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Image processing for mammography

1. Answering needs for systematic screening, diagnosis, interventional applications.
2. Several imaging modalities.
3. Here: focus on X-ray mammography and tomosynthesis.
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A few words on imaging modalities

Mammography: capability to image microcalcifications
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A few words on imaging modalities

Echography: lesion differentiation, needle guidance
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A few words on imaging modalities

MRI (using Gd): local extension assessment, diagnosis after treatment
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Typical views

cranio-caudal

medio-lateral-oblique
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Image processing chain

From native image...

Image correction:
gain / offset
defect pixels
modulation transfer function compensation

Post-processing:
log transformation
thickness equalization

constrast enhancement
CAD

Display:
lighting
monitor calibration
VOI / LUT

... to visualization

Next: illustrations from S. Muller, GE Healthcare
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Image correction
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Image correction
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FTM compensation
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Thickness equalization
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Thickness equalization

Mammography — p.8/27



Thickness equalization

Images Brutes

Images pour le présentation
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Contrast enhancement
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Contrast enhancement
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Contrast enhancement
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Computer assisted detection: CAD
I
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Computer assisted detection: CAD
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CAD methods

Filtering and enhancement:
preferably using local methods
local statistics, wavelets...

compromise under-enhancement (can cause FN) / over-enhancement (FP)

Segmentation:
thresholding and region growing
edge detection and deformable models
template matching

Markov random fields
left/right differences

multiscale
fuzzy methods

Quantitative measures: intensity, shape, texture, clusters

Classification:
artificial neural networks
kernel-based methods (SVM...)

decision trees

Evaluation:
specificity and sensitivity

ROC curve: true positives as a function of false positives
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Tomosynthesis

1

Detector

Holland et al found that 76% of non-detected breast cancers are
located in radiological dense breasts (Cancer 1982; 49:2527-2533)
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Tomosynthesis

Reconstruction Algorithms

* SBP, FBP, OSBP
* ART, SART, ML-EM, S
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Tomosynthesis

Conventional Marnmogram Tomosynthesis Slices

Images courtesy of Or Di Moggio ond G Gennaro,

Istituto Oncologico Veneto LR.C.CS. - Podova, Haolia B, oqraphy — p.12/27




Tomosynthesis

Greater conspicuity of lesions.
Borders of lesions more clearly defined.

Reduced call-back rate - almost eliminates recall for superimposed structures
(summation shadows).

Accurate 3-D location.
Better differentiates benign from malignant.
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CAD for tomosynthesis

PhD thesis of G. Peters, with GE Healthcare
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Mammography — p.13/27



Algorithm scheme

Raw Image Candidate Detection

Fuzzy Segmentation

Fuzzy Feature Extraction

Partial Defuzzification

: Acquisition Geometry A Back-Projection / Re-Projection

4 )

Attribute Aggregation

l Classification
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Dense kernel detector

Using wavelets and brackground density estimation:
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Segmentation result: circumscribed lesion

Initialization

Region-based Contour-based Hybrid
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Segmentation result: spiculated lesion

Region-based Contour-based Hybrid
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Detection

Hypothesis A:
Circumscribed Mass

Active Contour Model
Circumscribed Mass
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Fuzzy Active
Contour
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Fuzzy Decision Tree
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Finding

Hypothesis B:
Spiculated Mass

Active Contour Model
Spiculated Mass
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Hypothesis testing for a radiological finding
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Features from fuzzy contours
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Algorithm scheme for aggregation on particle

level
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Complete processing chain

s

original image

wavelet filtering

active contour
segmentation assuming
spiculated mass

active contour
segmentation assuming
circumscribed mass

wavelet filter response

fuzzy active contour fuzzy active contour

( partial defuzzification ] ( feature extraction ] ( feature extraction ] ( partial defuzzification ]

™ : A

fuzzy particle map fuzzy particle map

fuzzx attributes fuzzx attributes

( aggregation ] ( aggregation ] ( aggregation ] (

K

cumulated fuzzy
attributes

aggregation ]

cumulated fuzzy
attributes

fuzzy particle volume fuzzy particle volume

( fuzzy decision tree ] ( fuzzy decision tree ]

memberhip degree memberhip degree

( aggregation ]
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Automated detection of opacities and architec-

tural distorsions in tomosynthesis

PhD thesis of G. Palma, with GE Healthcare
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Global scheme: two ‘‘channels” approach

[ DBT Volume

A contrario detection
Sub-sampling (slice-by-slic
7 N\

[Sub—sampled vqume] [Convergence regions ]

Fuzzy connected
filter (by slice) 2D and 3D

[Fuzzy 3D map ] aggregation
Thresholding

Seeds

Segmentation

Feature extraction
Contours

Feature extraction

Attributes @@

Classification Classification

Classes
Masses detection Ar chitectur al-distortions detection
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Makers from connected filters
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A contrario detection

-------
- -
- "

i (ar <legl] <)
Ke,q,r = A(tan(9)]|cd|| < ar)
0 otherwise.

6 = angle between ¢g and orientation at point g.

Zc,fr — Z Kc,q,r

qeQ/ar<||cq||<r
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A contrario detection

Zer 2 Ar is e-meaningful if the expectation of its number of occurrences in the image is
less than ¢ (Desolneux et al., IJCV, 2000)

A, :min{A EN/P|Zcr 2 N < %}

where M it the number of pairs (c, ) to be considered.

A contrario detection:
computing { -},
computing orientations,
computing Z. . for each (c,r),

detection of e-meaningful events (Z. » > A).

Mammography — p.25/27



A contrario detection
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Results

Dense kernel detection:
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Results

Convergence detection:
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Performances

Performance of the whole dense kernel detection channel
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Performances

Performance of the a contrario detector for spiculated lesions only, and for architectural

distortions and highly spiculated lesions
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Performances

Performance of the suspicious convergence detection channel
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Performances

Performance of the complete detection process, after the aggregation step

Sensitivity (%) | Specificity (# of false positives per breast)
81.13 1.31
90.57 1.60
96.23 1.81

Plane of a DBT volume exhibiting a
strongly spiculated lesion, used in the
convergence channel evaluation. Al-
though this lesion is not detected by this
channel, it is correctly detected by the
dense kernel channel, and therefore by
the final fusion step.
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