Image processing mammography applications

Isabelle Bloch

Isabelle.Bloch@telecom-paristech.fr

http://perso.telecom-paristech.fr/bloch

LTCI, Télécom ParisTech

Image processing for mammography

- 1. Answering needs for systematic screening, diagnosis, interventional applications.
- 2. Several imaging modalities.
- 3. Here: focus on X-ray mammography and tomosynthesis.

A few words on imaging modalities

Mammography: capability to image microcalcifications

A few words on imaging modalities

Echography: lesion differentiation, needle guidance

A few words on imaging modalities

MRI (using Gd): local extension assessment, diagnosis after treatment

Typical views

• cranio-caudal

• medio-lateral-oblique

Image processing chain

From native image..

- Image correction:
 - gain / offset
 - defect pixels
 - modulation transfer function compensation
- Post-processing:
 - log transformation
 - thickness equalization
 - constrast enhancement
 - CAD
 - ...

Display:

- lighting
- monitor calibration
- VOI / LUT
- ... to visualization

Next: illustrations from S. Muller, GE Healthcare

Image correction

Image correction

FTM compensation

Thickness equalization

Thickness equalization

Thickness equalization

Images Brutes

Images pour le présentation

Contrast enhancement

Contrast enhancement

Contrast enhancement

Computer assisted detection: CAD

Computer assisted detection: CAD

Mammography - p.10/27

CAD methods

- Filtering and enhancement:
 - preferably using local methods
 - local statistics, wavelets...
 - compromise under-enhancement (can cause FN) / over-enhancement (FP)
- Segmentation:
 - thresholding and region growing
 - edge detection and deformable models
 - template matching
 - Markov random fields
 - left/right differences
 - multiscale
 - fuzzy methods
- Quantitative measures: intensity, shape, texture, clusters
- Classification:
 - artificial neural networks
 - kernel-based methods (SVM...)
 - decision trees

Evaluation:

- specificity and sensitivity
- ROC curve: true positives as a function of false positives

- Greater conspicuity of lesions.
- Borders of lesions more clearly defined.
- Reduced call-back rate almost eliminates recall for superimposed structures (summation shadows).
- Accurate 3-D location.
- Better differentiates benign from malignant.

CAD for tomosynthesis

PhD thesis of G. Peters, with GE Healthcare

Algorithm scheme

Dense kernel detector

Using wavelets and brackground density estimation:

Segmentation result: circumscribed lesion

Region-based

Contour-based

Segmentation result: spiculated lesion

Original image

Region-based

Reference contour

Contour-based

Initialization

Hybrid

Hypothesis testing for a radiological finding

Features from fuzzy contours

Features: area, compacicty, mean gradient along the contour, homogeneity...

Algorithm scheme for aggregation on particle level

Complete processing chain

Automated detection of opacities and architectural distorsions in tomosynthesis

PhD thesis of G. Palma, with GE Healthcare

Global scheme: two "channels" approach

Makers from connected filters

A contrario detection

$$K_{c,q,r} = \begin{cases} 1 & \text{if } ||\overrightarrow{cq}|| < r \\ \wedge (\tan(\theta))||\overrightarrow{cq}|| \le \alpha r \\ 0 & \text{otherwise.} \end{cases}$$

 θ = angle between \overrightarrow{cq} and orientation at point q.

$$\tan(\theta) || \overrightarrow{cq} || \qquad \theta \qquad q$$

$$c \qquad \alpha r$$

$$q_3$$

$$q_4$$

$$q_5$$

$$q_6$$

$$q_7$$

$$q_8$$

$$q_9$$

$$q_1$$

$$Z_{c,r} = \sum_{q \in \Omega/\alpha r < ||\overrightarrow{cq}|| < r} K_{c,q,r}$$

A contrario detection

 $Z_{c,r} \ge \lambda_r$ is ϵ -meaningful if the expectation of its number of occurrences in the image is less than ϵ (Desolneux et al., IJCV, 2000)

$$\lambda_r = \min\left\{\lambda \in \mathbb{N}/P[Z_{c,r} \ge \lambda] \le \frac{\epsilon}{M}\right\}$$

where M it the number of pairs (c, r) to be considered.

A contrario detection:

- computing $\{\lambda_r\}$,
- computing orientations,
- computing $Z_{c,r}$ for each (c,r),
- detection of ϵ -meaningful events ($Z_{c,r} > \lambda_r$).

A contrario detection

Results

Dense kernel detection:

Results

Convergence detection:

Performance of the whole dense kernel detection channel

Performance of the *a contrario* detector for spiculated lesions only, and for architectural distortions and highly spiculated lesions

Performance of the suspicious convergence detection channel

Performance of the complete detection process, after the aggregation step

Sensitivity (%)	Specificity (# of false positives per breast)
81.13	1.31
90.57	1.60
96.23	1.81

Plane of a DBT volume exhibiting a strongly spiculated lesion, used in the convergence channel evaluation. Al-though this lesion is not detected by this channel, it is correctly detected by the dense kernel channel, and therefore by the final fusion step.