Satellite Image Mining: Indexing and Retrieval

Master AIC (Apprentissage, Information et Contenu) and D&K (Data & Knowledge) – Université Paris Saclay

Henri Maître - Télécom ParisTech
henri.maitre@telecom-paristech.fr
Content

I - Remote Sensing (RS) and RS Images
- Why remote sensing? ... 3
- Preparing a RS program 4
- Image parameters (resolution, spectral bands, repetition …) 8
- Image diversity (12 not presented slides) 14

II - RS Image mining
- RS archiving problems .. 23
 - RS image mining IS NOT multimedia image mining 25
 - RS image mining specificity 28
- Hand-crafted features and classification 35
 - Expert in the loop, relevance feedback 45
- Deep Neural Networks ... 57
 - DNN toolbox .. 60
 - Some instances ... 64
- From Lo to Hi level of semantics 67

09/01/2019 Master AIC
Part I - Remote Sensing and Remote sensing images

Why? How? For Whom?
Why do we need Remote Sensing

Environment:

- Meteorology: short-term weather prediction
- Climate: long-term monitoring
 - volcanos
 - earthquake, tsunamis, floods
 - Industrial hazards
 - Marine pollution
Why do we need Remote Sensing

- **Agriculture:**
 - Survey and evaluation of crop & farming production
 - Fish & Aquaculture resources management
 - Forestry resources planning
 - Water management, dams, watering
 - Desertification & urban pressure
Why do we need Remote Sensing

- **Town & country planning:**
 - Mapping and inventories
 - Constructions & public work: railways, airports, harbours, dams, …
 - Cities and Mega-cities management
 - Management of moving populations, displacements, installation
 - Climatic impact management
 - Crisis management: fires, floods, …
Why do we need Remote Sensing

- Defence & Security applications:
 - Military deployment preparation
 - Military mission debriefing
 - Intelligence and survey of national/foreign territory
How to prepare a remote sensing program
How is prepared a remote sensing program

- Conceive the sensor: application, customers
- Determine which satellite / which launcher
- Conceive the ground-station and the data management process: economical, social and technical issues

→ 15 to 20 years
Satellite links with the Earth

- **S Band Station Emitter/Receiver**
 - S-Band Antenna
 - Telemetry link 1.6 Mbps
 - Telecontrol link 4 kbps

- **X Band receiving Station**
 - X-Band Antenna
 - Image down link 250 Mbps

- **Operating and Control Decision Center**
 - Acquisition Programming

- **Processing center**
 - Request for an image
 - Images

- **User**
 - Images
Satellite: orbit choice

- Mecanics laws:
 - Newton = centripetal force
 - Satellite speed = driving force
 ➜ elliptical or circular trajectory (Kepler)

\[
\vec{F} = -\frac{\mu m \vec{r}}{r^2}
\]
Orbit choice

1) Geostationary
 - Always in the Equator Plane
 - Always at vertical of the same point on the Equator
 - Altitude ~ 36 700 km
 - Field of view: ~1/3 Earth: always the same

 - Applications: meteo, survey of catastrophies, telecoms, TV
2) Processing satellite (low orbit)

- Altitude ~ 800 km (down to 250 km)
- Circular ~ N/S
- Trajectory: ± polar
- ~ 15 revolutions / day
- Helio-synchronous
Choice of resolution

- Pixel size = smallest measured terrain on the ground
 - from 30 cm to 10 km

SPOT 5
\[\Delta x = 2.5 \text{m} \]
On Ground resolution

- **Depends on:**
 - **Sensor:**
 - Photosites size: \(\delta x \)
 - \(G = \frac{f}{D} \) = enlargement
 - \(\Delta x = \frac{\delta x}{G} \) = smallest detail
 - **The camera lens**
 - \(\delta' x = \frac{\lambda f}{d} \) = diffraction limited resolution

\[
\Delta x_{\text{min}} = \frac{\lambda f}{G d} = \frac{\lambda D}{d} \quad \Rightarrow \text{Smallest detail}
\]

\[D = \text{satellite-Earth distance} \sim 1\ 000 \ \text{km} = 10^6 \ \text{m}\]

\[\lambda = \text{wave length} = 0,5 \cdot 10^{-6} \ \text{m}\]

\[d = \text{lens diameter} \sim 0,5 \ \text{m}\]

\[\Delta x_{\text{min}} = 1 \ \text{m}\]

Possible with: \(f = 1 \ \text{m} \)

if \(\delta' x = \frac{\lambda f}{d} = 1 \mu\text{m} \)

the photosite measures \(10^{-6} \ \text{m} \)
Often *push-broom sensor*

- **Sensor size along track:**
 - On line sensor
 - \(\text{speed} \times \text{aperture time} \)

- **In the other direction**
 - Number of sensors on a line
 - From 6,000 to 40,000

- **Resolution:**
 - Depends on the lens
Swath choice

- **Swath = image width**
 - from 10 km to 10 000 km
 - = from 3 000 to 40 000 pixels / line
 - Given by the sensor size
 - Limited by the communication link with Earth

- **Revisit delay**
 - **15 min for geostationnary sat. (to dump the memory)**
 - from 1h30 (min) to 1 month for processing satellites
 - But … sensor agility!
Video possibility

- **Angle of view ~ + or – 50 degrees:**
 - MN ~ 2000 km
 - 1 rotation around the Earth = 90 min ~ 40 000 km
 - Time to go from M to N
 \[= \frac{90 \times 2000}{40000} = 4 \text{ min 30 s} \]
Which wave length?

1 – Passive sensors: measure the energy sent back from Sun by Earth or the energy radiated by Earth

- Emitted from the Sun (Wien’s law) \times \text{Atmosphere transparency} \times \text{Ground Reflexion}
- Black and White (Panchromatic)
- Visible = Blue - Green - Red
- Visible and Near Infra-Red: G - R - IR = false colors
- Multispectral : 7 \rightarrow 20 channels
- Hyperspectral : 64 \rightarrow 512 channels
False colors: \(\text{NIR-R-G} \rightarrow \text{R-G-B} \)

vegetation = red

False colors:

True colors:
Multispectral image visualisation: pseudo colors

Landsat = 7 channels

321
(a) combination 321

432
(b) combination 432

542
(c) combination 542

435
(d) combination 754

754
(e) combination 435

1 2 3 4 5 6 7
R G + B

41(7+5)

© UVED
Which wave length?

2 – Active sensors: EM emitter + receiver

radar = Micro waves: $\lambda = 1$ cm to 10 m

- But low resolution: $\Delta x = \frac{\lambda f}{Gd}$
- With complex processing: Synthetic Aperture Radar \Rightarrow hi resolution
Real antenna is too small, it covers a very large field
When moving, superposition of the seen areas

One point is seen from several antenna positions
From computation we obtain an accurate information = synthetic antenna
Satellite images = big data!

- Television HD: 1,280 x 720 pixels
- Television 4k: 4,000 x 2,000 pixels
- PC display screen: 1,600 x 1,200 pixels
- Photo camera: 5,000 x 4,000 pixels
- Spot 1 … 4: 6,000 x 6,000 pixels
- SPOT 5: 24,000 x 24,000 pixels
- Quickbird: 40,000 x 40,000 pixels

1,600,000,000 pixels = 1.6 Gpixels = 800 PC display screens

1 SPOT 5 image = 10 s of satellite run
Diversity of Remote Sensing Images (slides are not presented in the lecture notes)
Part II – Remote Sensing Image Mining
Remote Sensing Imaging: Archiving Problems and Issues
Satellite Image archives

- How can we store millions of images?
- How can we ensure durability of storage?
- How knowing that information exists?
- How retrieving information?
- How exploiting information?

➡ Data Mining directly on image files
When searching in a small set of images

➡ Indexing images when received
➡ data mining on index
When searching in large sets
RS Image mining IS NOT MultiMedia Image Mining
Mining in Multimedia Image databases

Multimedia information retrieval:
- Either from **semantic information**: name, description, caption, text (90% of Google-like retrieval)
- Or from **instance** (i.e. with a reference image) (Face or fingerprint recognition)

I – Classical Machine Learning techniques (2000-2012)
- Hand-crafted feature detection and/or salient point detection
- Classification in p-dimensional space
 - \(\rightarrow \) few parameters
 - \(\rightarrow \) few learning images (groundtruth) \(~ 1000\)

II – Deep neural networks (2012 - …)
- Directly with images as input and/or with extracted features
- Several +/- linear classifiers in cascade
 - \(\rightarrow \) thousands of parameters
 - \(\rightarrow \) hundred of thousands of images as groundtruth
Multimedia image mining: handcrafted features + classification

- Multimedia information retrieval from exemple:
 - Choices: to be robust to possible differences
 - scale, lighting, orientation, color, ... \(\Rightarrow\) invariance
 - Strategy: detect invariant features
 - Histograms, color distribution, area-based segmentation, graph description, ...
 - Textures
 - Salient point detection: Harris, SIFT, SURF, ...
 - Represent the image as a vector in a \(p\) dimensional space \(\mathbb{R}^p\)
 - Classification: Bayès, k-NN, dynamic clustering, SVM (Support Vector Machine), Graph tree, ...
Ambiguous semantics: Venus

<table>
<thead>
<tr>
<th>Image 1</th>
<th>Image 2</th>
<th>Image 3</th>
<th>Image 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Institut Mines-Télécom

09/01/2019 Master AIC
Textual categorisation
invariance
Salient points: SIFT

\[L(x, y, \sigma) = G(x, y, \sigma) \ast I(x, y), \]
\[\frac{\partial G}{\partial \sigma} = \sigma \nabla^2 G. \]

\[D(x, y, \sigma) = (G(x, y, k\sigma) - G(x, y, \sigma)) \ast I(x, y) \]
\[= L(x, y, k\sigma) - L(x, y, \sigma). \]

\[D(x) = D + \frac{\partial D^T}{\partial x} x + \frac{1}{2} x^T \frac{\partial^2 D}{\partial x^2} x \]

\[\hat{x} = -\frac{\partial^2 D^{-1}}{\partial x^2} \frac{\partial D}{\partial x}. \]

\[\frac{\text{Tr}(H)^2}{\text{Det}(H)} < \frac{(r + 1)^2}{r} \]
Specificities of RS Image mining
Category-based retrieval in specific data-bases

- **Examples:**
 - Biomedical
 - Biology
 - Astronomy
 - Remote sensing and satellite images

- **Goal:** to retrieve images « looking the same » as a given sample in very specialized data-bases

- Different from: retrieving the exact object in a very broad data-base
Satellite images

- A very specific content
A same region, different signals

From: Tong et al. arXiv 1807.05713 - 2018
The role of scale

High-Badakchan, Tadjikistan - Ikonos

15 m

1 m
Main scales

- **<1 meter = Very high resolution**: fine details in urban context, cars, pedestrians, containers, fences, small boats, ...

- **1 m < ... < 5 m = High resolution**: urban fine structures, houses, streets, gardens, individual trees, railway & road networks, ...

- **5 m < ... < 30 m = Middle resolution**: fine landcover, coarse urban structure: dense urban, residential or commercial areas,

- **> 30 m = low resolution**: global landcover
Available information on satellite images (semantic information) = Ancillary data

- **Accurate positionning in universal geographical references**: UTM, Mercator, Lambert, etc…
- **Precise time referencing**: seasonal variations (vegetation, insolation, agricultural production, …), sun positionning (shadows), tide effects (precise coast-line, harbours and fishing activities), meteorological conditions (snow, floods, …)
- **Satellite parameters**: resolution, spectral sensitivity, noise
- **Often**: Image quality, cloud cover
Satellite images

- **What are we looking for?**

 It is not clear!

 - **Precise objects:**
 - A boat
 - A building
 - A road-crossing
 - An airplane landing area

 - **Generic objects:**
 - A marina
 - Greenhouse cultures
 - Oil pipeline
 - A forest fire
 - Refugee camps
 - Typhoon hazards

 - **Specific terrain configurations:**
 - Conducive to: ... floods, ... desertification, ... urban pollution, ...
 - Conducive to: ... build a factory, ... plan a bombing, ... cultivate marijuana
Spatial scale vs. Semantic complexity

Semantic Complexity

pixels regions zones

greenhouses flower culture intensive farming middle-age city marina

greenhouses flower culture intensive farming middle-age city marina
Hierarchical representation

- **Pixel**
 - spectral properties (R,G,B,IR)
 - contrast / texture
 - edges, contours

- **Region**
 - form / shape

- **Objects**
- **Scene**
 - Increasing semantics
 - sea
 - warehouse
 - house
 - network
 - wharf
 - fields
 - Master AIC
RS image processing & hand-crafted feature detection
Mining in RS Image databases

- Semantic information retrieval:
 - From ancillary data

I – Classical Machine Learning techniques (2000-2012)
- Image Processing
- Hand-crafted feature detection and/or salient point detection
- Classification in p-dimensional space
 - \(\Rightarrow \) few parameters
 - \(\Rightarrow \) few learning images (groundtruth) \(\sim 1000 \)

II – Deep neural networks (2012 - …)
- Directly with images as input and/or with extracted features
- Several +/- linear classifiers in cascade
 - \(\Rightarrow \) thousands of parameters
 - \(\Rightarrow \) hundred of thousands of images as groundtruth
Probabilistic evaluation

Image space I
Class space ω
Semantic label space L

$p(\omega_i | I)$
$p(L_i | w)$
Hand crafted features

- **Radiometry**
 - Multispectral: channels
 - Specific combinations for remote sensing: NDVI + IB + ISU

- **Textures**
 - Gabor Filters
 - Haralick cooccurrence matrices and their descriptors
 - Quadratic Mirror Filters (wavelets)
 - Contourlet decomposition
 - Steerable wavelets
 - Markov random fields parameters (Gaussian, Laplacian, Log-laplacian …)

- **Structures**
 - Contours, regions, lakes, forests, deserts
 - Objects: roads, buildings, rivers, lakes
 - Roads, Train or River networks
Some efficient choices

- **Indexing:** small subimages: (~ 64 x 64 pixels) = 320 m x 320 m on the ground for SPOT 5 images

- **Mixed features:**
 - Radiometry (Panchro only)
 - Structure (contours)
 - Wavelets: 2 directions, 4 scales

- **Automatic feature selection (supervised):** ReliefF, Fisher FS, SVM-RFE or Unsupervised: MIC (*Max Information Compression*), k-means FS
 ~ 100 features with redundancy or ➔ 10 to 20 features without redundancy

- **Give names to classes** (*from label to name*)
 - Waste fields
 - Cultures
 - Housing
 - Road and river networks
Classification

Many different classifiers:

- MAP & Bayes decision
- K-nearest neighbours
- Graph tree
- Kernel methods (SVM = Support Vector Machine)
- Hierarchical clustering

label = 24
or
Semantic labelling
name = « Corn field »

Supervised
or
Unsupervised
Supervised classes

<table>
<thead>
<tr>
<th>Supervised classes</th>
<th>Image 1</th>
<th>Image 2</th>
<th>Image 3</th>
<th>Image 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential areas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial tanks & cisterns</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Railway marshalling yard</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Supervised classes

<table>
<thead>
<tr>
<th>Class</th>
<th>Image 1</th>
<th>Image 2</th>
<th>Image 3</th>
<th>Image 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>factories</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dense urban area</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>villages</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban parks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Supervised classes

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Graveyards</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Road interchange</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Castle parks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parking lots</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
How to express results?

- **Classification rate** 97.3 % (or **error rate**: 2.7 %)
- **Confusion matrix**

<table>
<thead>
<tr>
<th></th>
<th>Present object</th>
<th>Absent object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive detection</td>
<td>True positive (TP)</td>
<td>False positive (FP)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(type I error)</td>
</tr>
<tr>
<td>Negative detection</td>
<td>False negative</td>
<td>True Negative</td>
</tr>
<tr>
<td></td>
<td>(type II error)</td>
<td></td>
</tr>
</tbody>
</table>

- **Receiver Operating Characteristic (ROC Curve)**

Convert TP and FP into FPR and TPR $\in [0,1]$

Plot $TPR = f(FPR)$ for many different parameters

Without specific instruction, take the closest point from $A = (0,1)$ as working condition
Sub image classification (128 x 128):

- city, wood, fields, sea, desert & clouds

600 images for each class

Results: Gaussian SVM, Mean error 1.4% ± 0.4%
(147 features, cross validated)

| True
Found (%)	city	clouds	desert	fields	woods	sea	
city	98.8	0	0	0.5	0	0	0
cloud	0	99.3	0.2	0	0	0	0
desert	0	0	99.0	0.3	0	0	0
fields	0.5	0.2	0.8	98.1	0.3	0.4	
woods	0	0.2	0	0	98.0	1.4	
sea	0.7	0.3	0	1.0	1.7	98.2	
How many features?

Automatic feature selection
• Wrappers
• Filters (mutual information)
• Embedded (Lasso)
Using a human expert to improve learning
Learning with Relevance feedback

- Man Machine dialog

- Subjective

- Objective
- Database composed of 600 SPOT5 images divided in 6 classes
- Used features: Gabor, Haralick, QMF and GMRF
- Gaussian Kernel
- System evaluation: Precision-Recall graphs
Deep Neural Networks
Mining in RS Image databases

- Semantic information retrieval:
 - From ancillary data

I – Classical Machine Learning techniques (2000-2012)
 - Image processing
 - Hand-crafted feature detection and/or salient point detection
 - Classification in p-dimensional space
 - few parameters
 - few learning images (groundtruth) ~ 1000

II – Deep neural networks (2012 - …)
 - Directly with images as input and/or with extracted features
 - Several +/- linear classifiers in cascade
 - thousands of parameters
 - hundred of thousands of images as groundtruth
Some references (dated 01/01/2019)

- Penatti, O. A., Nogueira, K., & dos Santos, J. A. (2015). Do deep features generalize from everyday objects to remote sensing and aerial scenes domains?. In *Proceedings of the IEEE conference on computer vision and pattern recognition workshops* (pp. 44-51).
Deep Neural Network

Which input?
- Raw image
- Processed image (filtered, segmented …)
- Feature detected image (classified, edge detected, …)
- Features

Which architecture?
- # layers,
- type of layers

Which protocol?
- Feature learning
- Fine tuning

Which output?
- Densely classified image
- Detected targets
- List of targets
- List of Features

From: I. Bloch, AIC
CNN basic components

- **Convolutional layer**: with \(r 	imes r \) kernel – down scaling

- **Nonlinearity**: sigmoïd or RELU (rectified linear unit)

- **Pooling layer**: single value taken from a set of values - ex: \(\text{max} \) on a \(r 	imes r \) patch

- **Autoencoder**: symetrical NN to reduce the model dimensionality
CNN basic components

- **Fully convolutional layer**: to perform a large distance context dependance

- **Transfer coding**: to learn from a database and use for another one

- **Fine Tuning**: to specify a network to a given task after training on a general purpose data base

- **Yoyo architecture**: downsampling for feature extraction then upsampling for fine positioning of targets
Most used components for RS-CNN (2019)

- CNN from the Pattern Recognition community
 - AlexNet
 - GoogleNet
 - VGGNet
 - ResNet
 - Inception

- Training sets
 - ImageNet (General purpose image library for pattern recognition)
 - UC Merced DataSet (Aerial images / 21 classes)
 - OSM - OpenStreetMap (Aerial Image Database)
 - Google Street Map (hi level semantic)
 - NLCD - USGS data Base (Geological survey)
 - Corinne Landcover (Agriculture & vegetation)
 - Gaofen Image Dataset (GID) (Hi Resolution Satellite)
 - ...
Instance # 1: Basic CNN (DLR)

- With UC Merced Land database (aerial / 21 classes)
- With pre-trained CNN (Imagenet)
- Fine-tuned full convolutional layers with enhanced data

Table II: Classification Components and Algorithm Comparison

<table>
<thead>
<tr>
<th>Method & Algorithm</th>
<th>Test-set Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random Forest with RGB feature</td>
<td>44%</td>
</tr>
<tr>
<td>CNN with RGB feature</td>
<td>44.5%</td>
</tr>
<tr>
<td>Random Forest with Overfit features</td>
<td>86.9%</td>
</tr>
<tr>
<td>CNN with Overfit feature</td>
<td>92.4%</td>
</tr>
</tbody>
</table>

Table III: Method Comparison Over the UCML Benchmark

<table>
<thead>
<tr>
<th>Method & Algorithm</th>
<th>Test-set Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOVW [2]</td>
<td>71.8%</td>
</tr>
<tr>
<td>SPMK [1]</td>
<td>74%</td>
</tr>
<tr>
<td>SPCk+[2]</td>
<td>76%</td>
</tr>
<tr>
<td>Sparse Coding [4]</td>
<td>81.7%</td>
</tr>
<tr>
<td>Salient Unsupervised Learning [6]</td>
<td>82.8% ± 1.18%</td>
</tr>
<tr>
<td>MinTree + KD Tree [3]</td>
<td>83.1% ± 1.2%</td>
</tr>
<tr>
<td>CNN with Overfit feature</td>
<td>92.4%</td>
</tr>
</tbody>
</table>
Instance # 2: fully CNN (Inria)

Maggiori et al. IEEE TGRS, Feb 2017

Patch-based CNN

- 3@64x64
- 64@14x14
- 112@11x11
- 16@9x9
- 12x12
- Stride: 4
- 4x4
- 3x3

Fully convolutional Patch-based CNN

- 3@80x80
- 64@18x18
- 112@15x15
- 80@13x13
- 1@5x5
- 12x12
- Stride: 4
- 4x4
- 3x3
- 9x9
- Deconv. (4x upsampling)

Graph:

- True Positive rate vs False Positive rate
- Patch-based
- Fully convolutional

Images:

- (a) Image
- (b) Ground truth
- (c) Patch-based
- (d) Fully convolutional
- (e) SVM
Instance # 3 : RS CNN (Liemars/Wuhan)

Figure 1: Sample selection for model fine-tuning.
Instance # 3: RS CNN (Liemars/Wuhan)

Cooperation between classifying (sparse) and segmenting (dense)

From: Tong et al. arXiv 1807.05713 - 2018
Figure 8: Land-use classification maps of the GF-2 image obtained in Dongguan, Guangdong Province on January 23, 2015. (a) Ground truth. (b)-(f) Results of eCognition, RF+Fusion, SVM+Fusion, PT-GID, and FT-\(U_{tg}\).

From: Tong et al. arXiv 1807.05713 - 2018
From Low to High Level - Changing the scale
Complexity of images

Analysis window: real size
128 x 128 pixels

Analysis window: enlarged
Hierarchical representation

Two goals:
- Enlarge the field of view
- Increase the semantic level

Grouping strategy:
- Sliding window
- Pyramid
- Growing and Merging

Decision strategy:
- Bag of Visual Words (BOVW)
Increasing the semantics

Park = \{trees + fields + tracks\}

Waste area = \{waste + lawns + trees + roads\}

Residential area = \{houses + lawns + pools + roads\}

Commercial area = \{buildings + houses + parking lots + waste\}
Probabilistic evaluation

\[p(L_i | w) \]

Image space I \quad \text{Class space} \ \omega \quad \text{Semantic label space} L

\[I_1 \quad \omega_{k,1} \quad \omega_{l,1} \quad L_1 \]
\[I_2 \quad \omega_{k,1} \quad \omega_{l,2} \quad L_2 \]
\[I_3 \quad \omega_{k,1} \quad \omega_{l,3} \quad L_3 \]
\[I_4 \quad \omega_{k,2} \quad \omega_{l,3} \quad L_4 \]
\[I_5 \quad \omega_{k,3} \quad \omega_{l,4} \quad \vdots \]
\[I_6 \quad \vdots \quad \vdots \quad \vdots \]
\[\vdots \quad p(\omega_i | I) \quad \vdots \quad \vdots \]

\[p(L_i | w) \]
Decision making: Bag of Words

- 2 levels → **H=high** (unknown) **L = low** (known)
- List of *N* classes at **H** = \{*c*₁,*c*₂,… *c*_{*N*}\}
- At **H** : 1 super-region with *n* objects, each ∈ 1 class = *n* labels described by the ordered list of the probability (or the occurrence) of each class:
 \[R_k = \{p_1,p_2, \ldots p_n\}\]
- **Classify H according to the** \(R_k\)
 - Naïve Bayes : \(c^* = \text{argmax } p(c|x) = \text{argmax } p(c) \prod_{k=1}^{n} p(x_k|c)\)
 - Improving Naïve Bayes:
 - pLSA = Probabilistic Latent Semantic Analysis
 - LDA = Latent Dirichlet Analysis