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Abstract

Computed tomography (CT) images have been widely used for diagnosis of liver disease and volume measurement for
liver surgery or transplantation. Automatic liver segmentation and volume measurement based on the segmentation are the
most essential parts in computer-aided diagnosis for liver CT as well as computer-aided surgery. However, liver segmen-
tation, in general, has been performed by outlining the medical image manually or segmenting CT images semi-automat-
ically because surface features of the liver and partial-volume effects make automatic discrimination from other adjacent
organs or tissues very difficult. Accordingly, in this paper, we propose a new approach to automatic segmentation of the
liver for volume measurement in sequential CT images. Our method analyzes the intensity distribution of several abdom-
inal CT samples and exploits a priori knowledge, such as CT numbers and location of the liver to identify coherent regions
that correspond to the liver. The proposed scheme utilizes recursively morphological filter with region-labeling and clus-
tering to detect the search range and to generate the initial liver contour. In this search range, we deform liver contour
using the labeling-based search algorithm following pattern features of the liver contour. Lastly, volume measurement
is automatically performed on the segmented liver regions. The experimental measurement of area and volume is compared
with those using manual tracing method as a gold standard by the radiological doctors, and demonstrates that this algo-
rithm is effective for automatic segmentation and volume measurement method of the liver.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The liver cancer is one of the most common internal malignancies worldwide. The hepatocellular carcinoma
is common in Asia and metastasis is common in the West. The liver cancer is also one of the leading death
causes. Currently, the confirmed diagnosis used widely for the liver cancer is needle biopsy. The needle biopsy,
however, is an invasive technique and generally not recommended [1]. Therefore, computed tomography (CT)
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and magnetic resonance imaging (MRI) have been identified as accurate non-invasive imaging modalities in
the diagnosis of the liver cancer. These medical images are interpreted by radiologists. However, image inter-
pretation by human beings is often limited due to the non-systematic search patterns of themselves, the pres-
ence of structural noise in the image, and the presentation of complex disease states requiring the integration
of vast amount of image data and clinical information.

Recently, computer-aided diagnosis (CAD), defined as a diagnosis introduced by a radiologist who uses the
output from a computerized analysis of medical images as a ‘‘second opinion’’ in detecting lesions, assessing
extent of disease, and making diagnostic decisions, is being used to improve the interpretation components of
medical imaging [2,3]. In addition, computer-aided surgery (CAS) that is the future technology in surgery is
performed on computerized surgical planning and image-guided surgery by analyzing region-of-interest (ROI)
in the medical image. Volume measurement is also of major importance in different fields of medical imaging
where physicians need some quantitative assessments for surgical decisions.

Research in CAD for both mammogram and chest radiographs is rapidly growing; however, CAD research
for liver cancer is to be insufficient because the liver segmentation that plays an important role for CAD is
difficult. This is mainly due to the two following facts. The first one is the proximity of the liver and other
organs or muscles with the similar intensity. It makes difficult to resolve by observation of intensity disconti-
nuity alone since partial-volume effects (PVE) cause the discontinuity to weaken where the structures touch.
The second one is the variation in both shape and scale across patients even on the same patient [4].

There are many approaches for image segmentation, such as feature thresholding, contour based tech-
niques, region based techniques, clustering, and template matching. Each of these approaches has its advan-
tages and disadvantages in terms of applicability, suitability, performance, and computational cost [5].
Particularly, no one who did not consider above characteristics of the abdominal CT image can meet desirable
results on liver segmentation. In addition, the traditional method of getting volume of the liver is to perform a
by-hand 2D segmentation of parallel cross-sectional CT slices and to multiply all voxels of the stacked slices
by their size while the procedure is often time consuming and non-systematic [6]. Therefore, to address above
problems, we present an automatic liver segmentation algorithm in abdominal CT images using the combina-
tion of region-based and contour-based approaches. Our algorithm exploits both medical priori knowledge,
for example, the general shape, location, and gray level of the liver, and deformable contour method using
labeling-based search algorithm. Finally, total liver volumes were calculated from segmented areas of the liver
to evaluate the patients for entire or partial liver transplantation and CAS.

This paper is organized as the following. In Section 2, we propose a new segmentation algorithm applicable
to CT image, and we describe volume measurement in Section 3. After experimental results and analysis are
presented in Section 4, we conclude the paper in Section 5.

2. Automatic liver segmentation

Mainly, the liver is approximated to muscle and gastrointestinal tract. Since adjacent organs have similar
intensity with the liver as shown in Fig. 1, a direct liver-extraction approach without preprocessing may also
extract undesirable boundaries resulting from its adjacent organs as fault positive/negative errors [1]. To cope
with the problem, we present a new segmentation scheme with three stages. The first stage is image simplifi-
cation as preprocessing; the second stage detects a search range detection with initial liver contour by using
morphological filter; and the last stage is contour-based segmentation using labeling-based search algorithm
that refines the initial liver boundary obtained in the second stage.

The overall framework of our proposed scheme is illustrated in Fig. 2. The input for algorithm is contrast
enhanced, abdominal CT image of 512 · 512 pixels with gray level.

2.1. Image simplification

For image simplification, we consider a priori knowledge of the liver on abdominal CT image, such as
shape, location, and intensity value. First of all, we decide ROI region. To identify ROI blocks, we divide
the abdominal CT image into non-overlapping blocks of 64 · 64 pixels. Then, we discard the right-bottom
region (‘Rd’ region except ‘d1’ block in Fig. 3) that is from a priori knowledge—the liver cannot be located



Fig. 1. Abdominal CT image.

Fig. 2. Block-diagram of the proposed algorithm.
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in the right-bottom area but is generally located in the left side of CT images. Fig. 3 depicts ROI regions that
are composed of 29 blocks of 64 · 64 pixels. Therefore, as shown in Fig. 3, the regions in this area cannot be
part of the liver but can be eliminated so as to reduce the search area and computational efforts for liver
boundary [2]. Second, we investigate and analyze the intensity distribution of several samples that are man-
ually segmented liver and adjacent muscle. Fig. 4 illustrates the average intensity distribution of the liver
and muscle. In addition, we interpret CT number (Hounsfield number) correspond to the liver and muscle into
the gray level. Then, we decide threshold values for multilevel thresholding based on the statistical information
by the above analysis in the ROI region. Multilevel thresholding based on the analysis of a priori knowledge
makes many other organs or tissues disappear in ROI blocks and identifies the liver and adjacent region as
clear or blur liver region. Fig. 5 shows the result of multilevel thresholding.



Fig. 3. ROI blocks.
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Fig. 4. Intensity distribution.

Fig. 5. Threshold image.
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2.2. Search range detection

We present the search range to detect the precise liver boundary. For the search range, we find the first and
second search region by performing multiscale morphological operations on the threshold image of the image
simplification.

The following sections present the process of detecting search range for the liver boundary.

2.2.1. First multiscale morphological filtering

Image simplification classifies each pixel into clustered liver class and scattered non-liver class. Accordingly,
we perform mathematical morphology filtering to reduce scattered class and detect liver object. This set the-
oretic, shape oriented approach treats the image as a set and the kernel of operation as another set, commonly
known as structuring element (SE). Different standard morphological operations, namely (erosion, opening,
closing, etc.) are basically set theoretic operations between these two sets. The shape and the size of the SE
play important roles in detecting or extracting features of given shape and size from image [5].

In constructing a morphological filter, we use erosion and dilation with a flat SE as follows [7,8]:
ðf � BnÞðx; yÞ ¼ minff ðxþ l; y þ mÞjðl;mÞ 2 Bng; ð1Þ
ðf � BnÞðx; yÞ ¼ maxff ðx� l; y � mÞjðl;mÞ 2 Bng. ð2Þ
Though the SE B takes care of the shape of the features during processing the image, it cannot equally treat
the objects of the same shape but of the different size. Thus, for processing objects based on their shape as well
as size, we incorporate a second attribute to the SE, that is, its scale or composition. The types of morpho-
logical operations considered this are termed as multiscale morphology [9]. Multiscale filtering are defined,
respectively, as
ðf � kBnÞðx; yÞ ¼ fðððf � BnÞ � BnÞ � � � � BnÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
k times

ðx; yÞg; ð3Þ

ðf � kBnÞðx; yÞ ¼ fðððf � BnÞ � BnÞ � � � � Bn|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
k times

Þðx; yÞg; ð4Þ
where k is an integer representing the scale factor of the SE B and n is the size of B. Multiscale filtering is per-
formed by using the composition of the kth order morphological erosion and dilation operations with the mul-
tisize SEs of the 5 · 5 and 3 · 3 flat size. The size of SEs is decided by analyzing the number of remained
regions or pixels of the threshold image, and k value is experimentally 4 or 5.

As previously mentioned, morphological filtering is operated on the ROI blocks in the threshold image. We
recursively perform multiscale morphological filtering based on region-labeling and clustering to get the first
search region and the second search region. The final search range is decided by excluding the second search
region from the first search region. However, if the previous liver boundary is currently being used for seg-
menting the liver, region-labeling is omitted. The previous liver boundary approximately presents liver region
in the current morphological filtered image because shape and location of the previous liver boundary is sim-
ilar to the current liver boundary in consecutive CT images.

For the detection of the first search region, firstly, we find the initial liver region by performing multiscale
morphological opening. In multiscale morphological opening, the erosion operation of k times, as its first step
eliminates bright features that do not fit within the SE and unconnected and scattered small features in the
threshold image. Then, it dilates iteratively same times to the erosion operation to restore the contours of com-
ponents that have not been completely removed by the first step. Fig. 6 shows the result of the multiscale mor-
phological filtering.

2.2.2. Region-labeling

The performance of multiscale morphological filtering in the threshold image reduces the circumferential
object of the liver, preserves the shape of the liver, and detects the initial liver region [2]. Yet, the larger com-
position order (‘k’ value) of the morphological filter, the looser regions of the liver. That is fixed order of mor-
phological filtering composition removes the many parts of the liver of any patients. It is due to the various



Fig. 6. Result of morphological filtering.
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shape or size of the liver by patients. Thus, we use low order of morphological filtering to preserve the region
of the liver. But, it can make more dispersed noises, such as the pixels of the other organs or muscles which
have the similar intensity values with the liver. To reduce the noise of these kinds and detect the coarse liver
region, we perform on the 4-connected region-labeling algorithm. The technique for region finding that is used
in the region-labeling algorithm is breadth-first search approach [10]. After performing of the region-labeling
algorithm, the largest labeled region is marked out for the candidate region of the liver.

2.2.3. Partition clustering

The result of region-labeling is the coarse liver region. This is due to the fact that adjoining non-liver organs
and muscles are still remained. In order for detecting of the finer liver region, we classify the labeled image into
three classes based on the result of morphological filtering. Region classifying is performed by the modified K-
means algorithm. The adjoining tissues or muscles in the liver have mainly higher or lower intensity value than
that of the liver. Therefore, we use three centroid for the modified K-means algorithm. However, the middle
centroid corresponding to the mean value of the liver among three centroid is just computed again and the
others are fixed to the max and min intensity value in labeled liver region. This processing divides the region
into the adjacent noise of the liver and the liver region. After we reduce the class of the adjacent noise, we get
the fine initial liver region. Finally, the image of the first search region is constructed by performing the dif-
ferent order’s composition between erosion and dilation operation of the mathematical morphological open-
ing on the clustered initial liver region as follows
ðf � iBnÞðx; yÞ ¼ ððf � iBnÞ � ðiþ jÞBnÞðx; yÞ; ð5Þ

where i is the scale factor of the SE B and j is a parameter which decides the size of search range. Generally, i is
2 and j is 4 or 5. The performance of multiscale opening preserves the shape of the liver and detects the first
search region.

2.2.4. Second morphological filtering

In the clustering, instead of reducing the adjacent noise, any liver region can be reduced. To solve this prob-
lem, reverse filtering of the first morphological filtering is performed on the region of the original image cor-
responding to the previous labeled region. Therefore, multiscale morphological closing fills in holes and inlets
that are smaller or narrower than the SE B. This processing recovers some regions of the liver that are dam-
aged or reduced in the previous morphological filtering. The second search region is constructed based on the



866 S.-J. Lim et al. / J. Vis. Commun. Image R. 17 (2006) 860–875
result of the morphological closing, region-labeling, and modified K-means clustering similar to the previous
processing. Multiscale morphological closing is defined, respectively, as
ðf � iBnÞðx; yÞ ¼ ððf � iBnÞ � ðiþ jÞBnÞðx; yÞ. ð6Þ

Final search range is determined by excluding the second search region from the first search region, as

shown in Fig. 7. Since most of the liver boundaries are located in this search range, precise automatic liver
segmentation is possible by using the deformable contour algorithm within this range. Furthermore, the initial
liver boundary which will be a guidepost for search algorithm is constructed by extension of the second search
region to original liver size. Fig. 8 shows the initial liver boundary.

2.3. Contour-based liver segmentation

The initial liver boundary acquired by multiscale morphological filtering is coarse liver contour. Therefore,
we present the labeling-based search algorithm that deforms the initial liver boundary within the search range
to find clear and final liver contour. For the search algorithm, we make gradient-label map.

2.3.1. Gradient-label map

Since the slice thickness of our CT data set is 5 mm, PVE is occurred at the boundary of adjacent object.
Because occurrences of PVE yield a gradual intensity fall across the boundaries of objects, labeling-based
search algorithm with an intensity partition that is sufficiently fine results in labeled images whose isolabel con-
tours form conspicuous patterns. Because isolabel-contour patterns resemble isoelevation contours on topo-
graphical maps we refer to the labeled images as isolabel-contour maps. If we observe an area within an
isolabel-contour map that extends from one object’s center to its boundary within the search range, we see
a distinct pattern. Where the intensity gradient is monotonic in raw image, the pattern of labels in the isola-
bel-contour map is monotonic as well. We observe dense contour patterns in the areas of abrupt intensity gra-
dients and widespread contour patterns in the areas of gradual intensity gradients [4]. To make gradient-label
map, we enhance the isolabel-contour map by using gradient magnitude into the weighing factor.

The spatial gradient of the search range image is approximated by use of a morphological gradient oper-
ator. The morphological gradient operator used is expressed such as
Gðf Þ ¼ dðf Þ � eðf Þ; ð7Þ
Fig. 7. Search range.



Fig. 8. Initial liver boundary.
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where dðf Þ ¼ ðf � BnÞðx; yÞ and eðf Þ ¼ ðf � BnÞðx; yÞ. Note that the morphological gradient is positive. The
positive gradients usually indicate borders between neighbor regions [8]. The gradient image is shown in
Fig. 9 and exhibits large value along the region boundaries. The gradient image within the search range is re-
versed and normalized. Fig. 10 shows the gradient-label map.

2.3.2. Labeling-based search algorithm
PVEs may result in saddle-like patterns for tortuous structures whose plane of curvature is perpendicular to

the image plane or for vessels that branch in the through-plane direction [4]. Fig. 11A shows examples of sad-
dle-like patterns.
Fig. 9. Gradient image.



Fig. 10. Gradient-label map.
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We can describe the entire pattern of liver contours as a relationship of the intensity distribution. This
description allows us to manipulate pixels easily that are related to contours. Figs. 11B, C, and D show the
pattern of contours and the intensity distribution of each pattern. We can classify the entire pattern into
the three cases. In the first case, the liver is adjacent to the air region which has low intensity value. The second
is the case that liver is touched to the ribs or the kidney which has high intensity value. In the last case in which
the liver is adjoined to the stomach or the lung, the intensity value within the liver boundary is distributed
through the low gray level.

The deformable contouring is started from the lowest located pixel of the initial liver contour toward the
clockwise direction on gradient-label map. Fig. 12 shows the eight directions which the current pixel can pro-
ceed. Liver boundary is smooth since the liver is human organ. Therefore, the directions that the current pixel
can proceed are three directions indicated by the small arrows in Fig. 12. Among the three directions, the cen-
ter direction is determined by the initial liver contour obtained in the second stage. If the current pixel is locat-
ed on the initial liver contour, then the next direction is determined by the initial liver contour. Otherwise, the
next direction is same as the previous direction. The other two possible directions are on either side of the cen-
ter direction, as shown in Fig. 12. All of three directions are the candidate pixels.

For the optimal path from each pixel, we formulate the local cost function at each candidate pixel. We can
get a correct liver contour by finding optimal path which is the minimal cost value. The local cost function
combining tree features is defined as
lðp; qÞ ¼ wD � fDðp; qÞ þ wB � fBðqÞ þ wI � fIðqÞ; ð8Þ

where each w is the weight of the corresponding feature function. Experimentally, weights of wD = 0.3,
wB = 0.3, and wI = 0.4 seem to work well. The p and q are two neighboring pixels in the gradient-label
map, and l(p,q) represents the local cost on the directed link from p to q [11]. The fD is a function of gradient
direction, and the two pixel value components, fB and fI, are ‘‘initial boundary’’ and ‘‘intensity distribution’’
cost functions.

The gradient direction or orientation adds smooth constraint to the boundary by associating a relatively
high cost for sharp changes in boundary direction. The gradient direction is simply the direction of the unit
vector defined by Ix and Iy. Therefore, by letting D(P) = [Ix(p),Iy(p)] be a unit vector of the gradient direction
at a point p and defining D 0(p) = [Iy(p),�Ix(p)] as the unit vector perpendicular to D(p), then the formulation
for the gradient direction feature cost is



Fig. 11. Patterns of contour’s intensity distribution: (B) adjacent to the air, (C) adjacent to the rib, (D) adjacent to the other organs.

S.-J. Lim et al. / J. Vis. Commun. Image R. 17 (2006) 860–875 869
fDðp; qÞ ¼
2

3p
facos½dpðp; qÞ� þ acos½dqðp; qÞ�g; ð9Þ
where
dpðp; qÞ ¼ D0ðpÞ � Lðp; qÞ
dqðp; qÞ ¼ Lðp; qÞ � D0ðqÞ ð10Þ
are vector dot products and
Lðp; qÞ ¼ 1

kp � qk
q� p; if D0ðpÞ � ðq� pÞP 0

p � q; if D0ðpÞ � ðq� pÞ < 0.

�
ð11Þ
The L(p,q) is normalized bidirectional link or unit edge vector between pixels p and q and simply computes
the direction of the link between p and q so that the difference between p and the direction of the link is min-
imized. Links are either horizontal, vertical, or diagonal (relative to the position of q in p’s neighborhood) and
point such that the dot product of D 0(p) and L(p,q) is positive (i.e., the angle between D 0(p) and the link Pp

2
),

as noted in Eq. 11 above. Therefore, the direction feature cost is low when the gradient direction of the two
neighboring pixels are similar to each other and the link between them [11].



Fig. 12. Search pattern.
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One of the two pixel components, fB(q) is the function estimating the state of the candidate pixel
about the initial boundary. The state is inside or outside position in the gradient-label map. Function
fB(q) is
fBðqÞ ¼
1

255
fIðqÞ � sg; ð12Þ
where I(q) is the pixel value at q and s is the weight of the state. If pixel is ‘‘inside’’ and ‘‘outside,’’ s is 0.4.
Otherwise s is 0.2.

For the pixel component of the intensity distribution, we formulate cost function, fI(q), by following the
search pattern, as shown in Fig. 12. Thus, the formulation for the intensity distribution pixel value, fI(q),
for a given pixel q is
fIðqÞ ¼
1

255
fIðqÞ � P ðnÞg; ð13Þ
where P(n) indicates a kind of the pattern as mentioned above. Each pattern is decided by searching neighbor-
ing pixels of each candidate pixel on bidirectional large arrows within the 9 · 9 window, as shown in Fig. 12. If
the current pixel goes to perpendicular direction, then the neighboring eight pixels of the candidate pixel that
correspond to the initial boundary or previous direction are examined whether those are on the above pattern.
The neighboring pixels within 9 · 9 window of the other candidate pixels are also examined. P(n) value is
experimentally determined but if the candidate pixel satisfies the pattern, P(n) is generally from 0.2 to 0.4.
Otherwise P(n) is 1.

Deformable contouring is performed by computing the local cost function on gradient-label map. The
result of the proposed algorithm is determined by deformable contouring of the initial liver boundary, as
shown in Fig. 13.
3. Volume measurement based on the segmentation

For volume measurement of the liver, we calculate the volume by using thickness and interval information
of the slice and size of the pixel. The following equation is for volume measurement using the previous seg-
mented liver region [12].
Volume ¼
XN�1

i¼1

ðððLp 	 X 	 Y Þ of Si þ ðLp 	 X 	 Y Þ of Siþ1Þ=2Þ 	 D; ð14Þ



Fig. 13. Segmentation result.
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where N is the number of the slice including the segmented liver region, Si is the slice number, D is the interval
of the slice, Lp is the number of the pixel in the segmented liver region, and X,Y are the size of a pixel.

4. Experimental results and discussion

We experimented several samples with various shapes and irregular texture of 10 patients. All of the used
samples are contrast-enhanced abdominal CT images of venous phase with 5 mm interval.
Fig. 14. Experiment of the patient 1.
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Each sample shows the result of each process of the proposed algorithm, six images in total, such as thresh-
old image, the result of morphological filtering, search range, initial liver boundary, gradient-label map, and
the final result through Fig. 14 to Fig. 15.

Figs. 14A and 15B depict the multilevel threshold image on ROI blocks in the image simplification. Thresh-
old value is determined by analyzing the intensity distribution of several samples that are the manually seg-
mented liver and adjacent muscle. We can see that many other organs and tissues are reduced in the
threshold image. However, unconnected or small tissues are remained. To reduce these objects and preserve
the liver region, we performed the multiscale morphological filtering, as shown in Figs. 14B and 15B.

In the multiscale filtering, parameter k, an integer, representing the scale factor of SE B and n that is the size
of B is determined by analyzing of the result of thresholding. That is, parameter k and n are determined by
checking the number of pixels that are remained on the ROI blocks and considered pixels of air region after
multilevel thresholding. This process is for more precise preservation of the liver region. The initial liver region
is obtained by performing region-labeling and clustering. For searching the correct liver contour, we make the
search range by recursive morphological filtering. The appropriate composition of the order of morphological
operations makes the suitable search range for liver contour as depicted in Figs. 14C and 15C. In addition, for
deformable contouring, we construct the initial liver boundary, as shown in Figs. 14D and 15D.

Lastly, deformable contouring based on labeling-based search algorithm delineates the final liver contour in
search range. Figs. 14E and 15E indicate the gradient-label map weighted by gradient image. Final result is
determined by the compute of local cost function, as shown in Figs. 14F, 15F, and 16.

The results of the proposed algorithm were evaluated by comparing with the results of manual tracing as a
gold standard by experts. The comparable measure used is exclusive-or method. This method can detect the
fault positive and negative error. The average correctness of the segmentation is about 96%. It shows the pro-
posed algorithm is effective automatic segmentation scheme of the liver in CT images.

Volume measurement is performed by using the above segmentation results. Tables 1 and 2 show the
comparison of automatic and manual segmentation for volume measurement of two different livers.
Fig. 15. Experiment of the patient 2.



Fig. 16. Experimental result of the patient 3 and patient 4.

Table 1
Comparison 1 of automatic vs. manual segmentation of the liver (mm2)

Sample number Automatic Manual Error rate (%)

1 4570.03 4600.03 0.652
2 9432.12 9322.13 �1.180
3 14359.81 14254.97 �0.735
4 12672.21 12576.27 �0.763
5 12541.24 12688.73 1.162
6 13121.12 13017.53 �0.796
7 11494.59 11584.49 0.776
8 9420.27 9555.81 1.418
9 7611.03 7845.35 2.987

10 6125.13 6061.23 �1.054
11 5310.97 5274.00 �0.701
12 4621.27 4699.13 1.657
13 4006.03 4033.93 0.692
14 3524.13 3605.53 2.258
15 3007.97 3026.56 0.614

Table 2
Comparison 2 of automatic vs. manual segmentation of the liver (mm2)

Sample number Automatic Manual Error rate (%)

1 3470.03 3531.83 1.750
2 3910.11 4002.98 2.320
3 5490.59 5543.22 0.950
4 9141.62 8942.69 �2.240
5 12817.14 12394.59 �3.409
6 13762.82 13836.11 �0.530
7 13611.91 13699.13 0.637
8 13291.01 13119.94 �1.304
9 12877.20 12991.73 0.882

10 9951.23 10314.36 3.521
11 7812.37 7897.15 1.074
12 6395.71 6169.17 �3.672
13 5519.07 5341.12 �3.332
14 4710.87 4891.89 3.703
15 4132.70 4197.11 1.535
16 3727.95 3781.98 1.429
17 3499.25 3544.57 1.279
18 3073.89 3101.93 0.904
19 2618.92 2631.32 0.471
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Table 3
Comparison of automatic vs. manual segmentation in volume measurement of the liver (L)

Case Automatic Manual Error (%)

CT 1 1.321427 1.321821 0.030
CT 2 1.101013 1.099298 �0.156
CT 3 1.135722 1.141217 0.482
CT 4 1.551525 1.608771 3.558
CT 5 1.276392 1.239157 �3.010
CT 6 1.399148 1.434772 2.483
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Table 3 presents the comparison of automatic and manual segmentation in volume measurement of the liver.
The average error rate of volume measurement is 3%. Even though the proposed algorithm involves so many
preprocessing steps, computational complexity is not bad. The processing time of image simplification and
search range detection takes about 20–60 s/slice and contour-based segmentation takes some more time
because it is similar to dynamic programming being less than O(n) for a contour having n points which are
allowed to move to next point (Fig. 12). Total processing time is normally about 1–3 min/slice on Pentium
4 3.0 GHz system.

5. Conclusions

In this paper, we have proposed an automatic segmentation algorithm for volume measurement of the liver
using a priori knowledge and the deformable contour method based on morphological filtering. The proposed
algorithm using multilevel thresholding based on the analysis of the intensity distribution within ROI decrease
the needless computation time and efforts by reducing the regions of the other organs and tissues. In addition,
multiscale morphological filtering using region-labeling and clustering detects the initial liver boundary and
the search range for the deformable contouring. The final contour is found by using the labeling-based search
algorithm on the gradient-label map. Search algorithm considering partial-volume effect (PVE) computes the
minimum cost function composed of the gradient magnitude, the gradient direction, and the pattern of the
intensity distribution. The final results are compared to manually segmented image and manually volume mea-
sured results by the radiologist, and we could know that the fault positive/negative error is almost not existed.
This algorithm is the effective automatic segmentation algorithm of the liver in CT images for the first step of
the computer-aided diagnosis (CAD) and computer-aided surgery (CAS) systems.
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