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A method called morphology-based brain segmenta-
tion (MBRASE) has been developed for fully automatic
segmentation of the brain from T1-weighted MR image
data. The starting point is a supervised segmentation
technique, which has proven highly effective and ac-
curate for quantitation and visualization purposes.
The proposed method automates the required user
interaction, i.e., defining a seed point and a threshold
range, and is based on the simple operations thresh-
olding, erosion, and geodesic dilation. The thresholds
are detected in a region growing process and are de-
fined by connections of the brain to other tissues. The
method is first evaluated on three computer simulated
datasets by comparing the automated segmentations
with the original distributions. The second evaluation
is done on a total of 30 patient datasets, by comparing
the automated segmentations with supervised seg-
mentations carried out by a neuroanatomy expert.
The comparison between two binary segmentations is
performed both quantitatively and qualitatively. The
automated segmentations are found to be accurate
and robust. Consequently, the proposed method can
be used as a default segmentation for quantitation and
visualization of the human brain from T1-weighted
MR images in routine clinical procedures. © 2000

Academic Press
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INTRODUCTION

Three-dimensional (3-D) segmentation is the group-
ing of similar voxels into coherent volumetric struc-
tures for quantitative volumetric analysis, morpholog-
ical analysis, or visualization purposes. An important
application area is brain segmentation, e.g., for quan-
titative analysis of different brain structures (Kohn et
al., 1991; Collins et al., 1992; Kikinis et al., 1992),
labeling of cortical structures (Sandor and Leahy,
1995; Collins et al., 1995b), localization of electrodes on
the surface of the brain (Van den Elsen, 1993), estab-
lishing abnormal gyration (Shenton et al., 1992), or
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providing an anatomical framework for functional
studies of the cortex (Stokking et al., 1999).

The most widely applied segmentation technique is
manual segmentation, which has several disadvantag-
es: (i) it generally requires a high level of expertise, (ii)
it is time and labor consuming, and (iii) it is subjective
and therefore not reproducible. Studies investigating
inter and intra-patient variations in cerebral function
or anatomy have repeatedly shown these shortcom-
ings, which explains the demand for automated tech-
niques (Kikinis et al., 1992; Gerig et al., 1992; Evans et
al., 1995; Dale et al., 1999; Lemieux et al., 1999). We
focus on a supervised method, originally proposed by
Höhne and Hanson (1992), based on region growing
and morphological operations. The aim of this paper is
to automate the remaining user interaction in this
established method, thereby obtaining a fully auto-
mated segmentation of the brain, and to evaluate the
segmentation results for visualization and volume es-
timation purposes. We will first give an overview of
existing region growing based techniques in the con-
text of MRI brain segmentation followed by a more
specific introduction to our segmentation approach.

In this paper we deal with segmentation of MR brain
images. In general, simple automatic segmentation
techniques fail dramatically because of two disturbing
factors; (i) the MR acquisition suffers from image gra-
dients and/or RF coil inhomogeneities, and (ii) different
anatomical structures are often linked to each other
owing to partial volume effects, noise, imaging arte-
facts, or by connecting tissue (the optic nerves, blood
vessels, etc.). The former factor can be compensated for
to some extent by reducing the non-uniformity of the
intensities (Wells III et al., 1996; Velthuizen et al.,
1998; Sled et al., 1998). To disconnect unwanted ana-
tomical links, the use of morphological operations (ero-
sion/dilation) was found to be effective (Höhne and
Hanson, 1992).

MRI segmentation techniques can be roughly di-
vided into three classes: Clustering methods, region-
based methods, and edge-based methods. For a review
on segmentation of MRI data we refer to Clarke et al.
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(1995) and Niessen (1997). In this paper we focus on
region-based methods with region growing as the main
approach.

In region growing-based techniques a segment is
formed by selecting a seed pixel and continuously add-
ing neighboring pixels that meet certain—generally
simple—requirements, e.g., not exceeding an intensity
range. Region growing has the advantage over thresh-
olding that the resulting objects will be spatially con-
nected.

In a classical paper, Zucker (1976) presented an
overview of several merge criteria for region growing
that were proposed in the early literature on this tech-
nique. A more recent comparison of different ap-
proaches has been given by Jiang et al. (1993). Several
techniques have been reported for the use of region
growing in medical images. Seeded region growing
(Adams and Bischof, 1994; Justice et al., 1997) makes
use of statistical analysis on specified voxels to steer
the region growing. Chang and Li (1994) used a region
growing process where the thresholds are dynamically
and automatically computed using feature histogram
analysis.

In general, region growing methods suffer from the
fact that the tissue under consideration is readily con-
nected to another tissue type, because of overlapping
intensity spectra. Extending region growing with ap-
proaches from mathematical morphology (erosion/dila-
tion) has proven effective (Höhne and Hanson, 1992).
Others have used a region growing method combined
with a connectivity threshold (Barillot et al., 1991) or
interactive, semiautomatic leak removal (Sekiguchi et
al., 1994). A slightly different approach to region grow-
ing has been reported by Cline et al. (1987) who per-
formed a surface extraction from a user specified seed
point on the surface. Weak connecting bridges of a few
pixels in width are eliminated.

Although several of these approaches can be consid-
ered powerful tools for segmentation, none of them is
fully automatic and interaction is required to perform a
segmentation task. This usually requires a medical
expert to actively control the segmentation process and
interactively correct the results. One of the most at-
tractive approaches is the segmentation technique of
Höhne and Hanson (1992) (we will refer to this tech-
nique as the Höhne approach). It is based on region
growing and morphological operations (especially ero-
sion and geodesic dilation, i.e., dilation within a mask
volume), and requires a user defined seed point as well
as a threshold range.

For the analysis of medical volume data, we have
used the Höhne approach incorporated into ANALYZE
(Robb and Hanson, 1996) to segment, e.g., the aorta
from CTA (Balm et al., 1997), and the brain from MRI
(Stokking, 1998). The method proves to be quite prac-
tical for reasons of speed, simplicity, and intuitiveness.
The technique first extracts a base volume from a data-
set using an operator defined threshold (range),
thereby encapsulating the required object. A series of
erosions is applied to remove undesirable connections
with other structures. Subsequent connection to a user
defined seed point and geodesic dilation (to counteract
the erosion) results in a segmentation of the required
object. A considerable part of the process is automated,
thereby achieving a formidable decrease in time and
labor consumption compared to manual segmentation.
However, the process requires little, yet vital interac-
tion from an experienced user, i.e., a seed point must be
selected and a threshold range must be set. Especially
the latter is crucial to the success of the process
(Zucker, 1976; Chang and Li, 1994), which renders the
segmentation results subjective and not reproducible.

In this paper we propose a method called morphol-
ogy-based brain segmentation (MBRASE) to automate
the required user interaction of the Höhne approach
for segmentation of the brain from MRI-T1 data.
MBRASE first selects a seed point and a starting
threshold in a heuristic fashion using histogram infor-
mation. Then MBRASE investigates a region growing
process iterating over thresholds to detect a lower and
an upper threshold. We evaluated the method for vol-
ume estimation and visualization purposes. First,
MBRASE is described and the computer simulated and
patient data used for evaluation of the method are
presented. Then, an extensive evaluation of MBRASE
is conducted where difference and similarity measures
between MBRASE results and the reference data are
calculated. Furthermore, neuroanatomy experts qual-
itatively evaluated the MBRASE results. The conclu-
sion of the study is that MBRASE is an accurate and
reliable method to segment the brain from T1-weighted
MRI data.

METHODS AND MATERIALS

MBRASE

The starting point of the MBRASE segmentation
method is the histogram of grey values of the MRI data
(see Fig. 1 for an example). The first and highest peak
of the histogram refers to background voxels and is
discarded by setting all voxels below a certain percent-
age of the maximum grey value to zero. The then
highest peak is selected as initial threshold value Tstart.

volume of possible seed points is defined by thresh-
lding with Tstart and applying two erosions with a

6-voxel structuring element. A spherical search from
the middle of the dataset is initiated and the first
encountered point in the seed volume is marked as the
seed point. This heuristic approach for selection of a
seed point and Tstart was tested on MRI-T1 datasets of
three patients that were not used for final evaluation of
MBRASE.
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The seed point and Tstart are the input values for the
next and most important component of MBRASE, i.e.,
the definition of the threshold range. This process con-
sists of two parts that iterate over threshold settings.
The first part begins at Tstart and with each iteration of
the process the threshold is decreased by a fixed num-
ber (a step size of 1 is generally recommended) until
the lower threshold (Tlow) is detected (see Fig. 2). The
second part of the process detects the upper threshold
Tup by starting at Tstart and increasing the threshold at
each iteration. Since Tlow is already determined, this
information is used in the latter part of the process to
facilitate and optimize the search for Tup.

Both parts of the process for threshold detection
iterate over threshold settings. At each threshold set-
ting four steps are executed: (I) thresholding, (II) ero-
sion, (III) region growing, and (IV) peak detection.
When no peak is detected in step IV, the threshold is

FIG. 1. The histogram of a patient dataset. Tstart is defined by the
s the starting value for the detection of Tlow and Tup.

FIG. 2. Schematic of the algorithm
decreased (for Tlow) or increased (for Tup) and the four
steps are repeated for the new threshold setting using
the current region growing volume as the seed volume.
This continues until a peak is detected which finishes
the search for Tlow or Tup. The peak typically signals the
inclusion of a new, sizable nonbrain segment through a
connection. The previous threshold value then defines
Tlow or Tup, because the inclusion of a new segment is to
be avoided.

Although the 4 steps are basic operations, some ad-
ditional explanation is required. In step I thresholding
is applied to extract a base volume from the grey value
data. This base volume is eroded twice (step II) with a
6-voxel structuring element to break small connec-
tions. A region growing procedure (step III) is initiated
from the seed point or current seed volume, and grows
one layer of voxels at each iteration of this region
growing process with the eroded base volume as a

hest value after discarding the background voxels. This value is used

detection of the lower threshold T .
hig
for
 low
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mask (i.e., no growing of the volume outside the eroded
base volume is permitted). Eventually the growing
stops, yielding the region growing volume correspond-
ing to the current threshold. Step IV is a peak detection
step to determine whether a new, sizable segment is
included in the region growing volume through a con-
nection. A simple comparison is performed between the
total number of iterations of the region growing process
for the current threshold and the number of iterations
at the previous threshold settings. This last step re-
quires several parameters and will be explained first.

MBRASE was initially tested and optimized using
three patient datasets. The acquisition protocol for
these three sets was comparable to the protocol used
for the group of 30 in our final analysis. Based on the
tests, we decided to define the current number of iter-
ations as a peak whenever this number exceeds 1.5
times the sum of the iterations at the previous five
threshold settings. Unfortunately, no Tup was detected
in two of the three test-cases as the brain did not
connect to other structures when increasing the
threshold from Tstart. In these cases no peak was de-
ected and the process did not stop. We therefore added

FIG. 3. Detection of Tlow. The number of iterations (No of it.) with
patient (B) dataset are presented. The iteration process for the simu
esulting in a Tlow of 42. The process for the patient data started at 1
atasets the increases in the number of iterations earlier on in both
he corresponding segmentations see Fig. 4 for the simulated datase

FIG. 4. Intermediate results of the MBRASE method for simula
representative slice of the original grey value data is shown in Fram
or segmentation of these grey value data. Frame (C) presents the seg
egment(s). Frame (C) is also the final result of the MBRASE met

relatively low grey value connections that define T .
low
an extra stopping criterium: The process for the detec-
tion of Tup stops whenever the number of iterations in
the region growing step is zero for five consecutive
threshold settings, i.e., no growth occurs.

To illustrate the peak detection process we will focus
on the detection of Tlow. Figure 3 shows the typical
results of the region growing process for a computer
simulated dataset and a patient dataset (see next sub-
section). The process for the simulated data begins
with a Tstart of 82 and the patient data begins at a Tstart

of 139. Normally, the process terminates once a peak is
detected, but for illustration purposes peak detection is
turned off and the process continues until the thresh-
old setting reaches the value one. For both the simu-
lated and the patient study the detected peaks—at
values 41 (simulated) and 80 (patient)—signal the in-
clusion of a sizable nonbrain segment as can be verified
in Fig. 4 for the simulated data and in Fig. 5 for the
patient data (see Results). The previous threshold set-
ting is then selected as Tlow, i.e., 42 for the computer
simulated data and 81 for the patient data. Note that
the small increases between Tstart and the detected
peak did not meet the peak detection criteria.

ecreasing threshold value for a computer simulated (A) and a typical
d data started with a Tstart of 82. The peak at value 41 was detected
The peak at value 80 was detected resulting in a Tlow of 81. For both
cesses are not significant enough to qualify as a peak. For results of
nd Fig. 5 for the patient dataset.

MRI data with extreme noise and RF inhomogeneity (9n40RF). A
A). Frame (B) is the result when applying a Tlow of 41 (see Fig. 3A)
tation result with a Tlow of 42 showing the exclusion of the undesired
, since no Tup was detected. The circles in Frame (A) indicate the
a d
late
39.
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An important step in the process is the use of ero-
sions with each threshold before growth is permitted.
This effectively removes small connections caused by
anatomy and the partial volume effects and thus en-
sures a more dramatic increase in the number of iter-
ations growth per threshold when a new segment is
incorporated.

Apart from the parameters of the peak detection
step, MBRASE requires a set of parameters for the
morphological operations. These parameters for the
region growing, erosion, and dilation processes are set
to two erosions, three (is number of erosions plus one)
geodesic dilations and a 6-voxel structuring element.
This is based on information from the ANALYZE ref-
erence manual and our experience with segmentation
procedures.

The final segmentation is performed by applying the
seed point and the threshold range [Tlow–Tup] for seg-
mentation of the brain using the Höhne approach.

Computer-Simulated and Patient Data

MRI computer simulations of a head phantom data-
set have been made available by the McConnell Brain
Imaging Centre at the Montreal Neurological Institute
(http://www.bic.mni.mcgill.ca/brainweb). The head
phantom is described in (Collins et al., 1998) and the
simulator in (Kwan et al., 1999). Each voxel of the
phantom can contain multiple tissue types, thus pro-
viding a fuzzy (i.e., partial volume voxel) model (Co-
cosco et al., 1997). To simplify the comparison between
segmentation results we binarize the Montreal phan-
tom by selecting all voxels with a probability for brain
(denoted grey, white, and glial matter in the Montreal
phantom dataset) higher than or equal to 50% (see also
Vincken et al., 1998).

MRI brain datasets can be simulated using differ-
ences in pulse sequence, slice thickness, noise (options:
0, 3, 5, 7, and 9% of the standard deviation of the mean

FIG. 5. Intermediate results of the MBRASE method for a patien
Frame (A). Frame (B) is the result when applying a Tlow of 80 (see Fig
segmentation result with a Tlow of 81 showing the exclusion of the und
Tup (224). Here, differences between Frames (C) and (D) show the
elatively high grey values. The circles in Frame (A) indicate the hi
intensity of white matter) and nonuniformity (RF) (op-
tions: 0, 20, and 40% resulting in a (varying) RF field
of: 1, 0.9–1.1, and 0.8–1.2). Three MRI-T1 datasets
with a slice thickness of 1 mm are used; (i) 3% noise
and an RF of 0% (simulated data code: 3n00RF), (ii) 3%
noise and an RF of 20% (3n20RF), and (iii) 9% noise
and an RF of 40% (9n40RF). Note: 3% noise and an RF
of 20% are denoted typical, while 9% noise and an RF
of 40% are extreme (Cocosco et al., 1997).

The patient data are T1-weighted 3-D gradient-echo
MR scans (voxel size 1 3 1 3 1.2 mm) of 30 patients
(age range 6 to 17 years) from the Department of Child
Psychiatry at our University Hospital diagnosed with
the Gilles de la Tourette Syndrome, Attention-Deficit
Hyperactivity Disorder, autistic behavior, and/or Ob-
sessive Compulsive Disorder. Upon initial screening,
no gross abnormalities were detected in the MRI data.

Evaluation Methodology

The evaluation of the simulated studies can be done
in an objective fashion, since the segmentation ob-
tained with MBRASE can be compared with the bina-
rized distribution of the computer phantom. This

FIG. 6. Three measures, i.e., percentage overlap (%O), percent-
age extra (%E), and the Similarity Index (SI), are calculated to
compare a binary segmentation set (Seg) with the corresponding
binary reference dataset (Ref).

et. A representative slice of the original grey value data is shown in
) for segmentation of these grey value data. Frame (C) presents the

red segment(s). Frame (D) is the final result using both Tlow (81) and
ortance of the upper threshold to break the connections owing to

grey value connections that define Tup.
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731AUTOMATED MRI BRAIN SEGMENTATION
reference set is called the binarized phantom segmen-
tation.

With patient data an objective gold standard is not
available. However, we had already segmented the pa-
tient datasets for visualization purposes using the super-
vised method of Höhne in an earlier project (Stokking et
al., 1999) and we decided to use these segmentation
results as reference sets for comparison. We will refer to
them as supervised patient segmentations.

In order to quantitatively assess the correspondence
between a binary segmentation set and the corre-
sponding binary reference set, we applied three mea-

TABLE 1

Measures for the Computer Simulated Data

Simulated %O %E SI

3n00RF 99.7% 6.4% 0.964
3n20RF 97.8 1.4 0.982
9n40RF 99.6 11.4 0.944

Note. Results for the three simulated datasets with respect to the
binarized phantom segmentation (see also Fig. 6).

FIG. 7. Results of the MBRASE method for the realistic simulate
row: Representative slices of the original grey value data for 3n20R
result and the binarized phantom segmentation. The differences ar
details in the second row.
sures, %O (percentage overlap), %E (percentage extra),
and the Similarity Index (SI) (Zijdenbos et al., 1994)
(see Fig. 6). %O equals the number of voxels segmented
y MBRASE that overlap with the reference segmen-
ation, divided by the total number of voxels in the
eference dataset. %E equals the fraction of voxels
egmented by MBRASE that are not in the reference
egmentation. SI is a measure derived from kappa
tatistics. It expresses the number of voxels overlap
ivided by the total number of segmented voxels in
oth files and is therefore sensitive to both differences
n size and location. The factor of 2 ensures that a
erfect segmentation has a similarity value of 1.
The qualitative visual inspection of the visualization

esults was performed by three neuroanatomy experts.
ypical examples of the investigated 2-D and 3-D vi-
ualizations are shown under Results.

RESULTS

The parameter Tstart and the seed point are extracted
from the histogram and the data as described under
Methods and Materials.

t (3n20RF) compared with the binarized phantom segmentation. Top
he second row presents in grey the overlap between the MBRASE

hown in white. The third row shows enlargements of the indicated
d se
F. T
e s
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The results of the comparison of MBRASE with the
simulated and patient datasets are illustrated by high-
lighting both the extra and missing voxels (see Fig. 6).
In most datasets, the differences mainly concern voxels
that were segmented extra by MBRASE.

Simulated Data

Table 1 shows the measures of MBRASE for the
three simulated sets compared with the binarized
phantom segmentation. Similarities are high, espe-
cially for the realistic simulated dataset 3n20RF. We
present the resulting images for two simulated sets,
i.e., the set with the realistic levels of noise and RF
inhomogeneities (3n20RF) and the set with the ex-
treme levels of noise and RF inhomogeneities (9n40RF)
(see also Fig. 4 for intermediate results).

The results for the simulated set with the realistic
settings (3n20RF) are displayed in Fig. 7. The differ-
ences of the MBRASE segmentations with the ground
truth are very small.

The results for the simulated dataset with the ex-
treme values of noise and RF nonuniformity are shown
in Fig. 8. Here, the differences are largely due to voxels
segmented extra by MBRASE. Although the similarity

FIG. 8. Results of the MBRASE method for the simulated set wi
with the binarized phantom segmentation. See legend of Fig. 7 for s
index for this dataset is the lowest of all segmenta-
tions, including patient cases, the images show that
the visual similarity between the MBRASE segmenta-
tion and its reference can still be considered high.

The results for all three simulated sets indicated two
major problem areas for the MBRASE segmentation:
(i) The inclusion of vessels and meninges, especially in
the longitudinal cerebral fissure. (ii) The exclusion of
thin, long brain structures, especially in parts of the
cerebellum.

Patient Data

In Table 2 the measures for the 30 patient datasets
are presented. With 28 of these sets, MBRASE success-
fully segmented the brain using the default peak de-
tection level of 1.5. For the other two datasets (patient
sets XIV and XXIII) the initial measures were not
consistent with the rest of the patient sets. Investiga-
tion revealed that no peak was detected in case XIV,
whereas in case XXIII the first peak was missed. This
situation could be automatically flagged and remedied
by a single change of parameter: reduction of the peak
detection level from 1.5 to 1.1. In Table 2 the results of

he highest level of noise and RF inhomogeneity (9n40RF) compared
up.
th t
et-
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733AUTOMATED MRI BRAIN SEGMENTATION
these two studies are presented after the change of
parameters.

For the 28 sets the measures %O and %E indicate
that with almost all of these sets MBRASE segments
extra tissue surrounding the brain when compared to
the corresponding reference sets. Furthermore, the
similarity measures of these sets are high (average of
0.980 with a standard deviation of 0.013). We selected
three datasets for presentation of the results, i.e., the
sets with the lowest (XII), average (XXI, see also Fig.
5), and highest (XXIX) similarity.

The differences in the segmentations between the
MBRASE method and the supervised (Höhne) method
for case XII (lowest similarity) are shown in Fig. 9. The
differences are most conspicuous in the vessels (espe-
cially the sinuses) and meninges on the surface of the
brain (see also the renderings in Fig. 10).

For cases XXI (average similarity, see Fig. 11) and
XXIX (highest similarity, see Fig. 12), the differences
in the segmentations are small. Visual comparison be-
tween the renderings of the MBRASE segmentation
results and the supervised segmentation results using

TABLE 2

Measures for the Patient Data

Patient %O %E SI

I 100.0% 6.8% 0.966
II 99.4 0.1 0.996
III 100.0 8.4 0.959
IV 99.7 2.5 0.986
V 100.0 3.2 0.984
VI 100.0 8.6 0.958
VII 99.9 4.4 0.978
VIII 100.0 4.8 0.976
IX 99.9 5.1 0.974
X 99.5 1.4 0.990
XI 100.0 5.0 0.975
XII 100.0 11.7 0.944
XIII 99.3 0.0 0.996
XIV* 99.1 5.5 0.968
XV 100.0 8.3 0.959
XVI 96.2 0.0 0.985
XVII 96.5 0.1 0.981
XVIII 100.0 2.9 0.985
XIX 99.8 2.8 0.984
XX 97.5 0.3 0.985
XXI 100.0 4.2 0.979
XXII 99.8 5.4 0.972
XXIII* 100.0 3.0 0.985
XXIV 100.0 0.7 0.996
XXV 100.0 2.3 0.988
XXVI 100.0 3.6 0.982
XXVII 100.0 2.2 0.989
XXVIII 99.6 1.0 0.993
XXIX 99.8 0.1 0.998
XXX 98.8 0.2 0.993

Note. Results for the patient datasets (see also Table 1 and Fig. 6).
he results for the two patients indicated with an asterisk were

ncluded after a change of parameter (see the text for details).
the Höhne approach showed that the differences were
hardly noticeable. We therefore only show the render-
ings of the MBRASE segmentation results (see
Fig. 13).

DISCUSSION

We used several white matter voxels in different
parts of the brain as seed points for the region growing
process so as to test the location dependency of the seed
point. The location only affected the beginning of the
growth graph of the process; the graphs of the different
seed points rapidly showed the same pattern leading to
identical values for Tlow and Tup.

The applicability of the MBRASE method depends
on the sensitivity to the two types of parameters, i.e.,
the parameters of the morphological operations and
the parameters for the peak detection algorithm.
Based on the description of the Höhne approach in the
ANALYZE manual and our own experiences with
MRI-T1 brain data, we use two erosions, three geodesic
dilations and a 6-voxel structuring element for all mor-
phological operations. In theory these parameters are
influenced by the spatial resolution, (non-) isotropic
scanning, noise and RF inhomogeneity. For example,
in another project (Stokking et al., 2000) we experi-
nced significant problems segmenting some older MR
cans (1994 and earlier), but this was due to the poor
uality of the data. Also, severely anisotropic data
aused problems because morphological operators
ork best with isotropic data. As a general rule of

humb, we do not apply the Höhne approach for data
here the resolution and anisotropy are worse than
3 1 3 3 mm. On the other hand, we have applied the
öhne segmentation approach with the aforemen-

ioned parameters on high resolution MRI-T1 data ac-
uired using several scanners with several protocols
nd we obtained adequate segmentation results for all
f these types of MRI-T1 data with these parameters.
The critical decision in MBRASE is the detection of

he peak in the region growing processes for Tlow and
Tup. A peak typically signals a connection between the
brain and a new, sizable structure and we use a de-
tected peak to define the thresholds for the final seg-
mentation of the brain. Since MBRASE is based on the
Höhne approach using two erosions with a 6-voxel
structure element, the connection causing the peak is a
connection that remains present even after these ero-
sions.

The peak detection performs a simple comparison of
the present number of region growing iterations with
the numbers at the previous threshold settings. This
algorithm and its parameters may have to be adjusted
for a different MRI acquisition technique and/or scan-
ner. However, we have shown that this can be done
adequately using just a few (here: three) test datasets.
Furthermore, we emphasize that MBRASE evaluates
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the growth in number of iterations, not in number of
voxels. While the latter growth can be an indication for
the inclusion of a new segment (e.g., used by (Lemieux
et al., 1999)), we found the number of iterations a much
stronger indicator for MRI-T1 brain data because
growth in non-brain structures is typically in long elon-
gated structures like fat or skin. Growth in these struc-
tures requires a lot of iterations in the region growing
process, but does not necessarily include a lot of voxels.

FIG. 9. Results of the MBRASE segmentation compared with th
XII (lowest similarity). See legend of Fig. 7 for set-up.

FIG. 10. Comparison of volume renderings for patient dataset X
fissure. On the left (A) the images resulting from the supervised seg
image of the MBRASE method.
MBRASE only failed in two cases out of 30 patient
studies for the initial parameter settings. Failures are
immediately apparent and are easily flagged upon ret-
rospective investigation of the growth graph (see Fig.
3). For the two cases a satisfactory segmentation was
obtained by adjusting just one parameter, viz. lowering
the peak detection parameter. This lower value re-
sulted in outliers for other cases, so a procedure that
works flawless for just one parameter setting has ap-

pervised segmentation using the Höhne method for patient dataset

lowest similarity) with an enlargement of the longitudinal cerebral
tation using the Höhne method, on the right (B) the corresponding
e su
II (
men
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peared not feasible. We also tested other, more elabo-
rate peak detection methods, e.g., variation analysis,
but these methods did not improve the segmentation
results compared to the initial peak detection method
we applied.

In this study MBRASE was evaluated using the
MRI-T1 datasets of pediatric patients and the results
may not be completely representative for adult brains.
However, preliminary testing of MBRASE on MRI-T1
data of adult brains has indicated that the results are
comparable to the results in this report.

In the studies with patient data, the supervised seg-
mentation method of Höhne is used as a reference, not
as a gold standard. When comparing both methods, we
have to realize that MBRASE is in fact an automated
version of the Höhne technique and both will have
some identical problems. First of all, we previously
mentioned that the Höhne approach is influenced by
the spatial resolution, (non-) isotropic scanning, noise,
and RF inhomogeneity, and this also applies for
MBRASE. Secondly, the application of erosion and sub-
sequent geodesic dilation is a very simple and powerful
technique for removal of the (thin) connections be-

FIG. 11. Results of the MBRASE segmentation compared with th
XXI (average similarity). See legend of Fig. 7 for set-up.
tween different tissues, but it also affects possible long,
thin intratissue structures. For instance, the cerebel-
lum manifests some filament-like parts that are easily
eroded, but difficult to regain via dilations within a
threshold mask (see Fig. 12, frames 1C and 2C, where
part of the cerebellum, i.e., the vermis, is missing in
both the reference and MBRASE segmentation).

With the patient datasets the segmentation proce-
dures employed by MBRASE and the expert (using the
Höhne approach) have a high similarity, but there are
also some distinct differences that account for the
(small) differences in the results between the two. The
critical decision in MBRASE, i.e., the detection of the
peak that defines a threshold, is based only on the first
established (3-D) connection between the brain and a
new, sizable structure, which cannot be broken by the
erosions. With the Höhne approach, the expert quali-
tatively investigated connections in 2-D images (typi-
cally three sets of 10 consecutive MR slices) and had to
visually assess whether the (3-D) connections could be
broken using the erosions. Also, the connectivity was
only one of the criteria used by the expert to determine
a threshold range. For example, the overall shape of

upervised segmentation using the Höhne method for patient dataset
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the surface of the brain when using a certain threshold
was also an important criterion. Furthermore, with the
Höhne approach the operator typically evaluated the
results obtained using several threshold settings (es-
pecially varying the lower threshold) to find an optimal
setting.

The absence of a gold standard for the patient data
raises the question whether MBRASE or the expert
performed better on the segmentation task. In the
majority of patient cases MBRASE appears to seg-
ment some additional tissue surrounding the brain.
This implies that the expert used a (slightly) higher
T low compared to MBRASE, which probably stems
rom the fact that the expert qualitatively investi-

FIG. 12. Results of the MBRASE segmentation compared with
dataset XXIX (highest similarity). The top row shows representative
two sets in grey, the differences in white.

FIG. 13. Volume renderings of MBRASE segmentations for two
ataset XXI (average similarity), and Frame (B) patient dataset XX
ongitudinal cerebral fissure. The differences between these renderin
oticeable; accordingly the latter renderings are not shown.
gated the connections in 2-D images and also used
more criteria. The extra tissue MBRASE segments is
considered of little importance, both for quantitation
and for visualization purposes. The 2-D images show
only small differences. The impact of the extra tissue
on the 3-D volume visualizations is even smaller
because the rendering package we use (VROOM
(Zuiderveld, 1995)) employs a shading algorithm
which assigns opacities to the grey value data in a
neighborhood of the surface voxel (see also (Levoy,
1988)). This ensures that additional tissue surround-
ing the brain has only little impact on the final
image. Furthermore, the parameters for this shader
are automatically set using the detected T low.

e supervised segmentation using the Höhne approach for patient
ces of the dataset. The second row presents the overlap between the

ient sets with an enlargement. Frame (A) shows results for patient
(highest similarity). Both renderings contain an enlargement of the
and the renderings of their respective reference datasets are hardly
th
sli
pat
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Segmentation of a typical dataset requires about half
an hour of CPU time on a processor of an SGI Power
Challenge R10K (MIPS R10000, 195 MHz). Speed of
segmentation was not considered a main issue for this
work, but it can be considerably improved by optimiz-
ing the implementation and/or using the inherent par-
allelism of the algorithm.

Others have previously reported on fully automatic
brain segmentation from MR image data. Collins et al.
(1995a) use an approach where the transformation be-
tween a model brain and a new MRI brain volume is
first determined in a registration step. The segmenta-
tion is then performed by applying the transformation
to map atlas contours from the model brain to the new
MRI brain volume. The results are very encouraging,
but the authors express caution by stating that the
required 1-to-1 correspondence between model and
MRI brain is never strictly true because of normal
morphological variability and the influence of pathol-
ogy. Other fully automatic segmentation techniques
(Brummer et al., 1993; Saeed et al., 1997; Atkins and

ackiewich, 1998; Lemieux et al., 1999) have used
lgorithms that are basically chains of separate proce-
ures to refine the segmentation of the brain in each
ubsequent step. Unfortunately, this renders the algo-
ithms complex (especially for software encoding) and
multitude of parameter values have to be set. Our

bjective was to automate the critical observer deci-
ions in an already established and simple method.
he results are a strong indication that we were suc-
essful in replacing these critical decisions using sim-
le procedures with few parameters. The fact that our
ethod is primarily based on just one critical decision,

.e., detection of the connection(s) of the brain with
ther structures, is potentially a weakness, but has
een turned into a strength by restricting its applica-
ion to a specific and well defined task. The result is a
imple segmentation method with surprisingly good
esults.

CONCLUSIONS

An automated approach has been developed to seg-
ent the brain from T1-weighted MR images. This
ethod, denoted MBRASE, is based on the simple op-

rations thresholding, erosion, and geodesic dilation.
Computer simulated data have been used to evalu-

te the segmentation performance against a gold stan-
ard. The results are found to be both robust and in
xcellent agreement with the reference data. Super-
ised brain segmentations of the MRI-T1 data of 30
atients, carried out by a neuroanatomy expert, have
een used to test the performance of MBRASE on clin-
cal data. An objective comparison shows that the re-
ults of the automated segmentation are quite similar
o the supervised segmentations. Brain volume visual-
zations based on the automated and supervised seg-
entations are generally visually indistinguishable. In
onsequence, the proposed method can be used as a
efault segmentation for quantitation and visualiza-
ion of the human brain from T1-weighted MR images
n routine clinical procedures.
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