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Motivation
Definitions

“An ontology is a formal, explicit specification of a shared 
conceptualization.”

Ontologies == Knowledge models with special features
Formal
Mathematical underpinnings: unambiguous, automatic inference, etc.

Machine-processable
Well-defined representation languages: RDF(S), OWL
Information exchange (different serializations), query (SPARQL), storage (triplestores), etc.

Standard
W3C standardization
Interaction with other property-graph software: TinkerPop (+Gremlin), Neo4j (+Cypher), etc.

Tools
Editors: Protégé, TopBraid
APIs: Apache Jena, RDF4J (previously Sesame), OWL API, RDFLib, etc.
Triplestores: Virtuoso, Blazegraph, GraphDB, etc.
Reasoning engines: HermiT, RACER, Stardog, Pellet, ELK, etc.
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Motivation
Application overview

Knowledge base development
Support knowledge-based systems
From simple (pizza recommender) to complex (galen, umls, gene ontology)
Pizza %&' hasTopping /012 MozzarellaTopping %&' …

Publish open linked data
DBPedia, Wikidata
Geonames
YAGO2
Drugbank
data.gov

Information exchange & 
annotation format
DCAT (datasets)
RDF Data Cube (statistical data)

https://bioportal.bioontology.org/ontologies/GALEN/?p=classes&conceptid=http://www.co-ode.org/ontologies/galen
https://www.nlm.nih.gov/research/umls/
http://geneontology.org/
http://es.dbpedia.org/page/Paris
https://www.wikidata.org/wiki/Q90
http://www.geonames.org/3020251/embrun.html
https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/
http://download.bio2rdf.org/files/release/3/drugbank/drugbank.html
https://www.data.gov/
https://www.w3.org/TR/2018/WD-vocab-dcat-2-20180508/
https://www.w3.org/TR/vocab-data-cube/
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Context-aware computing
Example

An example: video-surveillance systems
Objective
To achieve a high degree of understanding of the scene from 
multiple observations to barely require operator attention while 
cutting component costs

From PETS2002 ftp://ftp.pets.rdg.ac.uk/pub/PETS2002

ftp://ftp.pets.rdg.ac.uk/pub/PETS2002
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Context-aware computing
Example

Tracking moving objects with Kalman filter + identification
Issues
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Context-aware computing
Example

Track 008
pos ()
vel ()

Track 010
pos ()
vel()

Tracking Low level High level

Person
Entry
> Entering
Mirror
> Reflection
Column

Person 1 is
(Entering through Entry 2) 
and
(Reflected by Mirror 1)

Interpretation
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Context-aware computing
Ambient Intelligence

Context-aware systems
Computational systems that use a massive amount of context knowledge
The interpretation of the available information depends on context 
knowledge

Ambient Intelligence & Ubiquitous Computing

J. Gómez-Romero, M.A. Serrano, M.A. Patricio, J. García & J.M. Molina (2012). Context-
based scene recognition from visual data in smart homes: an Information Fusion approach. 
Personal and Ubiquitous Computing 16(7), 835-857.

N. Díaz-Rodríguez, M.P. Cuéllar, J. Lilius & M. Delgado (2014). A survey on ontologies for 
human behavior recognition. ACM Computer Surveys 46(4), 43.

N. Díaz-Rodríguez, M.P. Cuéllar, J. Lilius & M. Delgado (2011). A fuzzy ontology for semantic 
modelling and recognition of human behaviour. Knowledge-Based Systems 66, 46-60.
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Context-aware computing
Ambient Intelligence

1900,0 mm x 6500,0 mm

T

T

Camera 2

Camera 1

Co
uc

h TV
Fridge

KitchenTable

Door

23 

 Axioms: 

Person  TrackedObject (a person is a tracked object) 

Table  OccludingObject (a table is an occluding object) 

Couch  OccludingObject (a couch is an occluding object) 

Fridge  StaticObject (a fridge is a static object) 

<!##$fridge1$instance$##>
<owl:Thing+rdf:about="#fridge1">
++<rdf:type+rdf:resource="#Fridge"/>
++<scob:hasObjectSnapshot+rdf:resource="#osn_fridge1"/>
</owl:Thing>

<!##$object$snapshot$of$fridge1$##>
<owl:Thing+rdf:about="#osn_fridge1">
++<rdf:type+rdf:resource="&scobDSceneObjectSnapshot"/>
++<scob:hasObjectProperties+rdf:resource="#fridge1_props"/>
++<tren:isValidInEnd+rdf:resource="&trenDunknown_frame"/>
</owl:Thing>

<!##$properties$of$fridge1$snapshot$(position)$##>
<owl:Thing+rdf:about="#fridge1_props">
++<rdf:type+rdf:resource="&scobDObjectSnapshotProperties"/>
++<scob:OhasPosition+rdf:resource="#fridge1_position"/>
</owl:Thing>

<!##$fridge1$position$##>
<owl:Thing+rdf:about="#fridge1Kposition">
++<rdf:type+rdf:resource="&scobDOPosition"/>
++<scob:OpositionValue+rdf:resource="#p1"/>
++<scob:OpositionValue+rdf:resource="#p2"/>
++<scob:OpositionValue+rdf:resource="#p3"/>
++<scob:OpositionValue+rdf:resource="#p4"/>
++<scob:OpositionValue+rdf:resource="#p5"/>
++<scob:OpositionValue+rdf:resource="#p6"/>
</owl:Thing>

<!##$fridge1$point1$coordinates$##>
<owl:Thing+rdf:about="#p1">
++<rdf:type+rdf:resource="&trenD2DPoint"/>
++<tren:y+rdf:datatype="&xsdDfloat">687.0</tren:y>
++<tren:x+rdf:datatype="&xsdDfloat">144.0</tren:x>
</owl:Thing>  

Figure 5. Camera 1: contextual objects annotation 
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Context-aware computing
Ambient Intelligence

11 

this section, we describe in detail the structure and the functions of the smart 

cameras and the fusion node. 

 

Figure 1. Architecture of the framework: Smart Cameras and Fusion Node 

Smart cameras process data at two logical levels: (i) the tracking layer; (ii) the 

cognitive layer. First, each camera is associated with a process that acquires 

current images. This process implements a tracking sub-system, which 

sequentially executes various image-processing algorithms to detect and trace all 

the targets within the local field of view. The tracking layer is arranged in a 

pipelined structure of several modules, which correspond to the successive stages 

of the tracking process [44] [45]: (1) detection of moving objects; (2) blob-to-

track multi-assignment; (3) track initialization/deletion; (4) trajectory analysis. 

Tracking data is introduced into the cognitive layer to initiate more complex high-

level information fusion procedures. Smart cameras implement an a posteriori 

schema for context information exploitation [7]. This schema proposes the 

implementation of a processing layer on top of the tracking procedure. In this 

layer, abstract ontologies are used to describe abstract entities. The tracking layer 

and the cognitive layer communicate through an interface, which offers methods 

to revise the ontological model in the update and initialization/deletion steps. In 

the next section, we describe the structure of the ontologies and the processes to 

create ontology instances in the cognitive layer.  

Communication between the smart cameras and the fusion node is performed 

when a new (simple) situation is detected. The detected situation is sent to the 

fusion node, expressed in the suitable situation ontology. The use of a formal 

!Interface

Ontological!Model

General!Tracking!Layer

Cognitive!Layer

Tracker

Reasoner

Abductive2rules

Ontological2Model2Instances

Tracking2data Actions

V
id
e
o

Context
Annotation

Scene2
interpretation

Smart2Camera

Spatial
Reasoning
Module

Fusion2Node

Scene2
interpretation

Ontological!
Model

Reasoner

High:Level!Fusion

Scene2
interpretation

O
n
to
lo
gical2M

o
d
e
l2

In
stan

ce
s

...

29 

Additional tasks may be started as a result of this situation; for example, if we had 

unsafe equipment instead of the fridge as the touched object, we could launch a 

warning to the person or to the remote operator. Besides, the new situation 

information �i.e., the new instances of the Action class and other related 

instances� is sent to the fusion node to be processed and fused with other 

situations detected by other cameras.  

 

Figure 9. Camera 1: simple scene recognition (touch) 

Corresponding rules can be defined for other cameras. For example, a similar rule 

can be defined for camera 2. In this case, we are not interested in detecting the 

connection between the person and the fridge bounding boxes; instead, we use the 

RCC predicate NTPP (non-tangential proper part) to detect if the person is inside 

the fridge area. The rule below detects if a person is enclosed in the fridge area 

and creates proper class and relation instances in the scene model of camera 2: 

$$$%Single,camera%simple%scene%recognition%(camera%2)%[4]%
(firerule%
% (and%
% %%(?track% %%%#!tren:Track)%%
% %%(?person% %%%#!smarthome:Person)%
% %%(?person%%%%%?track%%%%%%%%%%#!scob:hasAssociatedTrack)%
% %%(and%%%%%%%%%(?object%%%%%%%%#!smarthome:Fridge)%
% %%%%%%%%%%%%%%%(?*object%%%%%%%?*track%%%%:ntpp)))%
%%(%
% (instance%

person near couchperson touches fridge

fix track positions
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Context-aware computing
Ambient Intelligence

30 

! !!(new&ind!ind!?person!?object)!!!!!#!smarthome:Enclosing)!
! !!(related!(individual!ind)!?person!#!smarthome:enclosed)!
! !!(related!(individual!ind)!?object!#!smarthome:enclosing))!
!!!)!
)!

This rule is fired in camera 2 at frame 134, as depicted in figure 10, and the results 

are very similar as in the previous case. The new Situation and related instances 

are also sent to the fusion node for further processing. 

 

Figure 10. Camera 2 simple scene recognition (enclosed) 

5.5. Multiple-camera scene identification 

The fusion node receives the partial situations detected by single cameras and 

combines them to obtain a global view of the scene represented as ontology 

instances. The fusion node model uses the same ontological model of the smart 

cameras; the instances of the fusion node are created as a result of high-level 

fusion procedures and additional reasoning processes.  

In this example, the fusion node has received the situation information obtained 

by camera 1 and camera 2. This information is encoded as instances of the 

Situation concept of ACTV, besides additional instances that may be interesting �

e.g., the objects involved in the action. A simple rule to fuse these two situations 

can be created to instantiate a UsingFridge action when a person is touching the 

fridge (according to camera 1) and enclosed inside the fridge (according to camera 

2). It can be seen that, in this case, the fusion node behaves as a high-level tracker, 
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since it calculates a better estimation of the position of the person from situation 

information provided by single cameras. Moreover, a proper recommendation can 

be sent back to the cameras to adapt them to the fused situation. Recommendation 

information is encoded with RECO ontology; i.e., it is expressed in a vocabulary 

that the smart camera can manage. 

The UsingFridge instance mentioned before is asserted as an instance of the 

ontological model of the fusion node. We can assume that the fusion node is 

continuously receiving situation information from the cameras during the 

functioning of the system. Some of these situations will be discarded, some of 

them will be fused, and some of them will be directly introduced in the model. 

Situations in the fusion node are time-stamped, in such a way that reasoning 

processes can be developed not only with (almost) simultaneous actions, but also 

by taking into account previous actions. For instance, let us imagine that camera 2 

has detected that a milk bottle has been left on the table. We can suppose that 

proper rules have been defined to identify that this track correspond to a bottle and 

to detect a situation representing that the bottle is partially overlapping the table 

object (figure 11): 

  

Figure 11. Camera 2: detected bottle object partially overlapping table object 

This situation is sent to the fusion node, which directly insert it into the 

ontological model. At this point of the execution, we have a previous situation 

(confirmed that camera 1 and camera 2) that states that the person was using the 
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Context-aware computing
Maritime traffic control & surveillance

J. Gómez-Romero, M.A. Serrano, J. García, J.M. Molina, G. Rogova (2015). Context-based 
multi-level information fusion for harbor surveillance. Information Fusion 21, 173-186.
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Context-aware computing
Maritime traffic control & surveillance

J. Gómez-Romero, M.A. Serrano, J. García, J.M. Molina, G. Rogova (2015). Context-based 
multi-level information fusion for harbor surveillance. Information Fusion 21, 173-186.

Fuzzy ontologies for situation representation

Fuzzy spatial formal properties. Topological relations can be represented in the
Region Connection Calculus (RCC), a formal theory describing a reduced set of
spatial predicates and their properties; e.g. part, disconnected or overlaps. Initial
attempts for a fuzzy RCC have been described in the literature [12,14], but they
have not been implemented in practice.

For example, a user should be able to add to a fuzzy ontology O a restriction
in the type of vehicles allowed inside a restricted area as: hAreaCompliance ⌘

(not Truck) u 9NTPP.RestrictedAreai, where NTPP is the RCC property non-
tangential proper part. Then, a vehicle instance a might be classified as a
member of the AreaCompliance with degree ↵ given by a Best Degree Bound
↵ = bdb(O, a : AreaCompliance) [2]. Di↵erent representations should be sup-
ported; e.g. following [14], the previous example would be: hAreaCompliance ⌘

(not Truck) u 9(hasLocation, hasAreaLocation).NTPPi, which means that: (i) a
vehicle x has a location in a region r, (ii) there is a restricted area located in a
region r0, (iii) we impose that r is inside of r0.

Graded spatial properties. This includes spatial properties not included in the
RCC, such as nearOf or farFrom. These properties can have a fuzzy semantics
(degree of closeness) but also a possibilistic one (degree of confidence in a binary
relationship), as in [6,9]. Fuzzy spatial properties do not need to be defined in
terms of the common membership functions (such as the trapezoidal), e.g.,

h(a, b) : nearOf � ↵i,↵ =

8
<

:

1 dist(a, b)  d1
0 dist(a, b) > d1 + d2
d1+d2�dist(a,b)

d2
otherwise (d2 6= 0)

These relations would be instantiated by geometrical calculations. This kind
of calculations require a large amount of computations, since they must be exe-
cuted in pair-wise entities. This necessarily calls for the implementation of op-
timized geometric models able to segment the space in influence zones in order
to reduce the evaluation time of the functions.

It is also important to give a proper characterization of such properties in a
graded ontology. Fuzzy extensions of OWL 2 [3] allow one to express that the
properties are reflexive, symmetric, or transitive; this is not allowed for example
in [14]. In particular, the propagation of fuzzy properties in transitive properties
deserves some attention, as the choice of the fuzzy operators (in particular, of
the fuzzy t-norm) has an impact. For example, assume that object o1 is close to
o2 with degree 0.7 and that o2 is close to o3 with degree 0.7. Under the minimum
t-norm, the closeness degree between o1 and o3 is at least 0.7; under the product,
the closeness degree might be smaller (at least 0.49).

Spatial data aggregation. Situation assessments associated to spatial objects can
be expressed in terms of fuzzy regions, that can be structured in layers. For
example, we can derive a fuzzy region denoting danger around a restricted area
based on the nearOf property of a vehicle (and other characteristics). Similarly,
we can derive a second fuzzy region denoting danger associated to special tra�c
regulations in the surroundings, such as maximum speed. Combining these two

Fuzzy / belief-based aggregation for threat assessment



16

Context-aware computing
Limitations

Limitations
Knowledge base must be manually created
Context description
Scene recognition

Solutions
Hybridize with Machine Learning
Automatic feature extraction

J. Wang, Y. Chen, S. Hao, X. Peng, L. Hu (2018). Deep learning for sensor-based 
activity recognition: A Survey. Pattern Recognition Letters, In Press (Corrected 
Proof).

7. Grand challenges
C. Flexible models to recognize high-level activities. More complex high-level 
activities need to be recognized other than only simple daily activities. It is difficult 
to determine the hierarchical structure of high-level activities because they 
contain more semantic and context information. Existing methods often ignore 
the correlation between signals, thus they cannot obtain good results.
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Knowledge-based systems
Example

An example: building information model
BIM: representation of volumes, materials and equipment in a building
US National Building Information Model Standard Project Committee: 
A digital representation of physical and functional characteristics of a facility.
Shared knowledge resource for information about a facility that provides support for decision-
making during its life-cycle

IFC (Industry Foundation Classes) specification
Object-based data model (EXPRESS) + text-based file interchange format (STEP)
Allows creating readable models and data validation rules
Lacks a mathematical characterization of the semantics of its representation primitives
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Knowledge-based systems
Semantic BIM

Clinic_Plumbing_20121206
https://www.nibs.org/page/bsa_commonbimfiles?&hhsearchterms=%22common+and+bim+and+file%22%3E#project3

https://www.nibs.org/page/bsa_commonbimfiles?&hhsearchterms=%22common+and+bim+and+file%22%3E
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Knowledge-based systems
Semantic BIM

2012-03-23-Duplex-02-Design-COBie
https://www.nibs.org/page/bsa_commonbimfiles?&hhsearchterms=%22common+and+bim+and+file%22%3E#project1

ISO-10303-21;
HEADER;
FILE_DESCRIPTION ((''), '2;1');

FILE_NAME ('', '2012-03-26T07:44:57', (''), (''), '', '', '');
FILE_SCHEMA (('IFC2X3'));

ENDSEC;
DATA;
#528817= IFCRELDEFINESBYPROPERTIES('3jRe8Qj014LexP6MAAaocL',#521411,$,$,(#521705),#528819);

#528818= IFCPROPERTYSINGLEVALUE('Perimeter','Perimeter',IFCREAL(21.422000885009766),$);
#528819= IFCPROPERTYSET('0BTfgrhSzE7A4ylBNY0c08',#521411,'PSet_Revit_Dimensions',$,(#528818,#528772));

#528823= IFCPROPERTYSINGLEVALUE('Volume','Volume',IFCREAL(12.239999771118164),$);
#528825= IFCRELDEFINESBYPROPERTIES('0SxgxlR9HBTv4S8OOy8qKz',#521411,$,$,(#521767),#528827);
#528826= IFCPROPERTYSINGLEVALUE('Perimeter','Perimeter',IFCREAL(15.319000244140625),$);

#528827= IFCPROPERTYSET('0s2gvnbuHFsPHqUBVmekO5',#521411,'PSet_Revit_Dimensions',$,(#528826,#528815));
#528828= IFCRELDEFINESBYPROPERTIES('1DT1FrbgbAzBJW7JxLFHG0',#521411,$,$,(#521829),#528830);

#528830= IFCPROPERTYSET('3Kej1LMmLFFv1q5cOROun2',#521411,'PSet_Revit_Dimensions',$,(#528831,#528842));
#528831= IFCPROPERTYSINGLEVALUE('Perimeter','Perimeter',IFCREAL(5.434999942779541),$);
#528800= IFCRELDEFINESBYPROPERTIES('1YTeCslg99wBKwvk5n7MVq',#521411,$,$,(#521668),#528802);

#528803= IFCPROPERTYSINGLEVALUE('Perimeter','Perimeter',IFCREAL(9.840999603271484),$);
#528802= IFCPROPERTYSET('1c9QrLEi51DAOC5wSkN0jT',#521411,'PSet_Revit_Dimensions',$,(#528803,#528823));

https://www.nibs.org/page/bsa_commonbimfiles?&hhsearchterms=%22common+and+bim+and+file%22%3E
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Knowledge-based systems
Semantic BIM

ifc:Ifc
BuildingElement

ifc:IfcRelAssociatesMaterial

ifc:relatedObjects_of_IfcRelAssociates

ifc:IfcMaterialSelect

ifc:relatingMaterial

ifc:IfcMaterial ifc:IfcMaterial
Layer

“CONCRETE”

wall_1

window_1
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relation

subtype of

ifc:name_of_IfcMaterial

ifc:name

Mapping from IFC to OWL > ifcOWL ontology
IFC-to-RDF tool
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Knowledge-based systems
Semantic BIM

Querying IFC RDF

“All the building elements built from concrete”

(solved by a reasoning engine)

+ More complex expressions
+ User-defined concepts
+ Detection of inconsistencies
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Knowledge-based systems
Semantic BIM

Fuzzy IFC

J. Gomez-Romero, F. Bobillo, M. Ros, M. Molina-Solana, M.D. Ruiz, M.J. Martin-
Bautista (2015). A fuzzy extension of the semantic Building Information Model. 
Automation in Construction 57, 202-212.
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Knowledge-based systems
Semantic BIM

Fuzzy IFC
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Knowledge-based systems
Semantic BIM

Fuzzy IFC

Queries
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Knowledge-based systems
Semantic BIM

Fuzzy IFC
more…

Fuzzy taxonomies
A concept is partially included into other concept 
GlassMaterial is a MineralMaterial with degree 0.8

Fuzzy datatypes
Imprecise statements over a concrete domain 
A HighWindow is a window with height defined by the trapezoid (1.2, 1.7, 10, 10)

Fuzzy modifiers
Change the meaning of a fuzzy concept by modulating its membership function
A VeryHighWindow is a Highwindow modulated by the triangle function (0.4 1 1)
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Knowledge-based systems
Semantic BIM

Fuzzy IFC
Applications

Cross-domain knowledge linking
A concept is partially included into other concept; graded relationships

Imprecise BIM query
Retrieve instances of fuzzy concepts; e.g. big room, breezeway

Fuzzy parametric modeling
Define soft constraints & use fuzzy constraint satisfaction 

Pros & Cons

+ Inferencing
+ Available tools
– Expressiveness is computationally expensive
+/– Ontology modeling knowledge is required 
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Knowledge-based systems
Semantic BIM

Energy IN TIME
Simulation-based control for energy efficiency building 
operation and maintenance

ifcOWL DeLorean

Semantic Sensor 
Network Ontology
W3C Recommendation
19 October 2017
https://www.w3.org/TR/vocab-ssn/

https://www.w3.org/TR/vocab-ssn/
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Knowledge-based systems
Semantic BIM

Energy IN TIME
Simulation-based control for energy efficiency building 
operation and maintenance

Semantic Sensor Network Ontology
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Knowledge-based systems
Example

An example (II): Natural Language Processing & Information 
Retrieval

Entity 
Recognition

Entity 
Disambiguation

Instance 
Extraction

Fact 
Extraction

Query & 
Reasoning

Paris

http://dbpedia.org/page/Paris

<dbr:Paris, dbo:country, dbr:France>
<dbr:Paris, dbo:mayor, dbr:Anne_Hidalgo>
<dbr:Paris, dbp:wordnet_type, wn:monument-noun>

SELECT ?person
WHERE { 

?person dbo:birthPlace dbr:Paris ; 
rdf:type dbo:Scientist

} LIMIT 100 link

https://dbpedia.org/sparql?default-graph-uri=http%3A%2F%2Fdbpedia.org&query=%0D%0A%0D%0ASELECT+%3Fperson+%0D%0AWHERE+%7B+%0D%0A+++%3Fperson++dbo%3AbirthPlace+dbr%3AParis+%3B+%0D%0A+++rdf%3Atype+dbo%3AScientist+%0D%0A%7D+LIMIT+100%0D%0A&format=text%2Fhtml&CXML_redir_for_subjs=121&CXML_redir_for_hrefs=&timeout=30000&debug=on&run=+Run+Query+
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Knowledge-based systems
Environmental scanning

ePOOLICE
Early pursuit against organized crime using environmental
scanning, the law and intelligence systems

Extracting & processing open data to provide support to strategic 
analysis by means of an integrated indicator dashboard
Data acquisition
Web, External databases, Internal knowledge repository
Text processing
Entity recognition, Document categorization and filtering
Pattern discovery
Mining of relationships between entities, Discovery of trends correlations
Situation and threat assessment
Threat models, Information Fusion, Alarms
Visualizing, interpreting, discovering
Map-based dashboard
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Knowledge-based systems
Environmental scanning

Web crawling

Entity recognition
Relation identification

Document classification

Semantic knowledge 
representation

Enriched data
mining
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Knowledge-based systems
Environmental scanning

Monitoring indicators of 
Traffic of Human Beings in the UK

Crawling

NLP

Pattern 
recognition

Anomaly 
detection

Threat 
assessment

Decision-
making

Structured data

Newspaper data about 
investigations on 

fraudulent admissions in 
private colleges + 

QAA reports

Correlation between 
presence of non-legit 
private colleges and 

organized crime in some 
regions, but not in other

Threat assessment model: 
Fraud + Conditions favoring traffic of 

human beings (e.g. low wages) + events of 
interest (e.g. changes in visa laws) =>

Opportunities for organized crime groups

Monitoring indicator evolution and 
application to other regions

RDF data
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Knowledge-based systems
Environmental scanning

Organized Crime taxonomy 
used for crawling (drug 
trafficking)



35

Knowledge-based systems
Environmental scanning

Extracted facts
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Knowledge-based systems
Environmental scanning

Extracted facts
with probability values
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Knowledge-based systems
Environmental scanning

Fuzzy representation of
credibility / reliability values
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Knowledge-based systems
Environmental scanning

Dashboard indicator
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Knowledge-based systems
Example

COPKIT
https://copkit.eu/copkit-project-presentation-video/

Analyzing, investigating, mitigating and preventing the use of new 
information and communication technologies by organized crime and 
terrorist groups. For this purpose, COPKIT proposes an intelligence-led 
Early Warning (EW) / Early Action (EA) system for both strategic and 
operational levels. 

Improvements
Federated knowledge base
API for read/write knowledge base
Crowdsourced expert knowledge
Enhanced support for NLP

https://copkit.eu/copkit-project-presentation-video/
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Knowledge-based systems
Tools

Blazegraph
https://www.blazegraph.com

“ultra-scalable, high-performance graph database with support for the Blueprints and 
RDF/SPARQL APIs”
1. High Performance Native graph database
2. Apache TinkerPop™ API or RDF/SPARQL
3. Single machine data storage to ~50B triples/quads
4. REST API with embedded and/or webapp deployment

Virtuoso
https://virtuoso.openlinksw.com

“solution for data access, virtualization, integration and multi-model relational 
database management (SQL Tables and/or RDF Statement Graphs)”
1. Not-Only-SQL (NoSQL) data management
2. Web application deployment
3. Data privacy & security
4. Maximizing investments in legacy system

https://www.blazegraph.com/
https://virtuoso.openlinksw.com/
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Knowledge-based systems
Tools

GraphDL
https://github.com/jgromero/graphdl

“OWL ontology that allows describing graphs with a simple vocabulary denoting
nodes, edges, and properties that can be easily translated into other formats”

J. Gomez-Romero, M. Molina-Solana (2018). GraphDL: An Ontology for Linked Data Visualization. 
18th Conference of the Spanish Association for Artificial Intelligence (CAEPIA 2018)

J. Gómez-Romero, M. Molina-Solana, A. Oehmichen, Y. Guo (2018). Visualizing large knowledge 
graphs: A performance analysis. Future Generation Computer Systems 89, 224-238.

https://github.com/jgromero/graphdl
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Knowledge-based systems
Tools

Topbraid Composer
https://www.topquadrant.com/tools/ide-topbraid-composer-maestro-edition/

Repository
Collaborative editor
Web server

Data shapes
Rules
ETL
Info pages
Endpoint

https://www.topquadrant.com/tools/ide-topbraid-composer-maestro-edition/
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Knowledge-based systems
Tools

SHACL
https://www.w3.org/TR/shacl/

Shapes Constraint Language: Language for validating RDF graphs against a set of 
conditions (shapes), which are as well expressed in RDF.  

https://www.w3.org/TR/shacl/


44

Knowledge-based systems
Tools

SHACL to GraphQL
https://www.topquadrant.com/graphql/shacl-graphql.html

“GraphQL schemas are automatically generated using data shape
definitions in the Shapes Constraint Language (SHACL)”

GraphQL
https://graphql.org

“Query language for APIs and a runtime for fulfilling those queries”

https://www.topquadrant.com/graphql/shacl-graphql.html
https://graphql.org/
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Recap

“A little semantics goes a long way”
James Hendler, co-creator of the Semantic Web

https://www.cs.rpi.edu/~hendler/LittleSemanticsWeb.html

https://www.cs.rpi.edu/~hendler/LittleSemanticsWeb.html
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