mechanism for classifying the many methods that have 
been devised. Continued development of medical image segmentation methods can be expected until 
the goal of accurate, fully-automatic, unsupervised segmentation has been achieved.  
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Figure 4. Method summary with categories based on primary segmentation output. 
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