
P1: FHY/ftt P2: FDR/FhN/fok/fgg QC: FhN

July 10, 2000 11:13 Annual Reviews AR106-12

?
Annu. Rev. Biomed. Eng. 2000. 02:315–37

CURRENT METHODS IN MEDICAL IMAGE

SEGMENTATION1

Dzung L. Pham2,3, Chenyang Xu2, and Jerry L. Prince2
2Department of Electrical and Computer Engineering, The Johns Hopkins University,
Baltimore, Maryland 21218; e-mail: pham@jhu.edu, chenyang@jhu.edu,
prince@jhu.edu.3Laboratory of Personality and Cognition, National Institute on Aging,
Baltimore, Maryland 21224

Key Words medical imaging, image processing, classification, deformable
models, magnetic resonance imaging

■ Abstract Image segmentation plays a crucial role in many medical-imaging ap-
plications, by automating or facilitating the delineation of anatomical structures and
other regions of interest. We present a critical appraisal of the current status of semi-
automated and automated methods for the segmentation of anatomical medical images.
Terminology and important issues in image segmentation are first presented. Current
segmentation approaches are then reviewed with an emphasis on the advantages and
disadvantages of these methods for medical imaging applications. We conclude with
a discussion on the future of image segmentation methods in biomedical research.
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INTRODUCTION

Diagnostic imaging is an invaluable tool in medicine. Magnetic resonance imaging
(MRI), computed tomography (CT), digital mammography, and other imaging
modalities provide an effective means for noninvasively mapping the anatomy of
a subject. These technologies have greatly increased knowledge of normal and
diseased anatomy for medical research and are a critical component in diagnosis
and treatment planning.

The growing size and number of these medical images have necessitated the use
of computers to facilitate processing and analysis. In particular, computer algo-
rithms for the delineation of anatomical structures and other regions of interest are
becoming increasingly important in assisting and automating specific radiological
tasks. These algorithms, called image segmentation algorithms, play a vital role
in numerous biomedical-imaging applications, such as the quantification of tis-
sue volumes (1), diagnosis (2), localization of pathology (3), study of anatomical
structure (4), treatment planning (5), and computer-integrated surgery (6).

This chapter provides an overview of current methods for computer-assisted or
computer-automated segmentation of anatomical medical images. Methods and
applications from recent literature are briefly described. A full description of these
competing methods is beyond the scope of this chapter, and readers are referred to
other references for additional details. We focus instead on providing an introduc-
tion to current applications of segmentation in medical imaging and the various
issues that must be confronted. Although we refer to only the most commonly used
radiological modalities for imaging anatomy, most of the concepts described are
applicable to other imaging modalities as well.

BACKGROUND

We first define terminology that is used throughout the review, and we describe
important issues in the segmentation of medical images.

Definitions

An image is a collection of measurements in two-dimensional (2-D) or three-
dimensional (3-D) space. In medical images, these measurements or ‘image in-
tensities’ can be radiation absorption in X-ray imaging, acoustic pressure in ultra-
sound, or radio frequency (RF) signal amplitude in MRI. If a single measurement
is made at each location in the image, then the image is called a scalar image. If
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more than one measurement is made (e.g. dual-echo MRI), the image is called a
vector or multichannel image. Images may be acquired in the continuous domain,
such as on X-ray film, or in discrete space as in MRI. In 2-D discrete images, the
location of each measurement is called a pixel, and in 3-D images, it is called a
voxel. For simplicity, we use “pixel” for both the 2-D and 3-D cases.

Classically, image segmentation is defined as the partitioning of an image into
nonoverlapping, constituent regions that are homogeneous with respect to some
characteristic such as intensity or texture (7–9). If the domain of the image is given
by�, then the segmentation problem is to determine the setsSk ⊂ �, whose union
is the entire domain�. Thus, the sets that make up a segmentation must satisfy

� =
K⋃

k=1

Sk (1)

whereSk ∩ Sj = φ for k 6= j , and eachSk is connected. Ideally, a segmentation
method finds those sets that correspond to distinct anatomical structures or regions
of interest in the image.

When the constraint that regions be connected is removed, then determining
the setsSk is called pixel classification, and the sets themselves are called classes.
Pixel classification, rather than classical segmentation, is often a desirable goal
in medical images, particularly when disconnected regions belonging to the same
tissue class require identification. Determination of the total number of classes
K in pixel classification can be a difficult problem (10). Often, the value ofK is
assumed to be known based on prior knowledge of the anatomy being considered.
For example, in the segmentation of magnetic-resonance (MR) brain images, it is
common to assume that theK = 3, corresponding to gray-matter, white-matter,
and cerebrospinal-fluid tissue classes (11).

Labeling is the process of assigning a meaningful designation to each region or
class and can be performed separately from segmentation. It maps the numerical
index k of set Sk to an anatomical designation. In medical imaging, the labels
are often visually obvious and can be determined on inspection by a physician or
technician. Computer-automated labeling is desirable when labels are not obvious
and in automated processing systems. A typical situation involving labeling occurs
in digital mammography, in which the image is segmented into distinct regions
and the regions are subsequently labeled as healthy or tumorous tissue.

Methods that delineate a structure or structures in an image, including both
classical segmentation and pixel classification methods, are considered in this
review. Although we do not discuss specific labeling methods, we do discuss
several techniques that perform both segmentation and labeling simultaneously.
Two fields closely related to segmentation that we do not discuss here are feature
detection and motion estimation. Feature detection is concerned with determining
the presence of some image property, whereas segmentation generally assumes
that the property is already present and attempts to precisely localize areas that
possess the property. For example, edge detection methods can determine the
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location of edges in an image, but, without further processing, these methods
do not necessarily extract any region of interest. However, edge detection can
be used in conjunction with other methods to form a segmentation algorithm.
Motion estimation methods often consist of applying segmentation algorithms to
time sequences of images. We consider this application of segmentation to be a
separate branch of research and do not include it in this review.

Dimensionality

Dimensionality refers to whether a segmentation method operates in a 2-D image
domain or a 3-D image domain. Methods that rely solely on image intensities are
independent of the image domain. However, certain methods, such as deformable
models, Markov random fields (MRFs), and region growing (described below),
incorporate spatial information and may therefore operate differently depending on
the dimensionality of the image. Generally, 2-D methods are applied to 2-D images,
and 3-D methods are applied to 3-D images. In some cases, however, 2-D methods
are applied sequentially to the slices of a 3-D image (12, 13). This may arise
because of practical reasons such as ease of implementation, lower computational
complexity, and reduced memory requirements. In addition, certain structures are
more easily defined along 2-D slices.

A unique situation that occurs in medical-image segmentation is the delineation
of regions on a non-Euclidean domain, such as in brain cortex parcellation (14, 15).
This is essentially segmentation on a surface of measurements. Because a surface
is a 2-D object folded in 3-D space, segmentation on a surface cannot be treated
as a standard 2-D or 3-D problem. The modeling of spatial characteristics along
a surface is much more difficult than in a standard imaging plane because of
the irregular sampling used by mesh representations and because of the need to
compute geodesics (16). This is an emerging area of research, and preliminary
results have shown great promise particularly for studying brain function and
structure.

Soft Segmentation and Partial-Volume Effects

Partial-volume effects are artifacts that occur where multiple tissue types contribute
to a single pixel, resulting in a blurring of intensity across boundaries. Figure 1
illustrates how the sampling process can result in partial-volume effects, leading
to ambiguities in structural definitions. In Figure 1b, it is difficult to precisely de-
termine the boundaries of the two objects. Partial-volume effects are common in
medical images, particularly for 3-D CT and MRI data, in which the resolution is
not isotropic and, in many cases, is quite poor along one axis of the image. Poor res-
olution was often ignored in early work involving the segmentation of MR images,
but more recently, improved methods to address partial-volume effects, as well as
progress toward higher-resolution imaging, have helped to alleviate the situation.

The most common approach to addressing partial-volume effects is to produce
segmentations that allow regions or classes to overlap, called soft segmentations.
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(a) (b)

Figure 1 Illustration of partial-volume effect. (a) Ideal image. (b) Acquired image.

Standard approaches use ‘hard segmentations’ that enforce a binary decision on
whether a pixel is inside or outside the object. Soft segmentations, on the other
hand, retain more information from the original image by allowing for uncertainty
in the location of object boundaries.

In pixel classification methods, the notion of a soft segmentation stems from the
generalization of a set ‘characteristic function.’ A characteristic function is simply
an indicator function denoting whether a pixel is inside or outside its corresponding
set. For a locationj ∈ I , the characteristic functionχk( j ) of the setSk is defined
as

χk( j ) =
{

1 if j ∈ Sk

0 otherwise
(2)

Characteristic functions can be generalized to ‘membership functions’ (17), which
need not be binary valued. Membership functionsmk( j ) satisfy the following
constraints:

0≤ mk( j ) ≤ 1, for all j, k (3)

K∑
k=1

mk( j ) = 1, for all j (4)

The value of a membership functionmk( j ) can be interpreted as the contribution of
classk to location j . Thus, wherever membership values are greater than zero for
two or more classes, those classes are overlapping. Conversely, if the membership
function is unity for some value ofj andk, then classk is the only contributing
class at locationj . Membership functions can be derived by using fuzzy clustering
and classifier algorithms (18, 19) or statistical algorithms, in which case the mem-
bership functions are probability functions (20, 21), or they can be computed as
estimates of partial-volume fractions (22). Soft segmentations based on member-
ship functions can be easily converted to hard segmentations by assigning a pixel
to its class with the highest membership value.
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Intensity Inhomogeneities

A major difficulty that is specific to the segmentation of MR images is the ‘intensity
inhomogeneity artifact’ (23, 24), which causes a shading effect to appear over the
image. The artifact can significantly degrade the performance of methods that as-
sume that the intensity value of a tissue class is constant over the image. Although
improvements in scanner technology have reduced this artifact somewhat, inhomo-
geneities remain a problem particularly in images acquired by using surface coils.
Figure 2ashows an axially acquired MR cardiac image taken from a female subject
with a myocardial infarction. Intensity inhomogeneities are noticeable particularly
near the breasts. Many approaches have been proposed in the literature for per-
forming tissue classification in the presence of intensity inhomogeneity artifacts.
Some methods suggest a prefiltering operation that attempts to remove the inho-
mogeneity before actual segmentation (cf 25–28). Methods that simultaneously
segment the image and estimate the inhomogeneity, however, offer the advantage
of being able to use intermediate information gained from the segmentation.

(a) (b) (c)

(d) (e) ( f )

Figure 2 Example of simultaneous inhomogeneity correction and soft segmentation. (a) Mag-
netic resonance heart image acquired with a fast spin echo sequence in a true axial prescription;
(b) estimated gain field; (c) hard segmentation into three classes, (d–f) membership functions of
the three classes (data provided courtesy of C Constantinides).
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There are two prevailing approaches for modeling inhomogeneities in methods
that perform simultaneous segmentation. The first approach assumes that the mean
intensity for each tissue class is spatially varied and that these mean intensities
are independent of one another (11, 29). The second approach models the inho-
mogeneities as a multiplicative gain field (18) or additive bias field of the image
logarithm (21, 30). It is unclear which of these two provides more accurate mod-
eling of inhomogeneity effects, although the second approach has the advantage
of being computationally less expensive. The second approach can also be used
for removing inhomogeneities by simple multiplication of the acquired image by
the reciprocal of the estimated gain field.

Figure 2 shows the results of applying the adaptive fuzzyc-means algorithm
(18), which performs a soft segmentation while compensating for intensity in-
homogeneities. The heart image of Figure 2a was segmented into three classes
(roughly corresponding to air, to muscle, and to fat and skin, respectively) and
Figure 2d–f corresponds to the membership functions for those three classes.
Figure 2bshows the gain field estimated from the original image. The hard segmen-
tation in Figure 2c was obtained by using maximum membership classification.
Note that the ring artifact present in Figure 2e results from partial-volume effects
that cause the boundary between fat, skin, and air to have an intensity similar to
that of muscle. This effect is common and is a disadvantage of intensity-based
pixel classification methods.

Interaction

The tradeoff between manual interaction and performance is an important consid-
eration in any segmentation application. Manual interaction can improve accuracy
by incorporating the prior knowledge of an operator. For large-population stud-
ies, however, this can be laborious and time-consuming. The type of interaction
required by segmentation methods can range from completely manual delineation
of an anatomical structure to the selection of a seed point for a region-growing
algorithm (see below). The differences in these types of interaction are the amounts
of time and effort required, as well as the amounts of training required by opera-
tors. Methods that rely on manual interaction can also be vulnerable to reliability
issues. However, even automated segmentation methods typically require some
interaction for specifying some initial parameters, whose values can significantly
affect performance (31).

Validation

To quantify the performance of a segmentation method, validation experiments
are necessary. Validation is typically performed with one of two different types
of truth models. The most straightforward approach to validation is to compare
the automated segmentations with manually obtained segmentations (cf 32). This
approach, besides suffering from the drawbacks outlined above, does not guarantee
a perfect truth model, because an operator’s performance can also be flawed. The
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other common approach to validating segmentation methods is through the use
of physical phantoms (33) or computational phantoms (34). Physical phantoms
provide an accurate depiction of the image acquisition process but typically do
not present a realistic representation of anatomy. Computational phantoms can
represent anatomy realistically, but usually simulate the image acquisition process
by using simplified models.

Once a truth model is available, a figure of merit must be defined for quantifying
accuracy or precision (cf 35). The choice of the figure of merit is dependent on the
application and can be based on region information, such as the number of pixels
misclassified, or boundary information, such as distance to the true boundary. A
survey on this topic has been provided (36).

METHODS

Several common approaches have appeared in the recent literature on medical-
image segmentation. We define each method, provide an overview of its imple-
mentation, and discuss its advantages and disadvantages. Although each technique
is described separately, multiple techniques are often used in conjunction for solv-
ing different segmentation problems.

We divide segmentation methods into eight categories: (a) thresholding ap-
proaches, (b) region growing approaches, (c) classifiers, (d) clustering approaches,
(e) Markov random field (MRF) models, (f ) artificial neural networks, (g) de-
formable models, and (h) atlas-guided approaches. Other notable methods that do
not belong to any of these categories are described at the end of this section. Of the
methods discussed in this section, thresholding, classifier, clustering, and MRF
approaches can be considered pixel classification methods.

Several general surveys on image segmentation exist in the literature (7, 9).
Several surveys have targeted segmentation of MR images in particular (3, 37, 38).
Direct comparisons of different methods for segmenting MR images are also avail-
able (39, 40).

Thresholding

Thresholding approaches segment scalar images by creating a binary partitioning
of the image intensities. Figure 3a shows the histogram of a scalar image that
possesses three apparent classes, corresponding to the three modes. A thresholding
procedure attempts to determine an intensity value, called the threshold, which
separates the desired classes. The segmentation is then achieved by grouping all
pixels with intensities greater than the threshold into one class and all other pixels
into another class. Two potential thresholds are shown in Figure 3aat the valleys of
the histogram. Determination of more than one threshold value is a process called
multithresholding (41).

Thresholding is a simple yet often effective means for obtaining a segmenta-
tion of images in which different structures have contrasting intensities or other
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(a) (b)

(c)

Figure 3 Feature space methods and region growing. (a) Histogram showing three appar-
ent classes. (b) 2-D feature space. (c) Example of region growing.

quantifiable features. The partition is usually generated interactively, although
automated methods do exist (41). Thresholding is often performed interactively,
based on the operator’s visual assessment of the resulting segmentation.

Thresholding is often used as an initial step in a sequence of image-processing
operations (cf 42, 43). It has been applied in digital mammography, in which two
classes of tissue are typically present—healthy and tumorous (44, 45). Its main
limitations are that, in its simplest form, only two classes are generated, and it
cannot be applied to multichannel images. In addition, thresholding typically does
not take into account the spatial characteristics of an image. This causes it to be
sensitive to noise and intensity inhomogeneities, which can occur in MR images.
Both of these artifacts essentially corrupt the histogram of the image, making
separation more difficult. For these reasons, variations on classical thresholding
have been proposed for medical-image segmentation that incorporate information
based on local intensities (46) and connectivity (47). A survey on thresholding
techniques is provided elsewhere (41).

Region Growing

Region growing is a technique for extracting an image region that is connected
based on some predefined criteria. These criteria can be based on intensity
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information and/or edges in the image (7). In its simplest form, region grow-
ing requires a seed point that is manually selected by an operator and extracts all
pixels connected to the initial seed based on some predefined criteria. For example,
one possible criterion might be to grow the region until an edge in the image is met.
This is depicted in Figure 3b, in which region growing has been used to isolate
one of the structures from Figure 1a.

Like thresholding, region growing is seldom used alone but usually within
a set of image-processing operations, particularly for the delineation of small,
simple structures such as tumors and lesions (48, 49). The primary disadvantage
of region growing is that it requires manual interaction to obtain the seed point.
Thus, for each region that needs to be extracted, a seed must be planted. Split-
and-merge is an algorithm related to region growing, but it does not require a
seed point (50). Region growing can also be sensitive to noise, causing extracted
regions to have holes or even become disconnected. Conversely, partial-volume
effects can cause separate regions to become connected. To help alleviate these
problems, a homotopic region-growing algorithm has been proposed that preserves
the topology between an initial region and an extracted region (51). Fuzzy analogies
to region growing have also been developed (52).

Classifiers

Classifier methods are pattern recognition techniques that seek to partition a feature
space derived from the image by using data with known labels (37, 53). A feature
space is the range space of any function of the image, with the most common
feature space being the image intensities themselves. A histogram, as shown in
Figure 3a, is an example of a one-dimensional feature space. Figure 3c shows
an example of a partitioned 2-D feature space with two apparent classes. Such a
feature space might have been generated from a dual-echo MR image, in which
one axis represents the intensities of the proton density-weighted image and the
other axis represents the intensities of theT2-weighted image. All pixels with their
associated features on the left side of the partition would be grouped into one class.

Classifiers are known as supervised methods because they require training data
that are manually segmented and then used as references for automatically seg-
menting new data. There are a number of ways in which training data can be
applied in classifier methods. A simple classifier is the nearest-neighbor clas-
sifier, in which each pixel is classified in the same class as the training datum
with the closest intensity. Thek-nearest-neighbor classifier is a generalization of
this approach, in which the pixel is classified into the same class as the major-
ity of the k-closest training data. Thek-nearest-neighbor classifier is considered
a nonparametric classifier because it makes no underlying assumption about the
statistical structure of the data. Another nonparametric classifier is the Parzen
window, in which the classification is made by a weighted decision process
within a predefined window of the feature space, centered at the unlabeled pixel
intensity.
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A commonly used parametric classifier is the maximum-likelihood or Bayes
classifier. It assumes that the pixel intensities are independent samples from a
mixture of probability distributions, usually Gaussian. This mixture, called a finite-
mixture model, is given by the probability density function

f (yj ; θ, π) =
K∑

k=1

πk fk(yj ; θk) (5)

whereyj is the intensity of pixelj, fk is a component probability density function
parameterized byθk, andθ = [θ1, . . . , θK ]. The variablesπk are mixing coeffi-
cients that weight the contribution of each density function andπ = [π1, . . . , πK ].
Training data are collected by obtaining representative samples from each compo-
nent of the mixture model and then estimating eachθk accordingly. For Gaussian
mixtures, this means estimatingK -means, covariances, and mixing coefficients.
Classification of new data is obtained by assigning each pixel to the class with the
highest posterior probability. When the data truly follow a finite Gaussian mixture
distribution, the maximum-likelihood classifier can perform well and is capable of
providing a soft segmentation composed of the posterior probabilities. Additional
parametric and nonparametric classifiers are described in Reference 3.

Standard classifiers require that the structures to be segmented possess distinct
quantifiable features. Because training data can be labeled, classifiers can trans-
fer these labels to new data as long as the feature space sufficiently distinguishes
each label as well. Being noniterative, classifiers are relatively computationally
efficient, and, unlike thresholding methods, they can be applied to multichannel
images (54). A disadvantage of classifiers is that they generally do not perform
any spatial modeling. This weakness has been addressed in recent work extending
classifier methods to segmenting images that are corrupted by intensity inhomo-
geneities (21). Neighborhood and geometric information was also incorporated
into a classifier approach in Reference 55. Another disadvantage is the require-
ment of manual interaction to obtain training data. Training sets can be acquired for
each image that requires segmenting, but this can be time consuming and labori-
ous. On the other hand, use of the same training set for a large number of scans can
lead to biased results that do not take into account anatomical and physiological
variability between different subjects.

Clustering

Clustering algorithms essentially perform the same function as classifier methods
without the use of training data. Thus, they are termed unsupervised methods. To
compensate for the lack of training data, clustering methods iteratatively alternate
between segmenting the image and characterizing the properties of each class. In
a sense, clustering methods train themselves, using the available data.

Three commonly used clustering algorithms are theK -means or ISODATA al-
gorithm (56), the fuzzyc-means algorithm (37), and the expectation-maximization
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(EM) algorithm (33, 57). TheK -means clustering algorithm clusters data by iter-
atively computing a mean intensity for each class and segmenting the image by
classifying each pixel in the class with the closest mean (58). Figure 4b shows
the result of applying theK -means algorithm to a slice of an MR brain image in
Figure 4a. The number of classes was assumed to be three, representing (from
dark gray to white in Figure 4) cerebrospinal fluid, gray matter, and white matter.
The fuzzyc-means algorithm generalizes theK -means algorithm, allowing for
soft segmentations based on fuzzy set theory (17). The EM algorithm applies
the same clustering principles with the underlying assumption that the data fol-
low a Gaussian mixture model (see Equation 5). It iterates between computing

(a) (b)

(c)

Figure 4 Segmentation of a magnetic resonance brain image. (a) Original image. (b)
Segmentation using theK -means algorithm. (c) Segmentation using theK -means algorithm
with a Markov random field prior.
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the posterior probabilities and computing maximum likelihood estimates of the
means, covariances, and mixing coefficients of the mixture model.

Although clustering algorithms do not require training data, they do require
an initial segmentation (or, equivalently, initial parameters). The EM algorithm
has demonstrated greater sensitivity to initialization than theK -means or fuzzy
c-means algorithm (31). Like classifier methods, clustering algorithms do not
directly incorporate spatial modeling and can therefore be sensitive to noise and
intensity inhomogeneities. This lack of spatial modeling, however, can provide sig-
nificant advantages for fast computation (59). Work on improving the robustness
of clustering algorithms to intensity inhomogeneities in MR images has demon-
strated excellent success (11, 18). Robustness to noise can be incorporated by MRF
modeling as described in the next section.

Markov Random Field Models

MRF modeling itself is not a segmentation method but a statistical model that
can be used within segmentation methods. MRFs model spatial interactions be-
tween neighboring or nearby pixels. These local correlations provide a mecha-
nism for modeling a variety of image properties (60). In medical imaging, they
are typically used because most pixels belong to the same class as their neigh-
boring pixels. In physical terms, this implies that any anatomical structure that
consists of only one pixel has a very low probability of occurring under an MRF
assumption.

MRFs are often incorporated into clustering segmentation algorithms such as
theK -means algorithm under a Bayesian prior model (11, 29, 30). The segmenta-
tion is then obtained by maximizing the a posteriori probability of the segmentation,
given the image data. This maximization can be achieved by iterative methods such
as iterated conditional modes (61) or simulated annealing (62). Figure 4c shows
the robustness to noise in a segmentation resulting from an MRF prior. The seg-
mentation does not exhibit as many small, disconnected regions as the non-MRF
result of Figure 4b.

A difficulty associated with MRF models is proper selection of the parameters
controlling the strength of spatial interactions (60). A setting that is too high can
result in an excessively smooth segmentation and a loss of important structural
details. In addition, MRF methods usually require computationally intensive al-
gorithms. Despite these disadvantages, MRFs are widely used not only to model
segmentation classes, but also to model intensity inhomogeneities that can occur
in MR images (30) and textural properties, which is useful in the segmentation of
digital mammograms (63).

Artificial Neural Networks

Artificial neural networks (ANNs) are parallel networks of processing elements
or nodes that simulate biological learning. Each node in an ANN is capable of
performing elementary computations. Learning is achieved through the adaptation
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of weights assigned to the connections between nodes. A thorough treatment on
neural networks can be found in References 64 and 65.

ANNs represent a paradigm for machine learning and can be used in a variety
of ways for image segmentation. The most widely applied use in medical imaging
is as a classifier (40, 66), in which the weights are determined by using training
data and the ANN is then used to segment new data. ANNs can also be used in
an unsupervised fashion as a clustering method (37, 67), as well as for deformable
models (68). Because of the many interconnections used in a neural network,
spatial information can be easily incorporated into its classification procedures.
Although ANNs are inherently parallel, their processing is usually simulated on a
standard serial computer, thus reducing this potential computational advantage.

Deformable Models

Deformable models are physically motivated, model-based techniques for delin-
eating region boundaries by using closed parametric curves or surfaces that deform
under the influence of internal and external forces. To delineate an object boundary
in an image, a closed curve or surface must first be placed near the desired bound-
ary and then allowed to undergo an iterative relaxation process. Internal forces
are computed from within the curve or surface to keep it smooth throughout the
deformation. External forces are usually derived from the image to drive the curve
or surface toward the desired feature of interest. Figure 5 shows an example of
applying a 2-D deformable model or ‘active contour’ to an MR heart image. In
Figure 5b, the active contour was initialized as a circle and then allowed to deform
to the inner boundary of the left ventricle.

Deformable models have been widely applied in the segmentation of medical
images. One area in which they are used often is the reconstruction of the cerebral

(a) (b)

Figure 5 Extraction of the inner wall of the left ventricle from a magnetic resonance image
using active contours. (a) Original image. (b) Initial active contour and the final converged
result.
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cortex from MR images (69–71). An example of using a deformable surface model
for this application is shown in Figure 6 (see color insert). A view of the intersection
between this surface and orthogonal slices of the MR image volume is given
in Figure 7 (see color insert). Deformable models have also been used in the
segmentation of cardiac images (72), bone in CT images (73), and ultrasound
(74). The dynamic nature of deformable models make tham especially well suited
to motion-tracking tasks, which are common in ultrasound imaging.

The main advantages of deformable models are their ability to directly gener-
ate closed parametric curves or surfaces from images and their incorporation of
a smoothness constraint that provides robustness to noise and spurious edges. A
disadvantage is that they require manual interaction to place an initial model and
choose appropriate parameters. Reducing sensitivity to initialization has been a
topic of research that has demonstrated excellent success (75–78). Standard de-
formable models can also exhibit poor convergence to concave boundaries. This
difficulty can be alleviated somewhat through the use of pressure forces (75) and
other modified external-force models (78). Another important extension of de-
formable models is the adaptivity of model topology by using an implicit repre-
sentation rather than an explicit parameterization (76, 77, 79). A general review on
deformable models in medical image analysis can be found in reference 80.

Atlas-Guided Approaches

Atlas-guided approaches are a powerful tool for medical-image segmentation when
a standard atlas or template is available. The atlas is generated by compiling infor-
mation on the anatomy that requires segmenting. This atlas is then used as a ref-
erence frame for segmenting new images. Conceptually, atlas-guided approaches
are similar to classifiers except that they are implemented in the spatial domain of
the image rather than in a feature space.

The standard atlas-guided approach treats segmentation as a registration prob-
lem (see 81 for a detailed survey on registration techniques). It first finds a one-
to-one transformation that maps a presegmented atlas image to the target image
that requires segmenting. This process is often referred to as ‘atlas warping.’ The
warping can be performed with linear (82–84) transformations, but, because of
anatomical variability, a sequential application of linear and nonlinear (15, 85–87)
transformations is often used. An example of atlas warping for an MR head scan
is shown in Figure 8 (87). Because the atlas is already segmented, all structural
information is transferred to the target image. This is shown in Figure 9, in which
the Talairach brain atlas (82) has been mapped to an MR image (86).

Atlas-guided approaches have been applied mainly in MR brain imaging for
segmentation of various structures (85), as well as for extracting the brain volume
from head scans (88). An advantage of atlas-guided approaches is that labels
are transferred as well as the segmentation. They also provide a standard system
for studying morphometric properties (89, 90). Even with nonlinear registration
methods, however, finding accurate segmentations of complex structures is difficult
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?Figure 6 An example of using a deformable surface in the reconstruction of the cerebral
cortex.A
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?Figure 7 A view of the intersection between the deformable surface and orthogonal slices
of the MR image.A
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Figure 8 Demonstration of atlas warping. (a) Template image; (b) target image; (c) warped
template. (Images provided courtesy of GE Christensen and MI Miller.)

Figure 9 Three slices from a magnetic resonance brain volume overlaid with a warped
atlas. (Images provided courtesy of CA Davatzikos.)

(a) (b)

(c)
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owing to anatomical variability. This is shown in Figure 9, in which the cerebral
cortex is not segmented as accurately as shown in Figure 4. Thus, atlas-guided
approaches are generally better suited for segmentation of structures that are stable
over the population of study. One method that helps model anatomical variability is
the use of probabilistic atlases (89), but these require additional time and interaction
to accumulate data. Another method is the use of manually selected landmarks to
constrain transformation (86).

Other Approaches

Model-fitting is a segmentation method that typically fits a simple geometric shape
such as an ellipse or parabola to the locations of extracted image features in an
image (91). This technique is specialized to the structure being segmented but is
easily implemented and can provide good results when the model is appropriate.
A more general approach is to fit spline curves or surfaces (92) to the features.
The main difficulty with model-fitting is that image features must first be extracted
before the fitting can take place.

The watershed algorithm uses concepts from edge detection and mathematical
morphology (8) to partition images into homogeneous regions (93). The method
can suffer from oversegmentation, which occurs when the image is segmented into
an unnecessarily large number of regions. Thus, watershed algorithms in medical
imaging are usually followed by a post-processing step to merge separate regions
that belong to the same structure (94).

Figure 10 shows an example in which a mammogram is initially oversegmented
by using a watershed algorithm. A statistical classifier (95) is then used to deter-
mine which regions contain microcalcifications. This classification step is typically
performed based on textural properties. Note that a perfect delineation of microcal-
cifications and masses in mammograms is difficult but not often necessary because
detection is the primary goal.

CONCLUSION

Future research in the segmentation of medical images will strive toward improv-
ing the accuracy, precision, and computational speed of segmentation methods,
as well as reducing the amount of manual interaction. Accuracy and precision
can be improved by incorporating prior information from atlases and by combin-
ing discrete and continuous spatial-domain segmentation methods. For increasing
computational efficiency, multiscale processing (cf 96) and parallelizable methods
such as neural networks are promising approaches. Computational efficiency will
be particularly important in real-time processing applications.

Possibly the most important question surrounding the use of image segmen-
tation is its application in clinical settings. Computerized segmentation methods
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(a) (b)

(c)

Figure 10 Segmentation in digital mammography. (a) Digitized mammogram and radi-
ologist’s boundary for biopsy-proven malignant tumor. (b) Result of watershed algorithm.
(c) Suspicious regions determined by automated method. (Images provided courtesy of
CE Priebe.)

have already demonstrated their utility in research applications and are now gar-
nering increased use for computer-aided diagnosis and radiotherapy planning.
For segmentation methods to gain acceptance in routine clinical applications,
extensive validation is required on the particular methods in question. Further-
more, one must be able to demonstrate some significant performance advan-
tage (e.g. more accurate diagnosis or earlier detection of pathology) over tra-
ditional methods to warrant the training and equipment costs associated with
using computerized methods. It is unlikely that automated segmentation meth-
ods will ever replace physicians, but they will likely become crucial elements of
medical-image analysis. Segmentation methods will be particularly valuable in ar-
eas such as image-guided surgery, in which visualization of the anatomy is a critical
component.
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