Classification and clustering: a few approaches

Isabelle Bloch

LTCI, Télécom ParisTech - Université Paris-Saclay

isabelle.bloch@telecom-paristech.fr
Objective: example
A few approaches for classification and clustering with applications to images:

- Principal component analysis.
- Automatic clustering: k-means.
- Bayesian classification.
- Hierarchical clustering.
- SVM.
- Artificial neural networks.

Aim: data (images) \rightarrow features \rightarrow classes or clusters.

Feature space = characteristics of data on which classification will rely.
Decision space = classes, clusters.
Principal component analysis (PCA)

Find uncorrelated variables in the feature space
Reminder on covariance:

\[A = (a_1 \ldots a_n), \ B = (b_1 \ldots b_n) \] with 0 mean ("centered").

Variance of \(A \) and \(B \):

\[
\sigma^2_A = \frac{1}{n-1} \sum_{i=1}^{n} < a_i a_i > \quad \sigma^2_B = \frac{1}{n-1} \sum_{i=1}^{n} < b_i b_i >
\]

Covariance between \(A \) and \(B \):

\[
\sigma^2_{AB} = \frac{1}{n-1} \sum_{i=1}^{n} < a_i b_i > = \frac{1}{n-1} A B^t
\]

Properties of covariance:

- \(\sigma^2_{AB} = 0 \) iff \(A \) and \(B \) are entirely decorrelated.
- \(\sigma^2_{AB} = \sigma^2_A \) iff \(A = B \).
m samples of dimension $n \rightarrow$ matrix X of size $m \times n$.

- row of $X = \text{all measurements of a particular type}$
- column of $X = \text{measurements of a particular sample}$

Covariance $= S_X = \frac{1}{n-1}XX^t$ (square matrix $m \times m$).

- diagonal terms $= \text{variance of particular measurement types}$
- off-diagonal terms $= \text{covariance between measurement types}$

Diagonalization

$$Y = PX \text{ such that } S_Y = \frac{1}{n-1}YY^t \text{ is diagonal}$$

with P orthonormal ($p_ip_j = \delta_{ij}$),

Rows p_i of $P = \text{principal components = eigenvectors of } XX^t$.

ith diagonal value of $S_Y = \text{variance of } X \text{ along } p_i$.
PCA algorithm:

1. centering data (subtracting the mean for each measurement type);
2. computing the eigenvectors of XX^t.

Underlying assumptions:

- Linearity (extension to apply non-linearity before PCA: kernel PCA).
- Mean and variance sufficient \Rightarrow Gaussian distributions.
- Principal components with larger associated variances represent interesting dimensions, while those with lower variances represent noise \Rightarrow dimension reduction.
- Principal components are orthogonal.
Example: face recognition
http://dhoiem.cs.illinois.edu/courses/vision_spring10/lectures/Lecture15-FaceRecognition.ppt
Automatic clustering: \(k \)-means

- \(k \) classes \(C_1...C_k \).
- Class center = prototype (in the feature space) = \(m_1...m_k \).
- Distance \(d \) in the feature space: for sample \(x \), \(d(x, m_i) \) (Euclidean, Mahalanobis...)

Minimization of an objective function \(J \):

\[
J = \sum_{i=1}^{k} \sum_{x \in C_i} d(x, m_i)^2
\]

Solution:

1. \(m_i \) fixed \(\Rightarrow \ x \in C_i \) iff \(\forall j \), \(d(x, m_i) \leq d(x, m_j) \).
2. Class assignment fixed \(\Rightarrow m_i = \frac{\sum_{x \in C_i} x}{|C_i|} \).

Algorithm:

- Choose \(k \) and set initial class centers.
- Iterate steps 1 and 2.
- Until convergence... towards a local minimum of \(J \)!
\[
\begin{align*}
\times &= \text{centres initiaux} \\
\bullet &= \text{centres finaux}
\end{align*}
\]
Example: MRI brain images
Exercise: which classification result for $k = 2$?
Extends k-means algorithm with splitting and grouping steps:

- adaptation of class number,
- more parameters,
- splitting along the direction of maximal variance,
- grouping if class centers are closed to each other.
Bayesian clustering

Probabilistic modeling of an image

- $\Omega = \{\omega_1, \omega_2, \ldots\} =$ set of classes
- $s =$ site (pixel) and $S = \{s\} =$ set of sites
- $Y_s =$ random variable associated with each site
- $y_s =$ gray level (realization of Y_s) – or more generally a feature vector

MAP decision:
s assigned to ω_i such that:

$$P(\omega_i | y_s) \text{ maximal}$$

Bayes rule:

$$P(\omega_i | y_s) = \frac{p(y_s | \omega_i) P(\omega_i)}{p(y_s)}$$
Estimating $p(y_s|\omega_i)$ (likelihood):

- learning from annotated data (supervised)
- histogram \Rightarrow distribution of gray levels (unsupervised)
 - parametric methods
 - non parametric methods

Estimating $P(\omega_i)$ (prior):

- prior knowledge on class occurrences
- learning on a significant sample set
- otherwise equiprobable classes

\[
P(\omega_i) = \frac{1}{\text{Card}(\Omega)}
\]

$\Rightarrow p(y_s|\omega_i)$ maximal

$= \text{classification in the sense of maximum likelihood}$
Usual hypotheses:

- independence of features conditionally to the classes
- Gaussian distributions
- Markov hypothesis on the class field \Rightarrow included in the prior
Markovian regularization

- Minimization of an energy defined globally on the image:

\[U(x) = U(x, y) + U_{\text{prior}}(x) \]

with

\[U(x) = \sum_s \frac{(\mu_{x_s} - y_s)^2}{\sigma^2} - \beta \sum_{s, t} \delta(x_s, x_t) \]

- \(U(x, y) = \) data fidelity
- \(U_{\text{prior}}(x) = \) contextual term

- No analytical solution
- Iterative and stochastic optimization (simulated annealing) or iterative conditional modes if the initialization is good enough
L’adrénoleukodystrophie

Echo 1

Cerveau

Ventricules

Echo 2

ALD

Lars Aurdal, ENST
Etiquettes discrètes, résultats pour l’ALD

Lars Aurdal, ENST
Etiquettes discrètes, suivi d’un cas d’ALD

Ventricules, coupe 2

Lars Aurdal, ENST
Etiquettes discrètes, suivi d’un cas d’ALD
Pietro Gori et al.

Bayesian Atlas Construction

\[
\{ \mu_{\text{controls}}, \Gamma_{\text{controls}} \}
\]
Average and covariance matrix of the deformation parameters describing the morphological variability of the population of controls

\[
\{ \mu_{\text{patients}}, \Gamma_{\text{patients}} \}
\]
Average and covariance matrix of the deformation parameters describing the morphological variability of the population of patients

Morphological Variability Controls

Morphological Variability Patients
Exercise:
Landcover classification in a satellite image:
- wheat (class C_1) which covers 60% of the region of interest,
- forest (class C_2) which covers 10% of the region of interest,
- remaining: man-made objects, etc.

A large zone Z has been detected, which is homogeneous, with a mean gray level $m = 80$.

After a learning phase, conditional probabilities $P(n|C_1)$ et $P(n|C_2)$ (for a gray level n) are estimated as Gaussian distributions of parameters:
- for wheat: $m_1 = 100, \sigma_1 = 20$,
- for forest: $m_2 = 85, \sigma_2 = 5$.

1. To which class should Z be assigned according to the maximum likelihood criterion?

2. To which class should Z be assigned according to the maximum a posteriori criterion?

3. Actually, the estimation of forest coverage is not known precisely and can vary between 8% à 20% of the region of interest. Would this change the decision?
Hierarchical clustering

Set of nested clusterings (ex: taxonomy).

http://www.statisticshowto.com

Equivalence between indexed hierarchy in the sample space E and ultra-metric on E.
Ultra-metric: \(\delta : E \times E \to \mathbb{R}^+ \) such that

\[
\forall (x_1, x_2) \in E^2, \; \delta(x_1, x_2) = 0 \Leftrightarrow x_1 = x_2,
\]

\[
\forall (x_1, x_2) \in E^2, \; \delta(x_1, x_2) = \delta(x_2, x_1),
\]

\[
\forall (x_1, x_2, x_3) \in E^3, \; \delta(x_1, x_2) \leq \max(\delta(x_1, x_3), \delta(x_3, x_2)).
\]

\(\Rightarrow \) any triangle is isocele.
Chain (path) distance:

- path from x_1 to x_2: sequence $c = \{ c_1 = x_1, c_2, \ldots c_n = x_2 \}$
- step $P(c) = \max_{i=1}^{n-1} d(c_i, c_{i+1})$
- chain distance: $\delta(x_1, x_2) = \inf_{c \in CH(x_1,x_2)} P(c)$
 $(CH(x_1,x_2) = \text{set of all paths from } x_1 \text{ to } x_2)$

$\Rightarrow \delta \text{ is an ultra-metric}$

Ordering property: $\forall \Delta \text{ ultra-metric}, \Delta \leq d \Rightarrow \Delta \leq \delta$, for the ordering $d_1 \leq d_2 \iff \forall (x, y) \in E^2, d_1(x, y) \leq d_2(x, y)$.
Equivalence relation from an ultra-metric δ:

$$\forall \delta_0 \in \mathbb{R}^+, \; xR_{\delta_0}y \iff \delta(x, y) \leq \delta_0$$

Partition $P(\delta_0) = E/R_{\delta_0} = $ set of classes

- Within a class: path from any sample to any other sample by steps of length $\leq \delta_0$.
- From a sample of a class to a sample of another class: at least one step of length $> \delta_0$.
Hierarchy on E: $\mathcal{H} \subseteq \mathcal{P}(E)$ such that:

- $E \in \mathcal{H}$,
- $\forall x \in E$, $\{x\} \in \mathcal{H}$,
- $\forall (h, h') \in \mathcal{H}^2$,
 \begin{align*}
 &h \cap h' = \emptyset, \\
 &\text{or } h \subseteq h', \\
 &\text{or } h' \subseteq h.
 \end{align*}

Example: $\mathcal{H} = \bigcup_{\delta_0 \in \mathbb{R}^+} \mathcal{P}(\delta_0)$

Indexed hierarchy: (\mathcal{H}, f) such that \mathcal{H} is a hierarchy and f is a mapping $\mathcal{H} \rightarrow \mathbb{R}^+$ such that:

- $\forall x \in E$, $f(\{x\}) = 0$,
- $\forall (h, h') \in \mathcal{H}^2$, $h \subset h'$, $h \neq h' \Rightarrow f(h) < f(h')$.

Fundamental result

- Let $\mathcal{H} = \bigcup_{\delta_0 \in \mathbb{R}^+} P(\delta_0)$. (\mathcal{H}, f) is an indexed hierarchy for:

$$\forall h \in \mathcal{H}, \ f(h) = \min \{ \delta_0 \mid h \in P(\delta_0) \}.$$

- Conversely, let (\mathcal{H}, f) be an indexed hierarchy. Then δ defined as:

$$\delta(x, y) = \min_{h \in \mathcal{H}} \{ f(h) \mid (x, y) \in h^2 \}.$$

is an ultra-metric.
SVM
Artificial neural networks

- Specialized Layers
- Fine feature maps
- Coarse feature maps
- Base network architecture

Segmentation
Input
Original
3D volume

Classification

I. Bloch (LTCI - Télécom ParisTech)
To know more: