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How can mathematical morphology be associated with Al, in symbolic,
semi-qualitative and machine learning frameworks?

Introduction to mathematical morphology
Mathematical morphology and logics
Mathematical morphology and spatial reasoning
Mathematical morphology and deep learning

Note: only a small part of mathematical morphology will be described, and
a small part of Al as well...
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Introduction to mathematical morphology

1. Introduction to mathematical morphology
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Introduction to mathematical morphology

Lattices and information processing

Lattices: core mathematical structure in many information processing
problems.
Examples:

soft computing (fuzzy sets, bipolar information),
knowledge representation,

logics,

formal concept analysis,

automated reasoning,

decision making,

image processing and understanding,
information retrieval,

etc.

Mathematical morphology on complete lattices.
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Introduction to mathematical morphology

Mathematical morphology for spatial information

Matheron [Matheron, 1967, Matheron, 1975], Serra
[Serra, 1982, Serra, 1988]

m A theory of space.
m Widely used in image processing and interpretation.
m At different levels (local, regional, structural...).

m For different tasks (filtering, enhancement, segmentation,
interpretation, spatial knowledge modeling...).
Filtering
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Introduction to mathematical morphology

Segmentation
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Introduction to mathematical morphology

Interpretation
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Introduction to mathematical morphology

Knowledge modeling What is the region to the right of R? Is B to the
right of R (and to which degree)?

. I ~=—— Object B

Reference object (R)

Spatial reasoning
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Introduction to mathematical morphology

Algebraic dilations and erosions -

[Heijmans and Ronse, 1990]

Complete lattices (7, <), (T',<')
Example: (P(E),C) for a set E
Algebraic dilation: § : 7 — T’ such that
V(X,') eT, 5(V,'X,') = V:-(S(X,')
Algebraic erosion: € : T — T such that

V(x:) € T, e(Nxi) = Nie(x;)

Properties:
m §(0) =0 (in P(E),0 =10)
me(l')=1(in P(E),| =E)
m J increasing, € increasing
m in P(R"), 6(X) = Uxexd({x})
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Introduction to mathematical morphology

Adjunctions

0:T =T ,e:T' =T, (e0) adjunction if:
VxeT,Vy eT, d(x) <y e x<ely)

Properties:
m6(0)=0 and (') =1
m (£,0) adjunction = ¢ = algebraic erosion and ¢ = algebraic dilation
m ) increasing = algebraic dilation iff 3¢ such that (&, ) is an adjunction
= ¢ = algebraic erosion and ¢(x) = \/{y € T, d(y) <’ x}
¢ increasing = algebraic erosion iff 39 such that (£,0) is an adjunction
= § = algebraic dilation and 6(x) = A{y € T/, e(y) > x}
m 6> Id and de < Id’
mcde =cand ded =0
B cded = ed and dede = de
m ¢ and ¢ increasing such that de < Id’ and €6 > Id = (e, ) adjunction
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Introduction to mathematical morphology

Morphological dilations and erosions

m On the lattice of the subsets of R"” or Z", with inclusion:
0(X) = Uxexd({x})

m + invariance under translation 5
= 3B, §(X) = D(X,B) = {x, By N X # 0} (with By = x + B).
m B = structuring element (neighborhood, binary relation).
m Same result on the lattice of functions.
m Similar results for erosion: 3B, ¢(X) = E(X, B) = {x, By C X}.
Derived operators: opening, closing, conditional (geodesic) operations,

gradient...
Relaxing the assumption on invariance under translation: structuring

elements varying in space (ex: projective geometry, omnidirectional
images...).
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Introduction to mathematical morphology

A simple example

(Hlustration: C. Ronse [Bloch et al., 2007])

I. Bloch, S. Blusseau, R. Pino Pérez Mathematical Morphology and Al ECAI 2020 12 /99



Mathematical morphology and logics

2. Mathematical morphology and logics
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Mathematical morphology and logics

Morpho-Logics: first steps

Mathematical morphology on logical formulas, via the models, in
propositional logic [Bloch and Lang, 2000, Bloch and Lang, 2002].

m Set of all models of a formula ¢: [p] ={w € Q| w = ¢}

m Lattice structure on the set of all models < lattice structure on the
set of formulas (up to an equivalence relation).

[ Vo] =[] Vvl

[ Al =[] N ¥,

[¢] C [¥] iff ¢ = 4, and ¢ is consistent iff [¢] # 0
Algebraic dilations and erosions as in any complete lattice.
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Mathematical morphology and logics

Morphological dilation of a formula ¢ with a structuring element B:

[68(¢)] = 68([¢]) = {w € Q| B, A ¢ consistent}.

Morphological erosion:

[es(@)] = ea(l¢]) = {w e Q| B, = ¢}

B: a relation between worlds, e.g. neighborhood, distance.

0,1,1) (1,1,1)

0,0, 1) 1,0, 1)
(¢ ) q ( )

® v

(0,1,0 €1, O)O 5((/3)

(0,0,0) (1,0,0)

Example of a dilation of size 1 (Hamming distance):
pe=(aNnbAc)V(maN—-bAc)and §(¢)=(-aVbVc)A(aV-bVc).
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Mathematical morphology and logics

Use for typical reasoning problems in Al
[Bloch et al., 2001, Bloch et al., 2004, Bloch et al., 2006, Bloch et al., 2018].

m Revision.

Merging (fusion).
m Abductive reasoning.
m Mediation.
Using dilations and erosions

Morphological partial ordering: stratification of the models from successive
dilations and erosions.

Example: x 2fy <X¢ z



Mathematical morphology and logics

Fusion(e1, ¥2)
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Mathematical morphology and logics

Belief revision
Revision of ¢ by 1) (new piece of information): ¢ o4 (with minimal
change on the initial set of beliefs)

porp=10"(p) N1

with n = min{k € N | 6%() A is consistent}.

©11) 1,11
©,0,1 1,0,1)
® v
o v
@19 "0 vow
(0,0,0 (1,0,0)

Satisfies the AGM postulates [Alchourron et al., 1985] in Katsuno and
Mendelzon's model [Katsuno and Mendelzon, 1991].
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Mathematical morphology and logics

Belief merging

Morphological expressions of several operators for logical fusion of beliefs
{¢1...om} under integrity constraint p, satisfying the rationality postulates
of [Konieczny and Pino Pérez, 2011]:

AT (1o om) = 0"(01) A" (2) Ao NG (pm) A o
where n = min{k € N | §*(¢1) A ... A 6¥(¢om) A v is consistent}.
AL (1, mom) =\ 0™(p1) AS™(02) A A O™ (o) A

(15 snm)

where >~ n; is minimal with §™ (1) A 6™ (p2) A ... A 8™ (om) A p
consistent.

@ ¢
o v

s O amsep)
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Mathematical morphology and logics

Agent 1:

m prefers to travel in Spain: @1 = Spain.
Agent 2:

m prefers to travel in Morocco: w2 = Morocco.
= conflict!
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Mathematical morphology and logics

Extending preferences using dilations:
0(v1) = Spain V France V Portugal \/ Morocco

0(p2) = Morocco V Algeria\/ Portugal vV Spain

Fusion:
A(p1,92) = 0(v1) A d(p2) = Spain vV Portugal \V Morocco.

= Solution for travelling in the set of models of this formula.
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Mathematical morphology and logics

Mediation
Symmetric merging is not always fair:

= New mediation operators based on morphological median.
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Abduction
m Explanation v of a: XU {7y} F a.
m Abduction: finding the best explanations.
m Rationality postulates of [Pino Pérez and Uzcategui, 2003].
m General idea: finding the most central models in ¥ or in ¥ A a.

= Using morphological erosions:

-

>y E=d v =y (XA a)

=N

o 5 5 “ vEs ei(Z A @)

afcy %! vy (T, a) AN
Choice of the structuring element =
m explanation as a disjunction (OR),
m explanation as a conjunction (AND),

m explanation as an exclusive disjunction (XOR).
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Mathematical morphology and logics

Other logics

First order logic, with application to merging
[Gorogiannis and Hunter, 2008b, Gorogiannis and Hunter, 2008a]
Modal logics [Bloch, 2002]:

Accessibility relation / Structuring element -0 /e =< /6

Description logics [Hudelot et al., 2008, Atif et al., 2014]: § and ¢ as binary
predicates, ontological reasoning.

Satisfaction systems and institutions
[Aiguier et al., 2018a, Aiguier et al., 2018b, Aiguier and Bloch, 2019]:
m General framework for many logics.
m Revision based on relaxations.
m Abduction based on cuttings and retractions.
m Dual operators from dilations and erosions.

m Towards spatial reasoning.
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Mathematical morphology and spatial reasoning

3. Mathematical morphology and spatial reasoning

Qualitative (symbolic) and semi-qualitative frameworks

Spatial reasoning: Knowledge representation and reasoning on spatial
entities and spatial relationships
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Mathematical morphology and spatial reasoning

Spatial reasoning using modal morpho-logic

Examples in mereotopology (with O = ¢ and ¢ = §):

m tangential part: ¢ — ¥ and O A =) consistent, or
@ — 1 and ¢ A -0 consistent
Y/y
&(Y)/ Oy
X/

8(X) /¢ ¢

® non tangential part: Gy — ), or p — O

m external connection (adjacency):
© A 1 inconsistent and $p A 9 consistent (or ¢ A $1p consistent)

Further links between mathematical morphology and RCC:
[Bloch et al., 2007, Bloch, 2017, Landini et al., 2019]
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Mathematical morphology and spatial reasoning

Abductive reasoning: example in image understanding

Lateral
Ventricle

Non-Enhaneed [
Brain Tumor L

Caudate
Nuclei

Putamen

Pathological brain with a tumor

KE(@H—0)

Compute the "best” explanation to the observations taking into account

the expert knowledge (e.g. formalized in description logic)
[Atif et al., 2014]

I. Bloch, S. Blusseau, R. Pino Pérez Mathematical Morphology and Al ECAI 2020

27 /99



Mathematical morphology and spatial reasoning

Thox:

Brain

CerebralHemisphere
PeripheralCerebralHemisphere
SubCorticalCerebralHemisphere
GreyNuclei

LateralVentricle

BrainTumor

SmallDeforming Tumor

SubCorticalSmallDeforming Tumor

PeripheralSmallDeforming Tumor

LargeDeforming Tumor
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M n

HumanOrgan

BrainAnatomicalStructure
CerebralHemisphereArea
CerebralHemisphereArea
BrainAnatomicalStructure
BrainAnatomicalStructure

Disease M 3hasLocation.Brain

BrainTumor M 3hasBehavior . Infiltrating
M3hasEnhancement.NonEnhanced
SmallDeforming Tumor M

JhasLocation. SubCorticalCerebralHemisphere
M3closeTo. GreyNuclei

BrainTumor M

FhasLocation. PeripheralCerebralHemisphere
M3farFrom. LateralVentricle

BrainTumor M

ThasLocation. CerebralHemisphere
M3hasComponent. Edema
M3hasComponent. Necrosis

M3hasEnhancement. Enhanced



Mathematical morphology and spatial reasoning

DiseasedBrain = Brain 1M FisAlteredBy . Disease

TumoralBrain Brain M isAlteredBy .Brain Tumor

SmallDeforming TumoralBrain

Brain 1 isAlteredBy .SmallDeforming Tumor

LargeDeforming TumoralBrain

Brain M 3isAlteredBy . LargeDeforming Tumor

PeripheralSmallDeforming TumoralBrain

Brain M isAlteredBy . PeripheralSmallDeforming Tumor
SubCorticalSmallDeforming TumoralBrain = Brain M 3isAlteredBy . SubCorticalSmallDeforming Tumor
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Mathematical morphology and spatial reasoning

Abox:

t
€1
h
pP1
(t1, 1)
(t1, h)
(t1, p1)

Most specific concept:

BrainTumor

NonEnhanced
LateralVentricle
PeripheralCerebralHemisphere
hasEnhancement

farFrom

hasLocation

C = BrainTumor M JhasEnhancement.NonEnhanced M

dfarFrom.LateralVentricle M

dhaslocation. PeripheralCerebralHemisphere
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Mathematical morphology and spatial reasoning

Concept abduction problem (I, C) : v Cx C

Possible explanation set:
{DiseasedBrain, JisAlteredBy.T , SmallDeforming TumoralBrain,
PeripheralSmallDeforming TumoralBrain...}.

A preferred solution with respect to some minimality criteria:
~ = PeripheralSmallDeforming TumoralBrain
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hematical morphology and spatial reasoning
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Mathematical morphology and spatial reasoning

Semi-qualitative framework: fuzzy sets

m Modeling spatial imprecision (objects, spatial relations).

m Fusion.

m Reasoning.
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Mathematical morphology and spatial reasoning

Fuzzy sets in a nutshell (Zadeh, 1965)

m Space S (image space, space of characteristics, etc.).

m Fuzzy set: p: S — [0,1] — p(x) = membership degree of x to p.

m Set theoretical operations: complementations, conjunctions
(t-norms), disjunctions (t-conorms).

m Logics, aggregation and fusion operators...
Example: spatial fuzzy set
m S: R3 or Z3 in the digital case
m S —[0,1] - u(x) = degree to which x belongs to the fuzzy object
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Mathematical morphology and spatial reasoning

Fuzzy spatial relations [Bloch, 2005]

Set theoretical relations.

Topology: connectivity, connected components, neighborhood,
boundaries, adjacency.

Distances.

Relative direction.

More complex relations: between, along, parallel, around...
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Mathematical morphology and spatial reasoning

Modeling fuzzy spatial relations: example
Mathematical models: combining fuzzy sets and mathematical
morphology.

Vright Ovigne (Square) Svon (SQuare)
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Mathematical morphology and spatial reasoning

Types of representations

number in R™ (or in [0, 1])

interval

fuzzy number, fuzzy interval, distribution
spatial fuzzy sets

linguistic value

logical formula

= unifying framework of fuzzy set theory

Amin = 17, dHaus = 80
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Mathematical morphology and spatial reasoning

Reasoning

m Ontological representations:

m concepts, relations, roles...
m semantic gap between abstract concepts and image features
m linguistic variable

m Reasoning for image understanding:

m graphs and hypergraphs, conceptual graphs
®m matching

m constraint satisfaction problems

m logics
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Mathematical morphology and spatial reasoning

Example in brain imaging

m Concepts:
m brain: part of the central nervous system located in the head
m caudate nucleus: a deep gray nucleus of the telencephalon involved

with control of voluntary movement

m glioma: tumor of the central nervous system that arises from glial cells
...

m Spatial organization:
m the left caudate nucleus is inside the left hemisphere
m it is close to the lateral ventricle
m it is outside (left of) the left lateral ventricle
m it is above the thalamus, etc.
...

m Pathologies: relations are quite stable, but more flexibility should be
allowed in their semantics
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Mathematical morphology and spatial reasoning

Symbolic knowledge

Knowledge of
specific cases

Generic
knowledge

Brain tumor
ontology

Brain anatomy
ontology +
brain structural

Structures

description

Healthy
cases

Ontology-based segmented image database

Derives from

llnput

\Inside(PtR, GPR) is preserved A

Graph based representation of the generic

Near of Near of

Adjacent
Fuzzy modeling of
spatial relations

____» Directional relation|
Distance relation

Learning procedure

.

Step 2:

« learning spatial
relation for specific
cases

« deducing stable
relations for each
class of pathologies

Step 1:

learning spatial
relations (adjacency,
distance, orientation)
of the generic model
using healthy cases

,1.40,0.96]

1 Fuzzy representations and adaptation

Dealing with a specific case l

Generic model
adaptation using

Graph based
propagation process to
update the graph and to

Modified relations

knowledge of specific ™ represent the tumor

case and results of the impact on the Enrichment

learning procedure surrounding structures of the
database
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Mathematical morphology and spatial reasoning

[Fouquier et al., 2012, Nempont et al., 2013]
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Mathematical morphology and spatial reasoning

[Delmonte et al., 2018]
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Mathematical morphology and spatial reasoning

m Descriptions:

m Sacral Plexus = (crossing(VertebralCanallL5) and not anterior
of(ObturatorMuscle)) or (crossing(SacralHoleS1) and not (anterior
of(LevatorAniMuscle) ...

m 5S4 = crossing SacralHoleS4 and crossing SacrumCanal

m L5 = anterior of Sacrum and ...

...

m Spatial relations: fuzzy models and mathematical morphology.
m Fuzzy connectives.

m Aggregation and final decision.

[Muller et al., 2019]



Mathematical morphology and spatial reason

Conceptual graphs and complex spatial relations [Vanegas et al., 2016]

==== Sea:R1l

—m=== Boal:R7

—_— Boat:R2

== Boat:R4
-

- Dock:R5
-~
~=Ship:R3

p -
X8 Dock:R6

(s) Example image. (b) Labeled image: The blue regions represent the
sea, the red and orange represent ships or boats and
the yellow regions represent the docks.

Water Harbour_Structures Ship

Boat:R2
Chdiaceily

(c) Concept hierarchy T¢: in the context of (d) Conceptual graph representing the spatial orga-
harbors nization of some elements of Figure 5.8(b)
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Mathematical morphology and deep learning

4. Mathematical morphology and deep learning
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Mathematical morphology and deep learning

4.1 Combining Mathematical Morphology and Deep Learning
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Mathematical morphology and deep learning Combining Mathematical Morphology and Deep Learning

Morphological pre-processing

[Decenciere et al., 2018]: Dealing with Topological Information within a Fully
Convolutional Neural Network
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Mathematical morphology and deep learning

Combining Mathematical Morphology and Deep Learning

Morphological pre-processing

[Decenciere et al., 2018]: Dealing with Topological Information within a Fully
Convolutional Neural Network

A geodesical reconstruction adds non-local topological information.

4 ;
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Mathematical morphology and deep learning Combining Mathematical Morphology and Deep Learning

Morphological pre-processing

[Decenciere et al., 2018]: Dealing with Topological Information within a Fully
Convolutional Neural Network

A geodesical reconstruction adds non-local topological information.

\»71‘

Left: input image ; Middle: Segmentation of a test image by a U-net trained on raw
images (no pre-processing) ; Right: Segmentation of the same image by a U-net trained
on pre-processed images where non-local topolgical information was included.
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Mathematical morphology and deep learning

[Xu et al., 2018]: White Matter Hyperintensities Segmentation In a Few
Seconds Using Fully Convolutional Network and Transfer Learning.

top-hat FLAIR T1
slice n slice n slice n
Top hat residual
it
res
-'maue-- -[-}.‘(- - 3 v meLu
n 1 ek
| I

L ‘ » soft max

ag. up-conv axa + crop b

output
-, ssqmenmlwn

Fig. 2. Architecture of the proposed network. We fine tune it and combine linearly
fine to coarse feature maps of the pre-trained VGG networl Note that each color
image (Input) is built from the slice n of the T1 and FLAIR sequences, and from a
pre-processing result.

8
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Mathematical morphology and deep learning

[Couteaux et al., 2019]: Automatic knee meniscus tear detection and orientation
classification with Mask-RCNN

The input to the CNN is enhanced by a black top-hat, which improves explainability.
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Mathematical morphology and deep learning Combining Mathematical Morphology and Deep Learning

Morphological pseudo-labelling

Motivation: In many real life applications (industrial, bio-medical),
m a large amount of data is available
m but little is labelled (labelling is expensive)

m best performance are expected from supervised learning strategies
(deep learning)
Can we train sophisticated models on cheap labelling and still get good
performance?
“Cheap labelling”: typically, by a non supervised algorithm (e.g. a
morphological one).
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Mathematical morphology and deep learning Combining Mathematical Morphology and Deep Learning

Morphological pseudo-labelling

Example: Segmenting strands in high resolution X-ray computed
tomography of 3D woven fabric
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Mathematical morphology and deep learning Combining Mathematical Morphology and Deep Learning

Morphological pseudo-labelling

Target segmentation
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Mathematical morphology and deep learning

A morphological pipeline to produce distance functions as pseudo-labels.

S

Adaptive anisotropic opening [Blusseau et al., 2018].
Classical morphological closings, fill holes.

Distance function, watershed transform and new distance function on each segment.
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Mathematical morphology and deep learning

Top to bottom: Input, morphological processing used for pseudo-labelling, associated contours.
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Mathematical morphology and deep learning Combining Mathematical Morphology and Deep Learning

Morphological pseudo-labelling

A U-net is trained to compute pseudo distance functions on the morphological
pseudo-labels.

e 4
| ad

6161 64 61 61
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Mathematical morphology and deep learning

e e —

Top to bottom: Input, output of a U-net trained on the pseudo-labels, associated contours.
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Top to bottom: Input, morphological processing used for pseudo-labelling, associated contours.
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Top to bottom: Input, output of a U-net trained on the pseudo-labels, associated contours.
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Mathematical morphology and deep learning

4.2 A short review on morphological neural networks
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Mathematical morphology and deep learning A short review on morphological neural networks

Probably the first paper on the topic

[Wilson, 1989]: Morphological networks

Weighted rank order filters
The weighted rank order filter will be defined informally as follows. The reference point of the structuring ele-
ment is placed at an image pixel. That pixel value is changed by (a) adding the weights of the structuring
elements to the corresponding pixels that the structuring element contacts, (b) ordering the resulting sums, and

(c) choosing the Rth element in the ordered list as the output. The same notation as election will be used
where the symbol Z implies a three dimensional structuring element.

Xy

N‘
X2 %‘
. . alx)
X,

A neuron performs a weighted rank order filter:
a(x) = rankedr {xj + wj, 1 < i < n}
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Mathematical morphology and deep learning A short review on morphological neural networks

Probably the first paper on the topic

[Wilson, 1989]: Morphological networks

Figure11.

Example of a rank trace
in a multi-layer network.
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Mathematical morphology and deep learning A short review on morphological neural networks

Neural networks without learning.

[Davidson and Ritter, 1990]: A theory of morphological neural networks

1. Introduction. The recent resurgence of interest in artificial neural networks has brought a
deluge of publications to the field (4,9,15]. Applications of neural networks are appearing in a wider
variety of fields each year. Recently, neural networks have been tied to a mathematical structure
known as image algebra [14]. Image a.lgebm was developed specifically for the concise expression and

clear repr tion of image pr and to provide a mathematical environment for
image processing a.lgonthm development comparison, and optlmlzanon [5,12,13]. It has been shown
that a subalgebra of the image algebra includes the math 1 formulations of currently popular

neural network models [14], and image algebra expressions have been derived that represent some
well-known algorithms designed for neural network computations. The neural network algorithms
represented by these expressions look like their textbook formulations. These image algebra expres-
sions are extremely simple and translucent, and the number of expressions representing each algorithm
is very small. Furthermore, the image algebra has suggested a more general concept of neural compu-
tation than those that are currently used. In this paper we present a theory for a neural network that
uses morphological operations. Several specific applications are given. In particular, we discuss net-
works that compute the morphological operations of opening and closing. We also give an example of
a net that can perform the morphological operation of a sieve. A sieve is a morphological filter which
filters out objects which are larger than a specified size [16].

We remark that an entirely different approach to a morphological network was presented in [17].
However, this particular model uses the usual operation of multipli and tion at each node,
a fundamental difference from the model presented here, which uses the operation of addition and
maximum at each node.

17. S.S. Wilson, “Morphological Networks,” in Proc. of the 1989 SPIE Visual Comm. and Image
Proc. IV, Phila., PA (Nov., 1989).
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Neural networks without learning.

[Davidson and Ritter, 1990]: A theory of morphological neural networks

b =/(r=0)

a®t={yc(y)cly)= xg(a(x)-ty(x), YEY} a @ t = {{y.e)): v) =x¥x.(x)+"’(x)’ Lo

‘While in|classical network [models, the initial{ computation of 7 !@uation II! is a linear proceg

the computation of 7 in the model described by Equations VI and VIII is jnonlinear] If the neural net-
work model can be expressed using Equations VI and VII as the underlymg equa.tlons of computation,
we call it a|morphological neural network| The remainder of this paper presents several specific mor-
phological neural networks that can calculate openings, closings, and the boolean sieving filters as
described by Serra [16].
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Neural networks without learning.

[Davidson and Ritter, 1990]: A theory of morphological neural networks

A neuron performs a dilation:

Xy

GO

xIl

a(x) = max{x; + w;, 1 <i<n}
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[Davidson and Hummer, 1993]: Morphology neural networks: An
introduction with applications.

Example 4. The Boolean Dilation Net with Learning.

The set of training data for this network consists of P pairs of images, (a*, d*),
k=0,...,P — 1, where a* represcnts the input image and d* = a* B t is the
input image dilated with an ideal (invariant) template t, which is the same for
all images. In practical cases, the template t is assumed to be unknown.

Example 6. Grayscale Dilation with Learning for Variant Templates. This
network is a generalization of nets in Examples 4 and 5, and is a more gen-
eral form of the network in [5]. The additive maximum transform that this net
attempts to learn can be any arbitrary grayscale one, including a variant trans-
form. For a given set of P training data pairs, the learning rule needs about
three passes through the data set to guarantee perfect recall of the P training
images.
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[Davidson and Hummer, 1993]: Morphology neural networks:
introduction with applications.

Figure S. Table of change-of-weight rules for boolean dilation network.

Bloch

Example 4. The Boolean Dilation Net with Learning.

case af d o new value for wy; is
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Figure 6. (a) Sample input training data; (b) sample natural scene (panda); (c) image in
(b) dilated with von Neumann template; (d) output of net after X = 5 training images
applied, for input of (b); (¢) output of net after X = 10, for input of (b); (f) output of net
after X = 15, for input of (b); (g) output of net after X = 20, for input of (b).
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Learning dilations on images

[Davidson and Hummer, 1993]: Morphology neural networks: An introduction

with applications.
Example 6. Grayscale Dilation with Learning for Variant Templates.

Figure 12. (a) One of the 13 training input images. (b) Test image. () Dilation of the
test image by t. (d) Dilation of the test image by w(0). (¢) Dilation of the test image
by w(13). (f) Dilation of the test image by w(26). (g) Dilation of the test image by
w(37) =w(3P - 2).
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Learning some decision surfaces (two classes)

[Ritter and Sussner, 1996]: An introduction to morphological neural

networks.
m Computing capabilities of Morphological Neural networks (can represent any boolean
function)
m Morphological Associative Memories

m Single Layer Morphological Perceptron (SLMP): learning in finite steps but limited class of
decision surfaces

P = (p,p2y---,Pn) € I W = {wy,wa,...,wy} €T, fogp)=1
w
B n
g(p) = -V1 [pi + wi fog(p)=0
=
f(z) = {1 if 2>0 Fig. 3. Decision boundary for a
“ Lo else. single layer morphological perceptron.
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Learning any decision surfaces (two classes)

[Sussner, 1998]: Morphological perceptron learning

B Generalized Single Layer Morphological Perceptron (SLMP)
e
,-.‘ < G,
[ [~ )
parameters a; € {1, —1} are responsible for changing the =
signs of the sums p; + w;. % %
E o X ) .
" G

Figure 2:
Decision boundaries for diff types of
single layer morphological perceptrons in the
two-dimensional case.

f (‘__’1 api +w.~))
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Learning any decision surfaces (two classes)

[Sussner, 1998]: Morphological perceptron learning

B Multilayer Morphological perceptrons (MLMP): learning in finite steps and arbitrary
decision surfaces (for 2 classes)

Finally, we present an algorithm for solving arbitrary
instances of the 2-class problems by means of a two-layer
morphological perceptron. Given a set of k training pat-
terns in R”, this algorithm finds appropriate weights for a v
two-layer morphological perceptron such that each of the
training patterns is correctly classified by the two-layer
morphological perceptron. This algorithm also determines
how many nodes in the hidden layer are necessary in order
to solve the given problem.

o

Learning in conventional mul- [ 3 10
tilayer perceptrons can be achieved by minimizing a certain Figure 6: *
error function which depends on the weights. Finding the Decision surface found by 1eaming algorithm.

global minimum of this error function is a very difficult
task, and is not always possible. Weight training in mul-
tilayer morphological perceptrons does not encounter such
limitations.
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Improving the learning of hyperboxes with SGD

[Zamora and Sossa, 2017]: Dendrite morphological neurons trained by
stochastic gradient descent.

d, (x)=min, ;o (min(X =W, 1, Wi = X))
X2

() <0

n
Wmax

(b)

Decision Boundaries

(c) (d)
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[Zamora and Sossa, 2017]: Dendrite morphological neurons trained by
stochastic gradient descent.

—> Pr,
By (x) = min (min (X — Wy, ¢, Wy + by — X))
S
o dc(x) = max (hk‘c(x))
fl— rr
t exp (dc(X.
m ) ey
a
X
y=arg znax(l’rc(x))
—> Pry,

Fig. 3. Neural architecture for a DMN with a softmax layer. Each class corresponds
to one dendrite cluster d,.
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Between linear and morphological networks.

[Pessoa and Maragos, 2000]: Neural networks with hybrid
morphological /rank/linear nodes: a unifying framework with applications
to handwritten character recognition.

-
. w1
2P = 2P + (1 — 2P, : ® :
o = Rp(y' ™V +afl), H ”
=1 : —_$—> 0
BY =y + 70, R no Y
where A?, 10 e R; al, b e RN+, H 1
: ‘ :
: v, :
1 U
S vupapapupspnsn J

I-th layer
Fig. 2. Structure of the Ith layer in an MRNN.
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[Pessoa and Maragos, 2000]: Neural networks with hybrid
morphological /rank/linear nodes: a unifying framework with applications to
handwritten character recognition.

An example in two dimensions:

1.

Z
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Y I

77 e 17 T,

e

e e s

I

L
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@ (b)
yi =Amin{x; +a,,x, +a,}

+ (1 = AD(x1by + x2b5 + 19).
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[Pessoa and Maragos, 2000]: Neural networks with hybrid
morphological /rank/linear nodes: a unifying framework with applications to
handwritten character recognition.

‘/V i
Xq

PCA
—

N=5,10,20

MLP and MRL nets compared: similar performance with faster convergence for
MRLs.
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Dense max-plus layers to prune networks

Seminal experiment by [Charisopoulos and Maragos, 2017].

Input layer Linear layer Dilation layer Output layer
784
YFZ,-:lWijxj z=max, oy [+ y;)

Classification of the MNIST dataset.
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Weights o, for N=64
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Output layer

ALlsl— O
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@»  —_ (:) Cio

Weights o, for N=64
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Weights of the two layers in the previous

architecture [Charisopoulos and Maragos, 2017], after training on the
MNIST dataset.

Left: weights wj; of the 10 active linear filters. Right: weights o of the
max-plus layer for N = 64 units in the previous layer.
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Extended study by [Zhang et al., 2019].
m Adding dropout:

5 : W |
E 0 5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30
Epochs
(a) Dropout : 0%  (b) 25% (c) 50% (d) 75% (e) 90%

Classification accuracy per epochs for 25 runs with different random
initializations and dropout ratios on MNIST validation set.
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Extended study by [Zhang et al., 2019].

m Interpretation of max-plus blocks as “dynamic” Maxout units
[Goodfellow et al., 2013]:

y Yy
f class 1 w b K units
X Wy 74 ~ m x Z

. Wy - class 1T Z
S > — z S ‘( )
) y _Kunits -

z S max .
> class3 ()
=\ casc ——=)

N
J

~ ‘(7
class 4 -

Pruned fully-connected layer  Pruned Max-plus layer

lllustration of the comparison between the pruned Max-plus model (left) and
Maxout model (right).
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Extended study by [Zhang et al., 2019].

m Pruning deeper CNNs for more complex data:

CNN Max-plus Pruned Max-plus
conv(5*5) conv(5*5) conv(5*5)
maxpool(2*2) maxpool(2*2) maxpool(2*2)
conv(5*5) conv(5*5) conv(5*5)
maxpool(2*2) maxpool(2*2) maxpool(2*2)
fc(384) fc(384) fc(384)

fc(192) fc(192) fc(10)
fc(10) maxplus(10) maxplus(10)
[ 83.5% \ 83.9% \ 83.9% |

The architecture of the CNN model, unpruned and pruned Max-plus model, along

with their performance on the test set of CIFAR-10 dataset.
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[Franchi et al., 2020]: Deep morphological networks.

m Morphological layers instead of convolutional layers (shared weights)
m Learned structuring elements (morphological counterpart of the kernel filters)
m Gradient based optimization using modern tools (Tensorflow)
m Adaptive pooling, classification, denoising, edge detection
- - /TN
foncaenstio) | (o
N A
. " 1x1x(2D)xD

Fig. 3. The morphological pooling operator. The erosion and dilation share the
same structuring element and are applied in parallel to the input data. The results
of these al operators are c and projected back to the origi-
nal size with a 1 x 1 convolution.

output

image
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4.3 Deep morphological networks in practice
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Code tutorial 1: pruning a network with a max-plus dense
layer

Architecture: “max-plus block” [Zhang et al., 2019]
xR yeR) zeRK wfeR> wmeRXxK
I
Y = i Xi WZ
maxi<j<Js4Yj + WJ'Z} .

Zi

Fully-connected layer Max-plus layer
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Code tutorial 1: pruning a network with a max-plus dense
layer

Fully-connected layer Max-plus layer Pruned fully-connected layer O Pruned Max-plus layer

Illustration of the comparison between the original Max-plus block (left) and the pruned
Max-plus block (right).
m Tutorial based on code available
at https://github.com/samyblusseau/maxplusblock.

m The notebook running on Google Colaboratory is at
https://cloud.mines-paristech.fr/index.php/s/BEZIx6s7uZWqXxW
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Mathematical morphology and deep learning

Original

|

Gradient 1 Gradient 2 Gradient 3 Gradient 4 Gradient 5

VAVA VA DA DA

m Tutorial based on code bdeveloped y Santiago Velasco-Forero, available at
http://wuw.cmm.mines-paristech.fr/~velasco/morpholayers/intro.html

m The notebook running on Google Colaboratory is at
https://cloud.mines-paristech.fr/index.php/s/BEZIx6s7uZWqXxW
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Conclusion

m Algebraic framework of mathematical morphology.

m Strong properties.

m Natural links with logics.

m Applies in different frameworks (many types of logics, fuzzy sets,
bipolarity, graphs and hypergraphs, formal concept analysis...).

m Knowledge representation.

m Reasoning (on preferences, on beliefs, on spatial information...).

m Both symbolic and numerical.

m Combination with machine learning and deep learning.
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