
Spatial Reasoning and model-based image understanding

Isabelle Bloch

LTCI, Télécom Paris
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Spatial Reasoning

Knowledge representation and reasoning on spatial entities and spatial
relationships

largely developed in the artificial intelligence community

mainly topological relations
formal logics (ex: mereotopology)
inference

less developed in image interpretation

need for imprecise knowledge representation
(semi-)quantitative framework (⇒ numerical evaluation)
examples: structural recognition in images under imprecision

main ingredients:

knowledge representation (including spatial relations)
imprecision representation and management
fusion of heterogeneous information
reasoning and decision making
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Philosophy

From Pythagoras (c. 570-495 BC) to Zeno (c. 490-430 BC): concept
of space linked to the first developments in arithmetics and
Pythagorian geometry - Problem of infinitely subdivision possibility.

Descartes (1596-1650): spatial extension is specific to material
entities, governed by the only laws of mechanics.

Newton (1643-1727): notion of absolute space.

Hume (1711-1776): space reduced to a pure psychological function.

Leibniz (1646-1716): space cannot be an absolute reality, motion and
position are real and detectable only in relation to other objects, not
in relation to space itself.

Kant (1724-1804): objectivity of space.
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Poincaré (1854-1912): empiricist point of view where spatial
knowledge is mainly derived from motor experience. Relativity of
space.

Bergson (1859-1941): a position in the space can be considered as an
instantaneous cut of the movement, but the movement is more that a
sum of positions in the space.

Einstein (1879-1955): geometry is linked to the sensible and
perceptible space. The geometrical configuration of the world itself
becomes relative.

Purely philosophical views of space developed by the
phenomenologists and the existentialists.

Reichenbach (1891-1953): geometry as a theory of relations.
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Linguistics

Rich variety of lexical terms for describing spatial location of entities.

Concern all lexical categories (nouns, verbs, adjectives, adverbs,
prepositions).

French, and other Romance languages, shows a typological preference
for the lexicalization of the path in the main verb.
In Germanic and Slavic languages, the path is rather encoded in
satellites associated to the verb (particle or prefix).

Source of inspiration of many works on qualitative spatial information
representation and qualitative spatial reasoning.

Asymmetry, importance of reference, of context, of functional
properties of the considered physical entities

Imprecision (too precise statements can even become inefficient if
they make the message too complex).
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Human perception: example of distance

Purely spatial measures, in a geometric sense, give rise to ”metric
distances”, and are related to intrinsic properties of the objects.

Temporal measures lead to distances expressed as travel time, and
can be considered of extrinsic type, as opposed to the previous class.

Economic measures, in terms of costs to be invested, are also of
extrinsic type.

Perceptual measures lead to distances of deictic type; they are related
to an external point of view, which can be concrete or just a mental
representation, which can be influenced by environmental features, by
subjective considerations, leading to distances that are not necessarily
symmetrical.

Influence of other objects.
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Cognition

Cognitive understanding of a spatial environment is issued from two types
of processes:

route knowledge acquisition (first acquired during child development),
which consists in learning from sensori-motor experience (i.e. actual
navigation) and implies an order information between visited
landmarks,

survey knowledge acquisition, from symbolic sources such as maps,
leading to a global view (”from above”) including global features and
relationships, which is independent of the order of landmarks.
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Neuro-imaging:

a right hippocampal activation can be observed for both mental
navigation and mental map tasks,

a parahippocampal gyrus activation is additionally observed only for
mental navigation, when route information and object landmarks have
to be incorporated.

Internal representation of space in the brain:

egocentric representations,

allocentric representations (”map in the head”).

Intensively used in several works in the modeling and conception of
geographic information systems, and in mobile robotics.
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Spatial reasoning formalisms

Quantitative

Qualitative (QSR)

Fuzzy representations and reasoning: semi-quantitative /
semi-qualitative approches

Spatial entities

Spatial relations

Real world problems: dealing with imprecision and uncertainty.

Common to several representation and reasoning frameworks, used in the
next parts of the course.
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Spatial entities

Regions, fuzzy regions.

Key points.

Simplified regions (centroid, bounding box...).

Abstract representations (e.g. in mereotopology, without referring to
points, formulas in some logics...).
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Spatial relations

Useful... (see e.g. Freeman 1975, Kuipers 1978...).

Structural stability (more than shape, size, absolute position).

Different types (binary / n-ary, simple / complex, well-defined /
vague).
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Quantitative representations

Precisely defined objects.

Computation of well defined relations.

Many limitations:

on the objects,
on the relations,
on the type of representations,
for reasoning.

But does not always match the usual way of reasoning (e.g. to the north,
closer...).
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Qualitative / symbolic representations

Cardinal directions: 9 positions.

Allen’s intervals (temporal reasoning): 13 relations.

Rectangle calculus (Allen on each axis): 169 relations.

Cube calculus...

Region Connection Calculus (RCC), mereotopology (based on
connection and parthood predicates).

Extensions to objects with broad or imprecise boundaries.

Spatial logics.

Main features:

Formal logics (propositional, first order, modal...).

Compromise between expressiveness, completeness with respect to a
class of situations, and complexity.

Reasoning: inference, satisfiability, composition tables, CSP...
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Cardinal directions (Frank, Egenhofer, Ligozat)
Qualitative directions: N, NE, E, SE, S, SW, W, NW

N
NE

E

SESSW

W

NW

Cone−based

N NE

E

SESSW

NW

W

Projection−based

How to deal with complex shapes?
Only few compositions can be exactly determined.
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Allen’s intervals
13 basic relations:

m

p

o

s

e

d

f

Reasoning: based on geometrical or latticial representations.
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Allen’s intervals
Geometrical / quantitative representation:
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Allen’s intervals
Qualitative representation: lattice:
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Allen’s intervals
Extensions: rectangle, cube algebra

Allen’s interval in each direction

2D (rectangles): 132 = 169 relations

3D (cubes): 133 = 2197 relations

⇒ high complexity, and fixed shaped objects

o

d
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RCC: Region Connection Calculus (Randell, Cui, Cohn - Vieu...)

Spatial entities, defined in a qualitative way.

No reference to points.

Connection predicate C .

Parthood predicate P:

P(x , y) : ∀z ,C (z , x)→ C (z , y)

a
a

a b a

b
b

a

b
b

DC(a,b) EC(a,b) PO(a,b) TPP(a,b) NTPP(a,b)
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RCC: Region Connection Calculus (Randell, Cui, Cohn - Vieu...)

DC (x , y) x is disconnected from y ¬C (x , y)
P(x , y) x is a part of y ∀z ,C (z , x)→ C (z , y)
PP(x , y) x is a proper part of y P(x , y) ∧ ¬P(y , x)
EQ(x , y) x is identical with y P(x , y) ∧ P(y , x)
O(x , y) x overlaps y ∃z ,P(z , x) ∧ P(z , y)
DR(x , y) x is discrete from y ¬O(x , y)
PO(x , y) x partially overlaps y O(x , y)∧¬P(x , y)∧¬P(y , x)
EC (x , y) x is externally connected

to y
C (x , y) ∧ ¬O(x , y)

TPP(x , y) x is a tangential proper
part of y

PP(x , y) ∧ ∃z [EC (z , x) ∧
EC (z , y)

NTPP(x , y) x is a non tangential
proper part of y

PP(x , y) ∧ ¬∃z [EC (z , x) ∧
EC (z , y)]
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RCC: Region Connection Calculus (Randell, Cui, Cohn - Vieu...)

NTPPI

PI

C DR

O

P

PP PPI

PO NTPP TPP EQ TPPI EC DC
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Qualitative trajectory calculus (Cohn et al.)

Extension of RCC to take time into account (dynamic scenes).

RCC + Allen

Example:

X ,Y objects
Ii time intervals

(P(X ,Y ), I1) ∧ (PO(X ,Y ), I2) ∧ (DR(X ,Y ), I3)

∧meet(I1, I2) ∧meet(I2, I3) ∧ before(I1, I3)

Y Y Y

X X X

time

II I
1 2 3
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Modal logics of space

Topology:

�A: A is locally true (A is true at point x iff A is true in a
neighborhood of x).

♦A = ¬�¬A: A is true at x iff A is true at least one point of the
neighborhood of x .

Reasoning axioms and inference rules of S4:

A→ (B → A)
(A→ (B → C ))→ ((A→ B)→ (A→ C ))
(¬A→ ¬B)→ (B → A)
�(A→ B)→ (�A→ �B)
�A→ A
�A→ ��A
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Other examples:

Translation of RCC into modal logics.

Logics of places (� = everywhere, ♦ = somewhere).

Modal logics of proximity (�A = everywhere close to A).

Modal logics of distance (�≤a = everywhere in a neighborhood of
radius a).

Logics of inclusion and contact (inference in GIS).

Modal logics of geometry (affine, projective, parallelism...).
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A few important issues

Context

Representation issues

Reasoning (inference, satisfiability, decidability, CSP...)

Complexity

Applications

State of the art:

Very few applications

Focus on topology

Almost nothing on metric relations

Almost nothing on uncertainty
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Example: composition tables

Allen intervals:

full=(pmoFDseSdfOMP) and concur=(oFDseSdfO)

From http://www.ics.uci.edu/~alspaugh/cls/shr/allen.html
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Example: composition tables

RCC-8 :

From wikipedia
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Other approaches

Ontologies and description logics.

Graph-based reasoning.

Grammars.

Formal concept analysis.

Decision trees.

Constraint Satisfaction Problem.

Relational algebras on temporal or spatial configurations.

Graphical models.

...
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Example using RCC: region identification (Le Ber et al.)
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Semi-quantitative spatial reasoning: fuzzy approaches

Limitations of purely qualitative reasoning

Interest of adding semi-quantitative extension to qualitative value for
deriving useful and practical conclusions

Limitations of purely quantitative representations in the case of
imprecise statements, knowledge expressed in linguistic terms, etc.

Integration of both quantitative and qualitative knowledge using
semi-quantitative (or semi-qualitative) interpretation of fuzzy sets

Freeman (1975): fuzzy sets provide computational representation and
interpretation of imprecise spatial constraints, expressed in a linguistic
way, possibly including quantitative knowledge

Granularity, involved in:

objects or spatial entities and their descriptions
types and expressions of spatial relations and queries
type of expected or potential result
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Motivation: model-based recognition and spatial reasoning

representation of imprecision

spatial relations as structural information

topological relationships (set relations, adjacency)
distances
relative directional relationships
more complex relations (between, along...)

two classes of relations

well defined in the crisp case (adjacency, distances...)
vague even in the crisp case (directional relationships...)

fusion of several and heterogeneous pieces of knowledge and
information

⇒ Fuzzy set theory, mathematical morphology
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Imprecision and fuzziness

objects (no clear boundaries, coarse segmentation...)

relations (ex: left of, quite close)

type of knowledge available (ex: the caudate nucleus is close to the
lateral ventricle)

question to be answered (ex: go towards this object while remaining
at some security distance)
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Types of representations: example of distances

number in R+ (or in [0, 1])

interval

fuzzy number, fuzzy interval
Rosenfeld:

distance density: degree to which the distance is equal to n
distance distribution: degree to which the distance is less than n

linguistic value

logical formula

⇒ unifying framework of fuzzy set theory

dmin = 17, dHaus = 80
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Definitions: fuzzy sets

Space S (image space, space of characteristics, etc.)
Fuzzy set: µ : S → [0, 1] – µ(x) = membership degree of x to µ
Support: Supp(µ) = {x ∈ S, µ(x) > 0} – Core / kernel:
{x ∈ S, µ(x) = 1}
α-cut: µα = {x ∈ S, µ(x) ≥ α}
Cardinality: |µ| =

∑
x∈S µ(x) (for S finite)

Convexity:
∀(x , y) ∈ S2,∀λ ∈ [0, 1], µ[λx + (1− λ)y ] ≥ min[µ(x), µ(y)]
Fuzzy number: convex fuzzy set on R, u.s.c., unimodal, with compact
support. Example: LR-fuzzy sets.

S

µ

0

1

core

support

α

α−cut
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Basic operations (Zadeh, 1965)

Equality: µ = ν ⇔ ∀x ∈ S, µ(x) = ν(x)

Inclusion: µ ⊆ ν ⇔ ∀x ∈ S, µ(x) ≤ ν(x)

Intersection: ∀x ∈ S, (µ ∩ ν)(x) = min[µ(x), ν(x)]

Union: ∀x ∈ S, (µ ∪ ν)(x) = max[µ(x), ν(x)]

Complementation: ∀x ∈ S, µC (x) = 1− µ(x)

Properties:
consistency with binary set operations
µ = ν ⇔ µ ⊆ ν and ν ⊆ µ
fuzzy complementation is involutive: (µC )C = µ
intersection and union are commutative and associative
intersection and union are idempotent and mutually distributive
intersection and union are dual with respect to the complementation:
(µ ∩ ν)C = µC ∪ νC
(µ ∪ ν)α = µα ∪ να, etc.

BUT: µ ∩ µC 6= ∅, µ ∪ µC 6= S
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Semantics

degree of similarity (notion of distance)

degree of plausibility (that an object from which only an imprecise
description is known is actually the one one wants to identify)

degree of preference (fuzzy class = set of ”good” choices), close to
the notion of utility function
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Representing different types of imperfection
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Set theoretical operations

Fuzzy complementation
function c from [0, 1] into [0, 1] such that:

1 c(0) = 1

2 c(1) = 0

3 c is involutive, i.e. ∀x ∈ [0, 1], c(c(x)) = x

4 c is strictly decreasing

General form of continuous complementations: c(x) = ϕ−1[1− ϕ(x)] with
ϕ : [0, 1]→ [0, 1], ϕ(0) = 0, ϕ(1) = 1, ϕ strictly increasing.

Example: ϕ(x) = xn ⇒ c(x) = (1− xn)1/n
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Triangular norms (fuzzy intersection)
t-norm t : [0, 1]× [0, 1]→ [0, 1] such that:

1 commutativity, i.e. ∀(x , y) ∈ [0, 1]2, t(x , y) = t(y , x);

2 associativity, i.e. ∀(x , y , z) ∈ [0, 1]3, t[t(x , y), z ] = t[x , t(y , z)];

3 1 is unit element, i.e. ∀x ∈ [0, 1], t(x , 1) = t(1, x) = x ;

4 increasingness with respect to the two variables:

∀(x , x ′, y , y ′) ∈ [0, 1]4, (x ≤ x ′ and y ≤ y ′)⇒ t(x , y) ≤ t(x ′, y ′).

Moreover: t(0, 1) = t(0, 0) = t(1, 0) = 0, t(1, 1) = 1, and 0 is null
element (∀x ∈ [0, 1], t(x , 0) = 0).

Examples of t-norms: min(x , y), xy , max(0, x + y − 1).
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Triangular conorms (fuzzy union) t-conorm T : [0, 1]× [0, 1]→ [0, 1] such
that:

1 commutativity, i.e. ∀(x , y) ∈ [0, 1]2, T (x , y) = T (y , x);

2 associativity, i.e. ∀(x , y , z) ∈ [0, 1]3, T [T (x , y), z ] = T [x ,T (y , z)];

3 0 is unit element, i.e. ∀x ∈ [0, 1], T (x , 0) = T (0, x) = x ;

4 increasingness with respect to the two variables

Moreover: T (0, 1) = T (1, 1) = T (1, 0) = 1, T (0, 0) = 0, and 1 is null
element (∀x ∈ [0, 1],T (x , 1) = 1).

Examples of t-conorms: max(x , y), x + y − xy , min(1, x + y).

Duality: ∀(x , y) ∈ [0, 1]2, T [c(x), c(y)] = c[t(x , y)]

Other combination operators (mean, symmetrical sums, etc.) ⇒
information fusion
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Linguistic variable

size

M

U

membership
functions

semantic rules

linguistic variable

syntactic rules

terms{very small, small, medium, large, very large}
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Imprecise reasoning

Difference between data and knowledge

Classical logic:

language
semantics (interpretations, truth values)
syntax (axioms and inference rules)

Human reasoning: flexible, allows for imprecise statements

Gradual predicates:

continuous referential
typicality

I. Bloch (LTCI, Télécom Paris) Spatial Reasoning 40 / 80



Uncertainty

= unable to say whether a proposition is true or not

because information is incomplete, vague, imprecise
⇒ possibility

because information is contradicting or fluctuating
⇒ probability

certainty degree 6= truth degree

”It is probable that he ”He is very far
is far from his goal” from his goal”

Fuzzy logic: propositions with truth degrees

Possibilistic logic: propositions with (un)certainty degrees
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Fuzzy logic

Basic fuzzy propositions: X is P
X = variable taking values in U
P = fuzzy subset of U
Truth degrees in [0, 1] defined from µP

Conjunction: X is A and Y is B µA∧B(x , y) = t[µA(x), µB(y)]

Disjunction: X is A or Y is B µA∨B(x , y) = T [µA(x), µB(y)]

Negation: µ¬A(x) = c[µA(x)]

Variables taking values in a product space: X with values in U , Y
with values V ⇒ conjunction = cartesian product

X is A and Y is B µA×B(x , y) = t[µA(x), µB(y)]
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Fuzzy implications

Classical logic: (A⇒ B)⇔ (B or notA)
Fuzzy logic:

A and B crisp:
Imp(A,B) = T [c(A),B]

A and B fuzzy:

Imp(A,B) = inf
x
T [c(µA(x)), µB(x)]

Examples (c(a) = 1− a) :

T (a, b) = max(a, b) I (a, b) = max(1− a, b) Kleene-Diene
T (a, b) = min(1, a + b) I (a, b) = min(1, 1− a + b) Lukasiewicz
T (a, b) = a + b − ab I (a, b) = 1− a + ab Reichenbach

Residual implications from a t-norm:

I (A,B) = sup{X | t(X ,A) ≤ B}

Adjunction: t(X ,A) ≤ B ⇔ X ≤ I (A,B)
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Fuzzy reasoning

Classical logic

Modus ponens: (A ∧ (A⇒ B))⇒ B
Modus tollens: ((A⇒ B) ∧ ¬B)⇒ ¬A
Syllogism: ((A⇒ B) ∧ (B ⇒ C ))⇒ (A⇒ C )
Cuntraposition: (A⇒ B)⇒ (¬B ⇒ ¬A)

Fuzzy modus ponens

Rule :
if X is A then Y is B

Knowledge or observation:
X is A′

Conclusion:
Y is B ′

µB′(y) = sup
x

t[µA⇒B(x , y), µA′(x)]

Other reasoning modes: similar extensions.
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Fuzzy rules

IF (x is A AND y is B) THEN z is C

IF (x is A OR y is B) THEN z is C

...

α: truth degree of x is A
β: truth degree of y is B
γ: truth degree of z is C

Satisfaction degree of the rule:

Imp(t(α, β), γ) = T [c(t(α, β)), γ)]

Imp(T (α, β), γ) = T [c(T (α, β)), γ)]

...
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Example in image filtering

IF a pixel is darker than its neighbors
THEN increase its grey level
ELSE IF a pixel is brighter than its neighbors
THEN decrease its grey level
ELSE unchanged

F. Russo et al.
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Spatial fuzzy objects

S: R3 or Z3 in the digital case

µ : S → [0, 1]

µ(x) = degree to which x belongs to the fuzzy object
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Definition of membership functions

often based on heuristics and ad hoc procedures

from intensity function I or gradient

µ(x) = F1[(I (x)]

µ(x) = F2[(∇I (x)]

from the output values of some detector

by introducing imprecision at the boundary of a crisp detection

µ(x) =


1 if x ∈ En(O)
0 if x ∈ S − Dm(O)
F3[d(x ,En(O))] otherwise

from classification algorithms
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How can an operation be extended to the fuzzy case?

Extension principle: f from U into V

∀y ∈ V, µ′(y) =

{
0 if f −1(y) = ∅,
supx∈U|y=f (x) µ(x) otherwise
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How can an operation be extended to the fuzzy case?

Using α-cuts :

R(µ) =

∫ 1

0
RB(µα)dα

R(µ) = sup
α∈[0,1]

min(α,RB(µα))

R(µ) = sup
α∈[0,1]

(αRB(µα))

...

Extension principle based on α-cuts:

∀n,R(µ, ν)(n) = sup
RB(µα,να)=n

α
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How can an operation be extended to the fuzzy case?

Formal translation:

set X fuzzy set µ

complementation XC fuzzy complementation c(µ)

intersection ∩ t-norm t

union ∪ t-conorm T

∃ sup

∀ inf

⇒ easy translation of algebraic and logical expressions
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Set relationships

Fuzzy sets ⇒ relations become a matter of degree

Degree of intersection: µint(µ, ν) = supx∈S t[µ(x), ν(x)]

S

µ

or: µint(µ, ν) = Vn[t(µ,ν)]
min[Vn(µ),Vn(ν)]

Degree of inclusion:
inf
x∈S

T [c(ν(x)), µ(x)]
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Mathematical morphology

Dilation: operation in complete lattices that commutes with the
supremum.
Erosion: operation in complete lattices that commutes with the infimum.

⇒ applications on sets, fuzzy sets, functions, logical formulas, graphs, etc.

Using a structuring element:

dilation as a degree of conjunction: δB(X ) = {x ∈ S | Bx ∩ X 6= ∅},
erosion as a degree of implication: εB(X ) = {x ∈ S | Bx ⊆ X}.

A lot of other operations...
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Fuzzy mathematical morphology

Dilation as degree of intersection:

Dν(µ)(x) = sup{t[ν(y − x), µ(y)], y ∈ S}

Erosion as degree of inclusion:

Eν(µ)(x) = inf{I [ν(y − x), µ(y)], y ∈ S}

I from a t-conorm T or by residuation from the t-norm t

Opening and closing by composition

Similar properties as in classical mathematical morphology
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Fuzzy spatial relations

Fuzzy sets → relations become a matter of degree

Set theoretical relations

Topology: connectivity, connected components, neighborhood,
boundaries, adjacency

Distances

Relative direction

More complex relations: between, along, parallel, around...

Most of them can be defined from mathematical morphology.
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Distances between fuzzy sets

Comparison between membership functions

functional approach: distance from a Lp norm

dp(µ, ν) = [
∑
x∈S
|µ(x)− ν(x)|p]1/p

d∞(µ, ν) = max
x∈S
|µ(x)− ν(x)|

set theoretical approach

d(µ, ν) = 1−
∑

x∈S min[µ(x), ν(x)]∑
x∈S max[µ(x), ν(x)]

...
adapted to cases where the fuzzy sets to be compared represent the
same structure or a structure and a model of it

model-based object recognition
case-based reasoning
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Distances between fuzzy sets

Taking the spatial distance dE into account

geometrical approach

space of dimension n + 1

fuzzification: d(µ, ν) =
∫ 1

0
D(µα, να)dα

weighting

d(µ, ν) =

∑
x∈S

∑
y∈S dE (x , y) min[µ(x), ν(y)]∑

x∈S
∑

y∈S min[µ(x), ν(y)]

fuzzy number

d(µ, ν)(r) = sup
x,y ,dE (x,y)≤r

min[µ(x), ν(y)]

morphological approach
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Distances between fuzzy sets: morphological approach

Expression of distances (minimum, Hausdorff...) in morphological (i.e.
algebraic) terms ⇒ easy translation to the fuzzy case

d
d
H

N
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Minimum (nearest point) distance distribution

dN(X ,Y ) = inf{n ∈ N,X ∩ Dn(Y ) 6= ∅} = inf{n ∈ N,Y ∩ Dn(X ) 6= ∅}

Degree to which the distance between µ and µ′ is less than n (distance
distribution):

∆N(µ, µ′)(n) = f [sup
x∈S

t[µ(x),Dn
ν (µ′)(x)], sup

x∈S
t[µ′(x),Dn

ν (µ)(x)]]

Hausdorff distance: similar equations
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Minimum (nearest point) distance density

dN(X ,Y ) = n⇔ Dn(X ) ∩ Y 6= ∅ and Dn−1(X ) ∩ Y = ∅

dN(X ,Y ) = 0⇔ X ∩ Y 6= ∅

Degree to which the distance between µ and µ′ is equal to n (distance
density):

δN(µ, µ′)(n) = t[sup
x∈S

t[µ′(x),Dn
ν (µ)(x)], c[sup

x∈S
t[µ′(x),Dn−1

ν (µ)(x)]]]

δN(µ, µ′)(0) = sup
x∈S

t[µ(x), µ′(x)]

Hausdorff distance: similar equations
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Properties of fuzzy morphological distances

fuzzy numbers

positive: support included in R+

symmetrical with respect to µ and µ′

if µ is normalized δN(µ, µ)(0) = 1 and δN(µ, µ)(n) = 0 for n > 1

δH(µ, µ′)(0) = 1 implies µ = µ′ for T being the bounded sum
(T (a, b) = min(1, a + b)), while it implies µ and µ′ crisp and equal
for T = max

triangular inequality not satisfied in general
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Example: spatial representation of knowledge about distance
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Directional relations

νRight

µRight(R) = δνRight (R)
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Directional relative position: properties

evaluation in the spatial domain, and with richer information
(compared to other fuzzy methods)

the possibility has a symmetry property

invariance with respect to translation, rotation and scaling, for 2D
and 3D objects (crisp and fuzzy)

when the distance between the objects increases, the objects are seen
as points

nice behavior in case of concavities
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Complex relations

Example: the heart is between the lungs
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Reasoning with mathematical morphology

Chaining operations (image interpretation, recognition)

Fusion of spatial relations (ex: structural recognition)

Links with logics
propositional logics:

elegant tools for revision, fusion, abduction
links with mereotology, ”egg-yolk” structures, logics of distances,
nearness logics, linear logics, logics of convexity...

modal logics:

(♦,�) = (dilation, erosion)
symbolic and qualitative representations of spatial relations

fuzzy logic
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Example: dilation and erosion of a formula

Structuring element B: relation between worlds
Dilation:

Mod(DB(ϕ)) = {ω ∈ Ω | B(ω) ∩Mod(ϕ) 6= ∅}

Erosion:
Mod(EB(ϕ)) = {ω ∈ Ω | B(ω) |= ϕ}
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Dilation and erosion as modal operators

Structuring element B: accessibility relation R(ω, ω′) iff ω′ ∈ B(ω)

M, ω |= �ϕ ⇔ ∀ω′ ∈ Ω, R(ω, ω′)⇒M, ω′ |= ϕ

⇔ {ω′ ∈ Ω | ω′ ∈ B(ω)} |= ϕ

⇔ B(ω) |= ϕ

M, ω |= ♦ϕ ⇔ ∃ω′ ∈ Ω, R(ω, ω′) etM, ω′ |= ϕ

⇔ {ω′ ∈ Ω | ω′ ∈ B(ω)} ∩Mod(ϕ) 6= ∅
⇔ B(ω) ∩Mod(ϕ) 6= ∅

�ϕ ≡ EB(ϕ) ♦ϕ ≡ DB(ϕ)

Spatial interpretation: restriction or necessary region / extension or
possible region
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Example: logical expressions and links with mereotology

Spatial entities represented as formulas.
Structuring element: binary relationship between worlds, accessibility
relation...
Adjacency: ϕ ∧ φ→ ⊥ and δϕ ∧ ψ 6→ ⊥ and ϕ ∧ δψ 6→ ⊥.
Tangential part: ϕ→ ψ and δϕ ∧ ¬ψ 6→ ⊥.
Proper tangential part in mereotopology:
TPP(ϕ,ψ) = P(ϕ,ψ) ∧ ¬P(ψ,ϕ) ∧ ¬P(δ(ϕ), ψ).

φψφ

δ(φ) δ(φ)

ψ

RCC expression for (ϕ = x , ψ = y):
TPP(x , y) = (P(x , y) ∧ ¬P(y , x)) ∧ ∃z [(C (z , x) ∧ ¬(∃z ′,P(z ′, z) ∧
P(z ′, x)))) ∧ (C (z , y) ∧ ¬(∃z ′,P(z ′, z) ∧ P(z ′, y)))]
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Model based image understanding

Models of various types:

acquisition properties (geometry, noise statistics...)

shape

appearance

spatial relations

...

Important

to use available knowledge

to guide the image exploration, for segmentation, recognition, scene
understanding

to solve ambiguities

to deal with imprecision

...
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Issues:

semantic gap

imprecisions and uncertainties

pathological cases

algorithms

Two main questions in structural recognition in images:

given two objects (possibly fuzzy), assess the degree to which a
relation is satisfied

given one reference object, define the area of the space in which a
relation to this reference is satisfied (to some degree)
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Example in brain imaging

Concepts:

brain: part of the central nervous system located in the head
caudate nucleus: a deep gray nucleus of the telencephalon involved
with control of voluntary movement
glioma: tumor of the central nervous system that arises from glial cells
...

Spatial organization:

the left caudate nucleus is inside the left hemisphere
it is close to the lateral ventricle
it is outside (left of) the left lateral ventricle
it is above the thalamus, etc.
...

Pathologies: relations are quite stable, but more flexibility should be
allowed in their semantics
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Integration of ontologies, spatial relations and fuzzy models
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Ontology of the anatomy (FMA) enriched with an ontology of spatial
relations
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Learning spatial relations

putamen

thalamus

ventricles

caudate nucleus
tumor

0

1

distances

f(d)

m + 2m σ
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Spatial reasoning for model-based recognition

Segmentation and recognition of some internal structures on a normal case
(O. Colliot et al.):

fusion of spatial relations (given by the model) to previously
recognized objects

deformable model constrained by spatial relations
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Examples in pathological cases (H. Khotanlou, J. Atif, et al.)

putamen (3)

tumor (1)

thalamus (2)

caudate nucleus (3)

tumor (1)

lateral ventricles (2)
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Best segmentation path (G. Fouquier et al.)
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Best segmentation path (G. Fouquier et al.)
Evaluation and backtracking
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Best segmentation path (G. Fouquier et al.)
Some results
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Global approach based in CSP (O. Nempont et al.)
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Global approach based in CSP (O. Nempont et al.)
Constraint Satisfaction Problem (CSP):

Constraint network = (χ,D, C)

χ = variables

D = set of associated domains

C = constraints involving variables of χ, relations on the variable
domains

Propagation of constraints:

Locally consistent constraint if all values of the domains can satisfy the
constraint.
Suppression of inconsistent values: (χ,D, C)→ (χ,D′, C)
Propagator = operator reducing the domains according to a constraint.
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Global approach based in CSP (O. Nempont et al.)

Variables = anatomical structures.

Domain of a variable = interval of fuzzy sets [A,A].

Example of constraint (1): inclusion

C in
A,B : D(A)×D(B) → {0, 1}

(µ1, µ2) 7→
{

1 if µ1 ≤ µ2,
0 otherwise.

Associated propagator:

〈A,B; (A,A), (B,B);C in
A,B〉

〈A,B; (A,A ∧ B), (B ∨ A,B);C in
A,B〉

I. Bloch (LTCI, Télécom Paris) Spatial Reasoning 76 / 80



Global approach based in CSP (O. Nempont et al.)

Example of constraint (2): directional relation

Cdir ν
A,B : D(A)×D(B) → {0, 1}

(µ1, µ2) 7→
{

1 if µ2 ≤ δν(µ1),
0 otherwise.

Associated propagator:

〈A,B; (A,A), (B,B);Cdir ν
A,B 〉

〈A,B; (A,A), (B,B ∧ δν(A));Cdir ν
A,B 〉

Other constraints: distance, partition, connectivity, adjacency,
volume, contraste...

Ordering of the propagators and iteration application.
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Propagation of constraint: example
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I. Bloch (LTCI, Télécom Paris) Spatial Reasoning 77 / 80



Propagation of constraint: example

brighter

central in

in

in

right of

darker

in

CNl

Brain

IClLVl

darker

LV l LV l

CNl

IClICl

CNl

CervCerv
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Result: example
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Examples in remote sensing (C. Vanegas)
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Examples in remote sensing (C. Vanegas)
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