

Symbolic Artificial Intelligence

Natalia Díaz Rodríguez

Sept. 2018

ENSTA ParisTech and INRIA Flowers flowers.inria.fr http://asr.ensta-paristech.fr/natalia.diaz@ensta-paristech.fr/la301 Logique et IA - 3A - Master (2018/2019) https://perso.telecom-paristech.fr/bloch/OptionIA/Logics-SymbolicAI.html

Dealing with uncertainty: Fuzzy (Description) Logics and
Fuzzy Ontologies

Why Fuzzy Logic?

- Real life is not black or white
- Classical (crisp) logic: true/ false
- Fuzzy Logic: [0, 1]. Ex. blond, tall, cheap
- For automatic reasoning about uncertain, vague, incomplete or imprecise knowledge
- For near natural language expressions [2]

Fuzzy Logic and Fuzziness [10]

Fuzzy statements:

- involve context sensitive concepts with no exact definition, no binary decision/membership function:
 - Ex. small, close, far, cheap, expensive, is about, similar to, warm, cold.
 - **Ex**. Find me a good hotel close to the conference venue
 - If a hotel is close to the leaning tower of Pisa, then it is a touristic hotel
- ullet are true to some degree, taken from a truth space (usually [0, 1])

Types of Logic

Language	Ontological Commitment ¹	Epistemological Commitm. ²			
Propositional Logic	Facts	True/False/Unknown			
First-order Logic	Facts, objects, relations	True/False/Unknown			
Temporal Logic	Facts, objects, relations, times	True/False/Unknown			
Probability Theory	Facts	Degree of belief (01)			
Fuzzy Logic	Degree of truth	Degree of belief (01)			

¹What exists?-facts?, objects?, time? beliefs? What exists in the world

²What states of knowledge? What an agent believes about facts. [U. Straccia]

Fuzzy Description Logics

Fuzzy Knowledge Base (FKB) or fuzzy ontology: a finite set of axioms that comprises a fuzzy ABox A and a fuzzy TBox T [3].

Fuzzy ABox: a finite set of fuzzy (concept or role) assertions

Fuzzy TBox: a finite set of fuzzy General Concept Inclusions (GCIs), with a min. fuzzy degree of subsumption.

Logical operators of conjunction, disjunction and complement are special cases of the three fuzzy operators:

- 1. A possibilistic product is a t-norm: a \otimes b, conjunction, \wedge
- 2. A possibilistic sum is a t-conorm: a \bigoplus b; disjunction, \vee
- 3. Fuzzy complement: ¬ c

A fuzzy KB K is *consistent* if there is a model of K that satisfies each axiom in K.

Fuzzy operators supported by fuzzyDL

Operator	Łukasiewicz logic	Gödel logic	Zadeh logic
Conjunction $\alpha \land \beta$ Disjunction $\alpha \lor \beta$ Negation $\neg \alpha$	$\max(\alpha + \beta - 1, 0)$ $\min(\alpha + \beta, 1)$ $1 - \alpha$	$\min(\alpha, \beta)$ $\max(\alpha, \beta)$ $\begin{cases} 1 & \text{if } \alpha = 0 \\ 0 & \text{otherwise} \end{cases}$	$\min(\alpha, \beta)$ $\max(\alpha, \beta)$ $1 - \alpha$
Implication $\alpha o \beta$	$\min(1-\alpha+\beta,1)$	$\begin{cases} 1 & \text{if } \alpha \leq \beta \\ \beta & \text{otherwise} \end{cases}$	$\max(1-\alpha,\beta)$

Fuzzy Description Logics Reasoners [6]

Reasoner	Fuzzy DL	Event Subscript.	SPARQL	Cardinality Restr.	Fuzzy Sets	Concept Modifier	Fuzzy Data Type	Defuzzification	Fuzzy Rule	Satisfiab. Degree
FiRE	$\mathcal{F}-\mathcal{SHIN}$			X						х
[194, 193, 189]										
GURDL [84]	$\mathcal{F}-\mathcal{ALC}$									x
De-Lorean [29]	$\mathcal{F} - \mathcal{SROIQ}$			Х	Х	Х	X			x
GERDS [85]	$\mathcal{F}-\mathcal{ALC}$									
fuzzyDL [30]	$\mathcal{F} - \mathcal{SHIF}(\mathbf{D})$				Х	х	Х	х	Х	x
YADLR [119]	SLG algorithm									x
Fuzzy OWL	$\mathcal{SROIQ}(\mathbf{D})$									
Plugin[Fuz, 31]										
FRESG [87]	$\mathcal{F} - \mathcal{ALC}(\mathbf{G})$						х			x
SoftFacts	\mathcal{F} -DLR-lite									

FuzzyDL Architecture

fuzzyDL answers queries by solving an MILP problem: minimising a linear function wrt a set of constraints (linear inequations in which rational and integer variables cannot occur); MILP problems will be bounded with rational variables ranging over a subset of [0,1] and integer variables ranging over {0,1}

FuzzyDL reasoner syntax Example³

```
(define-primitive-concept Tall *top*)
(instance fernando *top*1.0)
(instance umberto Tall 0.9)
(related fernando umberto isFriendOf 0.8)
```

 $^{^3*}top*$ denotes the universal concept (similar to OWL2 class Thing. Tall is a fuzzy concept, isFriendOf a fuzzy relation. umberto and fernando are individuals) [4]

Partitioning a domain with fuzzy membership functions

Fuzzy Membership Functions (in fuzzyDL[4])

a) Trapezoidal function; b) Triangular; c) Left-shoulder; d) Crisp interval e) Linear f) Right-shoulder

FuzzyDL Reasoning Services

- KB consistency. A fuzzy KB $\mathcal K$ is consistent if there is a model of $\mathcal K$ that satisfies each axiom in $\mathcal K$.
- Concept satisfiability. A fuzzy concept c is n-satisfiable w.r.t. a fuzzy KB K if there exists a model of K where c can have some instance with degree greater or equal than p, where p is a degree of truth. In fuzzyDL, this task can also consider some particular individual oinstead of an arbitrary one.
- Best satisfiability degree (BSD) of a fuzzy concept c w.r.t. a fuzzy KB $\mathcal K$ is the maximal degree D such that c is D-satisfiable w.r.t. $\mathcal K$.
- Minimal satisfiability degree (MSD) of a fuzzy concept c is similar to the BSD but considering the minimal degree rather than the maximal one
- Concept subsumption. c2 D-subsumes c1 w.r.t. a fuzzy KB K if in every model of K. c1 is included in c2 with degree greater or equal than b. The degree of inclusion is computed using a fuzzy implication.
- Entailment. A fuzzy KB K entails an axiom if every model of K satisfies it. fuzzyDL computes entailments of assertions and GCIs.
- Best Entailment Degree (BED) of a non-graded axiom with respect
 to a fuzzy KB K is the maximal degree D such that the axiom is
 satisfied in every model of K with degree greater or equal than D.
- Maximal Entailment Degree (MED) of a non-graded axiom is similar to the BED but considering some model rather than any model.
- Instance retrieval. Given a concept c and a fuzzy KB K, the instance retrieval problem computes the individuals that belong to c with a non-zero degree together with the minimal degree of membership in every model of K.
- Variable maximisation. Given a fuzzy KB K and a variable x, maximise x such that K is consistent.
- Variable minimisation. Given a fuzzy KB ${\cal K}$ and a variable ${\bf x}$, minimise ${\bf x}$ such that ${\cal K}$ is consistent.
- Defuzzification. Given a fuzzy KB.K., a concrete role t., a concept c, and an individual o, compute the BSD of for the individual o and then defuzzify the value of t for the individual o using some defuzzification method: largest of maxima (LOM), smallest of maxima (SOM), or the middle of maxima (MOM).
- Best Non-Fuzzy Performance (BNP). Given a triangular fuzzy number F = (triangular q1 q2 q3). BNP(F) = (q1+q2+q3)/3. This is particularly useful when fuzzy numbers are arithmetically combined.

Query languages: SPARQL Query Example:

```
SELECT ?calendar1 ?phone2
2 WHERE{ ?user0 a ha:User.
      ?user0 ha:hasName "Natalia"^^xsd:string.
      ?userO ha:hasCalendar ?calendar1.
      ?user0 ha:hasPhone ?phone2.
      ?user0 ha:isInLocation ?location3.
      ?phone2 ha:isInLocation ?location3.
      ?location3 ha:isNear ?office4.
      ?user5 a ha:User.
      ?user5 ha:hasName "Johan"^^xsd:string.
10
      ?user5 ha:hasOffice ?office4.}
11
```

Fuzzy DL Query Syntax [4]

(Q1) (Q2)	(sat?) (min-sat? C [o])	Consistency Minimal Satisfiability Degree of a concept
(Q3)	(max-sat? C [o])	Best Satisfiability Degree of a concept
(Q4)	(min-instance? o C)	Best Entailment Degree of a concept assertion
(Q5)	(max-instance? o C)	Maximal Entailment Degree of a concept assertion
(Q6)	(min-related? o1 o2 R)	Best Entailment Degree of a role assertion
(Q7)	(max-related? o1 o2 R)	Maximal Entailment Degree of a role assertion
(Q8)	(min-subs? C D)	Best Entailment Degree of a GCI
(Q9)	(max-subs? C D)	Maximal Entailment Degree of a GCI
(Q10)	(min-g-subs? C D)	BED of a GCI using Gödel implication
(Q11)	(max-g-subs? C D)	MED of a GCI using Gödel implication
(Q12)	(min-l-subs? C D)	BED of a GCI using Łukasiewicz implication
(Q13)	(max-1-subs? C D)	MED of a GCI using Łukasiewicz implication
(Q14)	(min-kd-subs? C D)	BED of a GCI using Kleene-Dienes implication
(Q15)	(max-kd-subs? C D)	MED of a GCI using Kleene-Dienes implication
(Q16)	(all-instances? C)	Instance retrieval
(Q17)	(max-var? var)	Variable maximisation
(Q18)	(min-var? var)	Variable minimisation
(Q19)	(defuzzify-lom? C o t)	LOM defuzzification
(Q20)	(defuzzify-som? C o t)	SOM defuzzification
(Q21)	(defuzzify-mom? C o t)	MOM defuzzification
(Q22)	(bnp? F)	Best Non-Fuzzy Performance

Ex. Recommending wines to a food and occasion [5]

Fuzzy Wine Ontology v 1.00

Submit

This Fuzzy Wine Ontology is based on 601 wines

You picked: Candle and Game

The most suitable wines for this combination are:

0.883 Villages_Cuvee_3_Fleurs

0.881 Abadal Cabernet Sauvignon Reserva

0.823 Domaine Depeyre

0.717 Belleruche

0.713 Baron de Ley Reserva

0.709 Terres de Berne

0.704 Beringer Clear Lake Zinfandel

0.703 Beringer_Founders_Estate_Merlot

0.699 Amarone_della_Valpolicella_Classico_I_Castei_2

0.699 Amarone della Valpolicella Classico I Castei

Fuzzy DL Example: Wine ontology [4]

```
C:\Documents and Settings\usuario\Escritorio\FuzzyWine.fdl
                                                                                                   (define-fuzzy-logic zadeh)
 6 (define-fuzzy-concept MediumAlcoholForWine triangular(0.0, 20.0, 12.0, 13.0, 14.0) )
    (define-fuzzy-concept HighPriceForWine right-shoulder(0.0, 10000.0, 15.0, 30.0))
10 (implies (and SparklingWine (some hasSugar DrySugarContentForSparklingWine) ) DrySparklingWine 1.0)
11 (define-primitive-concept PinotNoir (some hasColor RedWineColor ))
12 (define-primitive-concept Chianti (some locatedIn ChiantiRegion ))
13 (define-concept RedWine (and Wine (some hasColor RedWineColor ) ) )
14 (define-concept Beautolais (and Wine (some locatedIn BeautolaisRegion ) ) )
15 (define-concept HighPriceWine (some hasPrice HighPriceForWine) )
18 (implies-role madeFromGrape madeFromFruit 1.0)
19 (transitive locatedIn)
20 (symmetric adjacentRegion)
21 (functional hasOualitativeSugar)
22 (inverse hasMaker producesWine)
23 (domain madeFromGrape Wine )
24 (range madeFromGrape WineGrape )
27 (related RemyPannier2009 DAnjouWinery hasMaker 1.0)
28 (instance RemyPannier2009 (= hasAlcohol 12.0) 1.0 )
    (instance RemyPannier2009 (= hasPrice 8.0) 1.0 )
   (min-instance? RemyPannier2009 HighPriceWine )
```

Query languages: Triple patterns in SPARQL \rightarrow fuzzyDL query:

Subscrip- tion pattern	fuzzyDL query
(?, ?, ?)	∀ Concept C: (all-instances? C)
(s, ?, ?)	If s is a Concept: (min-sat? s)
	If Individual $s \in Concept\ C$: (min-instance? $s\ C$)
(?, p, ?)	If D is p's Domain and R is p's Range; \forall Individual $d \in D$
	and \forall Individual $r \in R$: (min-related? $d r p$)
(?, ?, o)	If o is a Concept: (min-sat? o)
	If Individual $o \in Concept \ C$: (min-instance? o C)
(s, p, ?)	If $R \in p$.Range: \forall Individual $i \in R$: (min-related? $s \mid p$)
(?, p, o)	If $D \in p.Domain: \forall Individual \ i \in D: (min-related? \ i \ o \ p)$
(s, ?, o)	\forall Role r, (min-related? s o r)
(s, p, o)	(min-related? s o p)

Practical tools for fuzzy logic and fuzzy ontologies:

- fuzzyDL reasoner⁴ A DL Reasoner supporting Fuzzy Logic and fuzzy Rough Set⁵ reasoning.
- Scikit-fuzzy⁶[11]

⁴https://tinyurl.com/ya8l9y9h

⁵Useful for rule induction from incomplete datasets, a generalization of fuzzy membership

⁶https://github.com/scikit-fuzzy/scikit-fuzzy

Research challenges in (approximated) reasoning

- Scalability (subsumption algorithms [1]: classifying large graphs)
- Reasoning under inconsistency-tolerant semantics: inherently intractable (even for very simple DLs [9] or for tractable DLs).
- Automatic ontology learning
- Can we provide near real time reasoning answers via
 - KR learned with deep learning?
 - Genetic algorithm approximations?

Research challenges in (approximated) reasoning

 Ontology evolution, merging, matching, unification of different specializations (Ex. cross-taxon resource unification ontology for policy consensus decision making [8]).

Research challenges in (approximated) reasoning

Neural-symbolic learning and reasoning (NeSy community)

Three blocks stacked Top one is green Bottom one is red A green

С

red

Is there a green block directly on top of a non-green block?.

Description Logics icebreaker problem [Straccia]

Encode it into Description logics and prove that $\mathit{KB} \models \mathit{ItalianProf} \sqsubseteq \mathit{LatinLover}$

Description Logics icebreaker solution [Straccia]

Encode it into Description logics and prove that $\mathit{KB} \models \mathit{ItalianProf} \sqsubseteq \mathit{LatinLover}$

Solution:

```
Lazy
                   Italian
  Mafioso
                   Italian
LatinLover
            Italian
    Italian
                   (Lazy \sqcup Mafioso \sqcup LatinLover)
ItalianProf
                   Italian
     Lazy
                   ¬Mafioso
     Lazy
                  ¬LatinLover
  Mafioso
                   ¬LatinLover
  Mafioso
                  ¬ItalianProf
     Lazy
                   ¬ItalianProf
```

Ontology examples: Kinect movement and interaction ontology [7]

Human Activity Recognition: Data and Object properties and classes [6]

Fuzzy Human Activity Recognition [6]

Rule	(define-concept antecedent1 (w-sum (0.17 reachMilkOrBowlOr-
1	Box)(0.41 moveMilkOrBowlOrBox)(0.24 placeMilkOrBowlOr-
•	$Box)(0.01 ext{ openMilkOrBox})(0.16 ext{ pourMilkOrBox}))) ext{ (define-}$
	concept consequent1 (g-and User (some performsActivity cereal)))
Rule	(define-concept antecedent2 (w-sum (0.29 reachCu-
2	pOrMedicineBox)(0.3 $moveCupOrMedicineBox)(0.1$
_	placeCupOrMedicineBox)(0.1 $openMedicineBox)(0.1$
	$eatMedicineBox)(0.1 \ drinkCup)))$ (define-concept consequent2
	(q-and User (some performsActivity medicine)))
Rule	(define-concept antecedent3 (w-sum (0.26 reachStackable)(0.27
3	moveStackable)(0.27 placeStackable)(0.20 nullSA))) (define-
	concept consequent3 (g-and User (some performsActivity stack-
	ing)))
Rule	(define-concept antecedent4 (w-sum (0.26 reachStackable)(0.27
4	moveStackable)(0.27 placeStackable)(0.20 nullSA))) (define-
	concept consequent4 (g-and User (some performsActivity unstack-
	ing)))
Rule	(define-concept antecedent5 (w-sum (0.32 reachMicroOr-
5	DrinkingKitchenware) (0.11 $moveDrinkingKitchenware$) (0.11
	placeDrinkingKitchenware) (0.12 openMicro) (0.11 closeMi-
	cro)(0.23 nullSA))) (define-concept consequent5 (g-and User
	(some performsActivity microwaving)))
Rule	(define-concept antecedent6 (w-sum (0.26 reachPickable)(0.27
6	movePickable)(0.47 nullSA))) (define-concept consequent6 (g-and
-	User (some performsActivity bending)))
Rule	(define-concept antecedent7 (w-sum (0.27 reachMicroOr-
7	Cloth)(0.23 $moveCloth$)(0.1 $placeCloth$)(0.1 $openMicro$)(0.1
	closeMicro)(0.1 cleanMicroOrCloth)(0.1 nullSA))) (define-
	concept consequent? (g-and User (some performsActivity
	cleaningObjects)))

Fuzzy Human Activity Recognition [6]

Let's get started!

Learning to model fuzzy ontologies with fuzzyDL reasoner:

- FuzzyDL syntax: http://www.umbertostraccia.it/cs/software/fuzzyDL/fuzzyDL.html
- FuzzyDL syntax and semantics cheeatsheet: https://tinyurl.com/y8slmcck
- How to write ontologies in fuzzyDL:
 http://www.umbertostraccia.it/cs/software/FuzzyOWL/index.html
 → Matchmaking ontology and query examples in fuzzyDL web)⁷

- All Protégé team
- Stefano Bragaglia
- Umberto Straccia and Fernando Bobillo
- Carl Lagoze
- Robin Wikström , Juan Antonio Morente Molinera, Matteo Brunelli
- Martin Giese, Leif Harald Karlsen
- Tarek Besold

References I

- F. Baader, I. Horrocks, and U. Sattler. Description logics. Foundations of Artificial Intelligence, 3:135–179, 2008.
- [2] F. Bobillo. Managing Vagueness in Ontologies. PhD thesis, 2008.
- [3] F. Bobillo and U. Straccia. Fuzzy ontology representation using OWL 2. Int. J. Approx. Reasoning, 52(7):1073–1094, Oct. 2011.
- [4] F. Bobillo and U. Straccia. The fuzzy ontology reasoner fuzzydl. Knowledge-Based Systems, 95:12–34, 2016.
- [5] C. Carlsson, M. Brunelli, and J. Mezei. Fuzzy ontologies and knowledge mobilisation: Turning amateurs into wine connoisseurs. In FUZZ-IEEE, pages 1–7. IEEE, 2010.
- [6] N. Díaz-Rodríguez. Semantic and fuzzy modelling of human behaviour recognition in smart spaces. A case study on ambiental assisted living. PhD thesis, 2016.
- [7] N. Díaz Rodríguez, R. Wikström, J. Lilius, M. P. Cuéllar, and M. Delgado Calvo Flores. Understanding Movement and Interaction: An Ontology for Kinect-Based 3D Depth Sensors. In G. Urzaiz, S. Ochoa, J. Bravo, L. Chen, and J. Oliveira, editors, *Ubiquitous Computing and Ambient Intelligence. Context-Awareness and Context-Driven Interaction*, volume 8276 of *Lecture Notes in Computer Science*, pages 254–261. Springer International Publishing, 2013.

References II

- [8] M. A. Haendel, J. P. Balhoff, F. B. Bastian, D. C. Blackburn, J. A. Blake, Y. Bradford, A. Comte, W. M. Dahdul, T. A. Dececchi, R. E. Druzinsky, T. F. Hayamizu, N. Ibrahim, S. E. Lewis, P. M. Mabee, A. Niknejad, M. Robinson-Rechavi, P. C. Sereno, and C. J. Mungall. Unification of multi-species vertebrate anatomy ontologies for comparative biology in uberon. *Journal of Biomedical Semantics*, 5(1):21, May 2014.
- [9] R. Rosati. On the complexity of dealing with inconsistency in description logic ontologies.
 In Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence - Volume Volume Two, IJCAl'11, pages 1057–1062. AAAI Press, 2011.
- [10] U. Straccia. Foundations of fuzzy logic and semantic web languages. Chapman and Hall/CRC, 2016.
- [11] J. Warner, J. Sexauer, scikit fuzzy, twmeggs, A. M. S., A. Unnikrishnan, G. Castelão, F. Batista, T. G. Badger, and H. Mishra. Jdwarner/scikit-fuzzy: Scikit-fuzzy 0.3.1, Oct. 2017.