Image processing for cardiac and vascular applications

Isabelle Bloch

Isabelle.Bloch@telecom-paristech.fr

http://perso.telecom-paristech.fr/bloch

LTCI, Télécom ParisTech

Image processing for cardiac imaging

- 1. For diagnosis in cardiology: segmentation, derived measures, perfusion, movement.
- 2. For oncology applications (heart = organ at risk).

Requirements and validation depend on the application.

Segmentation for diagnosis

- Examples from R. El Berbari's PhD (collaboration with LIF and HEGP).
- Contraction and late enhancement images.
- Evaluation of left ventricle cinetics.
- Quantification of transmurality of myocardium infarctus.

One slice during the cardiac cycle Late enhancement

Segmentation method

Segmentation method

Endocardium segmentation

• First step:

Each filtered image \rightarrow [$\lambda_1, \lambda_2, \dots \lambda_i$]

Second step:

- segmentation refinement

Step 1

Red: automated segmentation - Green: manual expert segmentation

Evaluation

BDD1: 13 subjects, 39 slices BDD2: 36 normal subjects, 293 slices

Comparison with manual tracing on 20 cases of BDD2

Parametric Analysis of Main Movement

$$P(x, y, t) = A B(x, y) - AV(x, y) \cdot g(t, TON(x, y), TOFF(x, y)) + e(x, y, t)$$

AB image

AV image

Trichromatic image

Image TON

Image TOFF

Estimation of functional parameters

- Segment analysis

- Estimation of radial distances:

Distance map

Image T+ON

-Estimation of mean contraction time:

Evaluation

Global results

BDD2: 36 normal subjects (1752 segments)

Normalized mean contraction time Fmc (Bull eye visualization)

Radial velocity Vm (cm/s)

BDD3:

10 normal subjects + 10 pathological ones with infarctus (444 segments + 408 segments)

Late enhancement image segmentation

Segmentation of cine images

uperposition and registration of contours on LE images

Myocardium segmentation on six slices of LE images

Quantification of infarctus transmurality

Evaluation

BDD4:

9 pathological subjects (921 sub-segments)

- class 0: no enhancement
- class 1: enhancement from 0 to 25 % of myocardium thickness
- class 2: 26 50 %
- class 3: 51 75 %
- class 4: 76 100 %

	Visual					
		0	1	2	3	4
Quantitative	0	584	13	9	2	1
	1	40	24	12	-	1
	2	4	12	47	35	6
	3	2	-	7	13	40
	4	-	-		2	67

Absolute agreement = 80% Relative agreement up to 1 degree = 97% Relative agreement up to 2 degrees = 99%

Каррак = 0.815

Extensions

Right ventricle

Red: automated segmentation - Green: manual expert segmentation

Others: multi-centric evaluation...

Heart segmentation for oncology applications (A. Moreno, J. Wojak)

Using structural constraints

Heart segmentation for oncology applications (A. Moreno, J. Wojak)

Using structural constraints and a breathing model

Heart segmentation for oncology applications (A. Moreno. J. Woiak)

Heart segmentation for oncology applications (A. Moreno, J. Wojak)

Using shape constraints

Magenta = structural constraints, red = shape constraints, green = manual

Heart segmentation for oncology applications (A. Moreno, J. Wojak)

Follow-up

CT in 2007

CT in 2008

Output: Weak prior Output: Strong prior Output: • medium prior

Image processing for vascular imaging

- 1. High quality reconstruction from multiple MRI acquisitions.
- 2. Segmentation of brain vessels from MRA.
- 3. Segmentation of coronary vessels from high resolution CT.

High quality reconstruction from multiple MRI acquisitions (E. Roullot)

High quality reconstruction from multiple MRI acquisitions (E. Roullot)

High quality reconstruction from multiple MRI acquisitions (E. Roullot)

result_anime

Vessel segmentation for...

- better visualization,
- diagnosis assistance (detection, quantification),
- virtual endoscopy...

Some issues:

- classical ones: resolution, noise, partial volume effect...
- vessel specific: thin structures, bifurcations, anomalies...

Three important components

- models (hypotheses),
- features (image information),
- extraction techniques.

p-vascular imaging – p.12/26

Segmentation of coronary vessels from high resolution CT (D. Lesage)

- Collaboration with Siemens Corporate Research.
- High resolution CT: \sim 0.33 mm.
- Vessel model.
- Local features and measurements (flux).
- Segmentation expressed as a tracking process in a Bayesian framework, solved by:
 - minimal path,
 - particle filter.

Segmentation of coronary vessels from high resolution CT (D. Lesage)

Tracking based approach

Overview

Core components

Geometric model Bayesian model Image feature

$$p(x_{0:t}|z_{1:t}) = \frac{p(x_t|x_{t-1})p(z_t|x_t)}{p(z_t|z_{1:t-1})}p(x_{0:t-1}|z_{1:t-1})$$

Minimal path optimization

Particle filter tracking

Flux based measure

 x_i

Penalize asymmetric flux contributions (Koller 95)

$$\mathtt{MFlux}(p,r,d) = \frac{2}{N} \sum_{i=1}^{\frac{N}{2}} \min(\langle \nabla I(x_i), u_i \rangle, \langle \nabla I(x_i^{\pi}), u_i^{\pi} \rangle)$$

Minimal contribution per diametral pair

Comparison with other measures

Minimal path approach

Metric choice

Result example

Particle filter

Evolution

Population at time t $\{x_t^i, w_t^i\}$ $x_t^i = (p_t^i, r_t^i, d_t^i)$ 1. prediction of new states $\{x_{t+1}^i\}$ 2. weight update / correction $\{x_{t+1}^i, w_{t+1}^i\}$ 0 0 No contraction of the second s (1 every 10 generations)

Result examples and evaluation

Result examples and evaluation

"bad" run

"typical" run

"good" run

Cardio-vascular imaging - p.23/26

Comparison of the two approaches

Evaluation on the Rotterdam database (http://coronary.bigr.nl).

Measure	Minimal path	Particle filter	
	(H = 4)	(N = 1000)	
Overlap	85 %	86.2 %	
Distance to the central line (mm)	0.31	0.25	
Error on radius (mm)	0.2	0.2	
Computation time	1 min	4 min	

- FP: less false positives (more robust stopping criterion).
- FP: more precise (no discretization of space).
- MP: less false negative (missing branches).

Conclusion

- Segmentation depends on:
 - imaging data,
 - available knowledge,
 - requirements and final objective.
- Derived quantitative measures answering clinical needs.
- Importance of evaluation.
- Normal / pathological cases.
- Temporal / multi-modality images.
- Bifurcations and distal information (still open).

Other applications and examples:

- other modalities (US, Doppler US, tagged MRI, DTI, TEP...),
- T1/T2 distribution,
- movement analysis,
- perfusion dynamics,

. . .

3D + t + multi-modal modeling of the heart,

E. Angelini

TEP

Tagged MRI

Whole heart model: Physiome project

Models of electrical activation and myocardial mechanics at the whole organ level - http://www.physiome.ox.ac.uk/