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Abstract Predicate logic based reasoning approaches pro-
vide a means of formally specifying domain knowledge
and manipulating symbolic information to explicitly reason
about different concepts of interest. Extension of traditional
binary predicate logics with the bilattice formalism permits
the handling of uncertainty in reasoning, thereby facilitating
their application to computer vision problems. In this pa-
per, we propose using first order predicate logics, extended
with a bilattice based uncertainty handling formalism, as a
means of formally encoding pattern grammars, to parse a
set of image features, and detect the presence of different
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patterns of interest. Detections from low level feature detec-
tors are treated as logical facts and, in conjunction with log-
ical rules, used to drive the reasoning. Positive and negative
information from different sources, as well as uncertainties
from detections, are integrated within the bilattice frame-
work. We show that this approach can also generate proofs
or justifications (in the form of parse trees) for each hypoth-
esis it proposes thus permitting direct analysis of the final
solution in linguistic form. Automated logical rule weight
learning is an important aspect of the application of such
systems in the computer vision domain. We propose a rule
weight optimization method which casts the instantiated in-
ference tree as a knowledge-based neural network, interprets
rule uncertainties as link weights in the network, and applies
a constrained, back-propagation algorithm to converge upon
a set of rule weights that give optimal performance within
the bilattice framework. Finally, we evaluate the proposed
predicate logic based pattern grammar formulation via ap-
plication to the problems of (a) detecting the presence of hu-
mans under partial occlusions and (b) detecting large com-
plex man made structures as viewed in satellite imagery. We
also evaluate the optimization approach on real as well as
simulated data and show favorable results.

Keywords Stochastic image grammars · Logical
reasoning · Human detection · Object detection and
classification · Bilattice · Back propagation · Aerial image
analysis

1 Introduction

Reliably detecting patterns in visual data has been the pri-
mary goal of computer vision research for several years.
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Such patterns could be strictly spatial in nature, like sta-
tic images of pedestrians, bicycles, airplanes etc., or they
could be spatio-temporal in nature, like patterns of human
or vehicular activity over time. Complex patterns tend to be
compositional and hierarchical—a human can be thought to
be composed of head, torso and limbs—a head to be com-
posed of hair and face—a face to be composed of eyes,
nose, mouth. Such patterns also tend to be challenging to
detect, robustly as a whole, due to high degree of variabil-
ity in shape, appearance, partial occlusions, articulation, and
image noise among other factors. While the computer vi-
sion community has made significant headway in designing
fairly robust low level, local feature detectors, such feature
detectors only serve to detect parts of the larger pattern to be
detected. Combining the detections of parts into a context
sensitive, constraint satisfying set of pattern hypotheses is
a non-trivial task. The key questions we need to answer are
how to represent knowledge of what the pattern looks like in
a hierarchical, compositional manner and how this knowl-
edge can be exploited to effectively search for the presence
of the patterns of interest?

Predicate logic based reasoning approaches provide a
means of formally specifying domain knowledge and ma-
nipulating symbolic information to explicitly reason about
the presence of different patterns of interest. Such logic pro-
grams help easily model hierarchical, compositional pat-
terns to combine contextual information with the detection
of low level parts via conjunctions, disjunctions and differ-
ent kinds of negations. First order predicate logic separates
out the name, property or type of a logical construct from
its associated parameters and further, via the use of existen-
tial and universal quantifiers, allows for enumeration over its
parameters.

This provides for a powerful language that can be used to
specify pattern grammars to parse a set of image features to
detect the presence of the pattern of interest. Such pattern
grammars encode constraints about the presence/absence
of predefined parts in the image, geometric relations over
their parameters, interactions between these parts and scene
context, and search for solutions best satisfying those con-
straints. Additionally, it is straightforward to generate proofs
or justifications, in the form of parse trees, for the final so-
lution thus permitting direct analysis of the final solution in
a linguistic form.

While formal reasoning approaches have long been used
in automated theorem proving, constraint satisfaction and
computational artificial intelligence, historically, their use in
the field of computer vision has remained limited. In addi-
tion to the ability to specify constraints and search for pat-
terns satisfying those constraints, it is important to evaluate
the quality of the solution as a function of the observation
and model uncertainty. One of the primary inhibiting fac-
tors to a successful integration of computer vision and first

order predicate logic has been the design of an appropriate
interface between the binary-valued logic and probabilistic
vision output. Bilattices, algebraic structures introduced by
Ginsberg (1988), provide a means to design exactly such an
interface to model uncertainties for logical reasoning.

Unlike traditional logics, predicate logics extended us-
ing the bilattice-based uncertainty handling formalism, asso-
ciate uncertainties with both logical rules (denoting degree
of confidence in domain knowledge) and observed logical
facts (denoting degree of confidence in observation). These
uncertainties are taken from, and semantically interpreted
within, a set structured as a bilattice. Modeling uncertain-
ties in the bilattice facilitates independent representation of
both positive and negative constraints about a proposition
and furthermore provides tolerance for contradictory data
inherent in many real-world applications. Performing infer-
ence in such a framework is also, typically, computationally
efficient.

The predicate logic based approach extended using the
bilattice formalism can therefore be used to encode pat-
tern grammars to detect whether or not a specific pattern
exists in an image, where in the image the pattern exists
(via instantiated parameters of the predicates), why the sys-
tem thinks the pattern exists (via proofs) and finally how
strongly it thinks the pattern exists (final inferred uncer-
tainty). Due to these characteristics, bilattice based logical
reasoning frameworks appear to be promising candidates for
use in time-sensitive, resource-bound, computer vision ap-
plications. In our previous work (Shet et al. 2006, 2007), we
have shown the applicability of such a formalism in com-
puter vision problems such as activity recognition, identity
maintenance and human detection. Arieli et al. (2006) have
applied such frameworks in machine learning for preference
modeling applications. Theoretical aspects of these frame-
works have been studied by Arieli et al. (2005), Ginsberg
(1988), Fitting (1990)

1.1 Application Domain

Detecting specific object patterns in static images is a dif-
ficult problem. This difficulty arises due to wide variability
in appearance of the pattern, possible articulation, deforma-
tion, view point changes, illumination conditions, shadows
and reflections, among other factors. While detectors can be
trained to handle some of these variations and detect ob-
ject patterns individually, as a whole, their performance de-
grades significantly when the pattern visually deviates from
this predefined template. While such deviations can poten-
tially be caused by all the variations listed above, the two
most significant causes of such deviations are (a) partial oc-
clusions of the pattern, by other patterns either of the same
or different class, and (b) pattern deformations, either due
to object articulation, or in case of man made objects due to
different functional requirements.
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Part based detectors are typically better suited to handle
such deviations in such patterns because they can, in prin-
ciple, be used to detect local object components, which can
then be assembled together to detect the whole object. How-
ever, the process of going from a set of component detec-
tions to a set of scene consistent, context sensitive, pattern
hypotheses is far from trivial. Since part based detectors
only learn part of the information from the whole pattern,
they are typically less reliable and tend to generate large
numbers of false positives. Occlusions and local image noise
characteristics also lead to missed detections. It is therefore
important to not only exploit contextual, scene geometry and
specific object constraints to weed out false positives, but
also be able to explain as many valid missing object parts as
possible to correctly detect all patterns.

In this paper we explore two object classes (a) pedes-
trians, viewed in a surveillance setting, potentially under
partial occlusions and (b) large, complex, deformable, man
made structures as viewed in aerial satellite images.

Consider Fig. 1. It shows a number of humans that are
occluded by the scene boundary as well as by each other.
Ideally, a human detection system should be able to reason
about whether a hypothesis is a human or not by aggregat-
ing information provided by different sources, both visual
and non-visual. For example, in Fig. 1, the system should
reason that it is likely that individual 1 is human because
two independent sources, the head detector and the torso de-
tector report that it is a human. The absence of legs indicates
it is possibly not a human, however this absence can be jus-
tified due to their occlusion by the image boundary. Further-
more, hypothesis 1 is consistent with the scene geometry
and lies on the ground plane. Since the evidence for it being
human exceeds evidence against, the system should decide
that it is indeed a human. Similar reasoning applies to indi-
vidual 4, only its legs are occluded by human 2. Evidence
against A and B (inconsistent with scene geometry and not
on the ground plane respectively) exceeds evidence in fa-
vor of them being human and therefore A and B should be
rejected as being valid hypotheses.

Figure 2, shows examples of a large man made object as
viewed from a satellite. These objects, surface to air missile

(SAM) sites, are highly variable in shape and generally very
hard to discern from background clutter. However, the key
signatures of these objects include the functional arrange-
ment of its constituent missile launchers, contextual infor-
mation such as the geographical and topological structure of
its neighboring regions and the general arrangement of phys-
ical access structures around it. We need to be able to capture
this information and encode it as constraints that support or
refute the given hypothesis.

1.2 Overview

This paper proposes a predicate logic based approach that
reasons and detects object patterns in the manner outlined
above. In this framework, knowledge about contextual cues,
scene geometry and object pattern constraints is encoded
in the form of rules in a logic programming language and
applied to the output of low level component, parts based
detectors. Positive and negative information from different
rules, as well as uncertainties from detections are integrated

Fig. 1 Figure showing valid human detections and a few representa-
tive false positives

Fig. 2 Figure showing some examples of surface to air missile (SAM) sites in aerial imagery



144 Int J Comput Vis (2011) 93: 141–161

within an uncertainty handling formalism known as the bi-
lattice framework. This approach can also generate proofs or
justifications for each hypothesis it proposes. These justifi-
cations (or lack thereof) are further employed by the system
to explain and validate, or reject potential hypotheses. This
allows the system to explicitly reason about complex inter-
actions between object patterns and handle occlusions, de-
formations and other variabilities. Proofs generated by this
approach are also available to the end user as an explanation
of why the system thinks a particular hypothesis is actually
a pattern of interest.

The rest of the paper is organized as follows: we first re-
view past work on pattern grammar formalisms and statis-
tical relational learning in Sect. 2. We then describe the use
of predicate logic based pattern grammars to the problem
of detecting complex object patterns in static images. We
further motivate and describe the use of the bilattice frame-
work to handle uncertainties inherent in such pattern detec-
tion problems (Sect. 3). We then discuss two applications
of this framework: (a) detection of partially occluded hu-
mans in static images and (b) detection of man made objects
in aerial imagery (Sect. 4). We evaluate the human detec-
tion system on the ‘USC pedestrian set B’ (Wu and Neva-
tia 2005), USC’s subset of the CAVIAR dataset (CAVIAR
2003) (This dataset will henceforth be referred to in this pa-
per as the USC-CAVIAR dataset). We also evaluate it on
a dataset we collected on our own. In this paper, we refer
to this dataset as Dataset-A. We evaluate the aerial object
detection system on a specific type of man made object—
surface to air missile site (Sect. 5). Automatically optimiz-
ing parameters associated with the specified knowledge base
is an important aspect of such a system. In Sect. 6, we de-
scribe an approach that interprets the instantiated proof tree
as a knowledge based artificial neural network and performs
backpropagation based rule weight optimization. We report
results of the learning methodology on the problem of hu-
man detection on real and simulated data (Sect. 7). We con-
clude in Sect. 8.

The bilattice based logical reasoning framework along
with its application to the problem of human detection has
been previously published in Shet et al. (2007). This paper
extends the work reported in Shet et al. (2007) by introduc-
ing a rule weight optimization approach and further by ap-
plying the reasoning framework to complex spatial objects.
A short summary of this paper also appears in Shet et al.
(2009) as an extended abstract. Part of Shet et al. (2007), in-
cluding some of the results reported, are being reproduced
in this paper for a more self contained presentation.

2 Background

Computer vision approaches can broadly be characterized
by the amount of model knowledge they exploit. Model

free approaches assume no prior knowledge about the struc-
ture of the world and attempt to characterize patterns di-
rectly from data. These approaches typically utilize sta-
tistical (often discriminative) classifiers whose parameters
are optimized via different learning methods. Support vec-
tor machines (Vapnik 1995), boosting (Schapire and Singer
1999), artificial neural networks (Rumelhart et al. 1986;
LeCun et al. 1998a; Hinton et al. 2006), or regularization
networks (Poggio and Girosi 1990), are examples of such
approaches. In computer vision, some of these approaches
operate by performing classification directly on image pix-
els (LeCun et al. 1998a), while others perform classifica-
tion on extracted feature vectors (Viola and Jones 2001;
Csurka et al. 2004). Such approaches typically require large
volumes of training data to adequately capture all pattern
variations.

Model based approaches on the other hand exploit some
form of knowledge of the world to compactly describe the
pattern of interest. Since the model already captures what
the pattern and, to some extent, its variations should look
like, the amount of data required for optimization is typi-
cally less than that for model free approaches. Models are
often formalized in a generative Bayesian paradigm, based
on/motivated from physical or geometric principles and are
represented by associated probability distributions.

In this work we will primarily focus on model based
approaches. In general, there exist three aspects of model
based approaches one needs to consider: (1) Knowledge rep-
resentation, (2) Learning, and (3) Inference. In the knowl-
edge representation step, different variables that influence
the final decision are identified and dependencies between
these variables are made explicit. The learning step next, nu-
merically captures the nature of the dependencies between
different variables and how they influence each other. Fi-
nally, in the inference step, real world observations and their
likelihoods are combined with the knowledge structure as
well as the learnt relationships between variables to arrive at
a likelihood of the final decision. Variations in the type of
knowledge representation, methodology/approximations of
inference, and the type of learning approach give rise to dif-
ferent flavors of such approaches (Binford and Levitt 2003;
Mann 1995; Ponce et al. 1989; Ramesh 1995; Zhu and
Mumford 2006).

In the remainder of this section, we will review stochas-
tic image grammars, a class of model based approaches that
attempt to encode a grammar for visual patterns. We then
review statistical relational learning based approaches that
combine first order logic with probabilistic reasoning. Fi-
nally, we contrast the proposed predicate logic based pattern
grammar formulation with these two classes of approaches.
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2.1 Stochastic Image Grammars

Stochastic image grammar based approaches formally model
visual patterns as compositions of their constituent parts.
Based on this model, these approaches then attempt to parse
an image (or its extracted features) to detect the presence of
that pattern of interest. Due to the nature of compositionality
in images, such models typically tend to be hierarchical (i.e.,
trees, or DAGs in case of shared parts), with each level cap-
turing a representation of the pattern at a particular granular-
ity. Typical challenges associated with such approaches are
(1) the formulation of the pattern grammar syntax, (2) learn-
ing of these pattern grammars from data (both structure and
parameters), and (3) inference.

Various grammar approaches have been proposed in re-
cent literature that attempt to tackle different aspects of the
challenges described above. Zhu and Mumford (2006), for
instance, use an AND-OR graph representation that mod-
els objects as a hierarchy of conjunctions and disjunctions
of parts along with spatial and functional relations between
nodes. In order to account for computational cost, they em-
ploy data driven probabilistic sampling methods to perform
inference.

Fidler and Leonardis (2007) propose a framework for
learning hierarchical, compositional representation of mul-
tiple class objects. They demonstrate that due to the deep hi-
erarchical nature, several intermediate nodes in the tree get
shared across multiple object classes. The growth in size of
the hierarchy, and hence computational complexity, is highly
sub-linear as the number of modeled classes is increased.
This is one of the primary advantages of hierarchical ap-
proaches.

Todorovic and Ahuja (2008) also address the issue of de-
signing models that share intermediate nodes across mul-
tiple object classes. In the context of categories that share
certain parts, they aim at learning the underlying part tax-
onomy, relevances, likelihoods, and priors of those parts.
They propose an inference approach where recognition is
achieved by maximizing the match of the query sample with
the taxonomy.

Jin and Geman (2006) propose a “composition machine”
approach, which performs depth-first search on a restricted
representation and corrects its results using re-ranking. Zhu
et al. (2008) propose a recursive compositional model to
represent shape and visual appearance of objects at differ-
ent scales. Coarse-to-fine modeling is exploited by Kokki-
nos and Yuille (2009). Here, the authors exploit the hierar-
chical object representation to efficiently compute a coarse
solution which is then used to guide search at a finer level.

Wang et al. (2006) propose the concept of “spatial ran-
dom trees” (SRT) as an instance of an image grammar. SRTs
provide polynomial-complexity exact inference algorithms,
and come with maximum-a-posteriori estimation of both the

tree structure and the tree states given an image. The con-
cept of hierarchical compositionality for image grammars
has been exploited by several other researchers, as well (Ge-
man and Johnson 2003; Lin et al. 2007a; Tu and Zhu 2002).

Knowledge representations explored within the stochas-
tic image grammar community have been primarily geared
toward capturing hierarchical, compositional, models per-
taining to visual patterns. The machine learning community,
on the other hand, has focused on designing knowledge rep-
resentation frameworks for general AI tasks. One such class
of approaches viz. statistical relational learning combines a
logic based representation with probabilistic reasoning and
inference mechanisms, and thus is of high relevance to this
paper.

2.2 Statistical Relational Learning

Statistical relational learning (SRL) (Kersting and De Raedt
2001; Cussens 1999; Friedman et al. 1999; Sato and Kameya
1997; Taskar et al. 2002) approaches model world knowl-
edge using a first order logic. This allows SRL approaches
to specify statistics over a set of relations as opposed to
between a set of ground entities. Knowledge based model
construction (Kersting and De Raedt 2001) for instance is a
combination of logic programming and Bayesian networks.
The logic program specifies a template for the pattern,
which when instantiated with ground observations generates
a Bayesian network. Stochastic logic programs (Cussens
1999) are a combination of logic programming and log-
linear models and are a special case of knowledge based
model construction. Probabilistic relational models (Fried-
man et al. 1999) combine frame based systems and Bayesian
networks. One of the applications of SRL based approaches
in the computer vision domain is documented by Fern
(2005) where logical constraints are used to infer hidden
states of relational processes. This is applied to classifying
specific events in video sequences.

It is typical in SRL based approaches to employ a con-
strained subset of full first order predicate logic, called Horn
clauses. Horn clauses are clauses with at most one positive
literal. The reason this constrained language is sufficient for
these approaches is because first order logical rules only
serve as a template to instantiate the structure of the propo-
sitional graphical model (Markov network, Bayesian net-
work). The distributions over the variables of these graph-
ical models are typically estimated and maintained external
to the graphical model. It is in these conditional distribu-
tions that the specific nature of influence between different
variables of the graphical model is captured.

2.3 Contrast to Proposed Approach

Similar to the image grammar approaches reviewed above,
the proposed predicate logic based approach attempts to
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parse object patterns by modeling and specifying pattern
grammars. This grammar specification is encoded as rules
in a first order logic programming language and parsing
of object pattern corresponds to searching through the fea-
ture space for solutions that best satisfy these logical con-
straints. In contrast to the statistical relational learning based
approaches, the specific nature of influence between differ-
ent variables is not captured externally in conditional prob-
ability tables, but rather, directly (and weakly) encoded in
the rule specification itself. Finally, the use of the bilattice
formalism permits exploitation of the full expressive power
of first order predicate logical language via the use of exis-
tential and universal quantifiers, conjunctions, disjunctions,
definite negations, negations by default etc.

Bayesian systems assume completeness of the world
model. The proposed framework relaxes such assumptions.
This incompleteness of information requires explicit hand-
ing of inconsistency (along the “degree of information”
axis). The practical benefit that arises out of this is the
ease of model specification and training to learn the model
(Lesser complexity implies lesser training data) and simi-
larly less complex (and faster) inference.

3 Reasoning Framework

Logic programming systems employ two kinds of formulae,
facts and rules, to perform logical inference. Rules are of
the form “A ← A0,A1, . . . ,Am” where each Ai is called an
atom and ‘,’ represents logical conjunction. Each atom is of
the form p(t1, t2, . . . , tn), where ti is a term, and p is a pred-
icate symbol of arity n. Terms could either be variables (de-
noted by upper case letters) or constant symbols (denoted by
lower case letters). The left hand side of the rule is referred
to as the head and the right hand side is the body. Rules are
interpreted as “if body then head”. Facts are logical rules of
the form “A ←” (henceforth denoted by just “A”) and cor-
respond to the input to the inference process. Finally, ‘¬’
represents negation such that A = ¬¬A.

3.1 Logic Based Reasoning

To perform the kind of reasoning outlined in Sect. 1.1, one
has to specify rules that allow the system to take input from
the low level detectors and explicitly infer whether or not
there exists a specific pattern at a particular location. For
instance, for the human detection problem, if we were to
employ a head, torso and legs detector, then a possible rule
would be:

human(X,Y,S) ←− head(Xh,Yh,Sh),

torso(Xt , Yt , St ),

legs(Xl, Yl, Sl),

geometry_constraint(Xh,Yh,Sh,Xt , Yt , St ,Xl, Yl, Sl),

compute_center(Xh,Yh,Sh,Xt , Yt , St ,Xl, Yl, Sl,X,Y,S).

This rule captures the information that if the head,
torso and legs detectors were to independently report a
detection at some location and scale (by asserting facts
head(Xh,Yh,Sh), torso(Xt , Yt , St ), legs(Xl, Yl, Sl) respec-
tively), and these coordinates respected certain geometric
constraints, then one could conclude that there exists a hu-
man at that location and scale. A logic programming system
would search the input facts to find all combinations that
satisfy the rule and report the presence of humans at those
locations. Note that this rule will only detect humans that are
visible in their entirety. Similar rules can be specified for sit-
uations when one or more of the detections are missing due
to occlusions or other reasons. There are, however, some
problems with a system built on such rule specifications:

1. Traditional logics treat such rules as binary valued and
definite, meaning that every time the body of the rule is true,
the head of the rule will have to be true. For a real world
system, we need to be able to assign some uncertainty values
to the rules that capture its reliability.

2. Traditional logics treat facts as binary. We would like
to take as input, along with the detection, the uncertainty of
the detection and integrate it into the reasoning framework.

3. Traditional logic programming has no support for ex-
plicit negation in the head. There is no easy way of specify-
ing a rule like:

¬human(X,Y,S) ← ¬scene_consistent(X,Y,S)

and integrating it with positive evidence. Such a rule says
a hypothesis is not human if it is inconsistent with scene
geometry.

4. Such a system will not be scalable. We would have
to specify one rule for every situation we foresee. If we
would like to include in our reasoning the output from an-
other detector, say a hair detector to detect the presence of
hair and consequently a head, we would have to re-engineer
all our rules to account for new situations. We would like a
framework that allows us to directly include new informa-
tion without much re-engineering.

5. Finally, traditional logic programming does not have
support for integration of evidence from multiple sources,
nor is it able to handle data that is contradictory in nature.

3.2 Bilattice Theory

Over the last several decades, in the symbolic AI commu-
nity, several different approaches have been introduced that
handle different aspects of the limitations discussed above.
Bilattices are algebraic structures introduced by Ginsberg
(1988) as a uniform framework within which a number of
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Fig. 3 The choice of different lattices that compose the bilat-
tice gives rise to different logics. (a) Bilattice for two valued log-
ics (trivial bilattice) with only true and false nodes, (b) bi-
lattice for three valued logic with additional node for unknown,
(c) bilattice for four valued logics with additional node for con-
tradiction, (d) bilattice for default logics (Ginsberg 1988;

Shet et al. 2006) where dt, df and * represent true by default, false
by default and contradiction between dt-df respectively, (e) bilattice
for prioritized default logics (Ginsberg 1988; Shet et al. 2006) with
different levels of defaults and (e) bilattice for continuous valued
logic (Arieli et al. 2005; Shet et al. 2007) as described in this paper

these approaches can be modeled. Ginsberg used the bilat-
tice formalism to model first order logic, assumption based
truth maintenance systems, and formal systems such as de-
fault logics and circumscription. Figure 3 shows examples
of different bilattices and the types of logic they can be used
to model. Figure 3(a) for instance models classical two val-
ued logic, Fig. 3(b) models three valued logics, Fig. 3(c)
models Belnap’s four valued logics, Fig. 3(d) and (e) model
traditional and prioritized default logics, and Fig. 3(f) mod-
els continuous valued logics.

In our application, the reasoning system is looked upon
as a passive rational agent capable of reasoning under uncer-
tainty. Uncertainties assigned to the rules that guide reason-
ing, as well as detection uncertainties reported by the low
level detectors, are taken from a set structured as a bilat-
tice. These uncertainty measures are ordered along two axes,
one along the source’s1 degree of information and the other
along the agent’s degree of belief. As we will see, this struc-
ture allows us to address all of the issues raised in the pre-
vious section and provides a uniform framework which not
only permits us to encode multiple rules for the same propo-
sition, but also allows inference in the presence of contra-
dictory information from different sources.

1A single rule applied to its set of corresponding facts is referred to as a
source here. There can be multiple rules deriving the same proposition
(both positive and negative forms of it) and therefore we have multiple
sources of information.

All of the bilattices shown in Fig. 3, are generated via dif-
fering choices of their constituent lattices. While bilattices
depicted in Fig. 3(a), (d) and (e) have been employed to ad-
dress certain problems in computer vision (Shet et al. 2005,
2006), in this paper we focus on the continuous valued logic
as modeled by the bilattice shown in Fig. 3(f).

Definition 1 (Lattice) A lattice is a set L equipped with a
partial ordering ≤ over its elements, a greatest lower bound
(glb) and a lowest upper bound (lub) and is denoted as L =
(L,≤) where glb and lub are operations from L × L → L

that are idempotent, commutative and associative. Such a
lattice is said to be complete, iff for every nonempty sub-
set M of L, there exists a unique lub and glb.

Definition 2 (Bilattice (Ginsberg 1988)) A bilattice is a
triple B = (B,≤t ,≤k), where B is a nonempty set contain-
ing at least two elements and (B,≤t ), (B,≤k) are complete
lattices.

Informally a bilattice is a set, B , of uncertainty measures
composed of two complete lattices (B,≤t ) and (B,≤k) each
of which is associated with a partial order ≤t and ≤k respec-
tively. The ≤t partial order (agent’s degree of belief) indi-
cates how true or false a particular value is, with f being the
minimal and t being the maximal while the ≤k partial order
indicates how much is known about a particular proposition.
The minimal element here is ⊥ (completely unknown) while
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the maximal element is � (representing a contradictory state
of knowledge where a proposition is both true and false).
The glb and the lub operators on the ≤t partial order are ∧
and ∨ and correspond to the usual logical notions of con-
junction and disjunction, respectively. The glb and the lub
operators on the ≤k partial order are ⊗ and ⊕, respectively,
where ⊕ corresponds to the combination of evidence from
different sources or lines of reasoning while ⊗ corresponds
to the consensus operator. A bilattice is also equipped with
a negation operator ¬ that inverts the sense of the ≤t partial
order while leaving the ≤k partial order intact and a con-
flation operator – which inverts the sense of the ≤k partial
order while leaving the ≤t partial order intact.

The intuition is that every piece of knowledge, be it a rule
or an observation from the real world, provides different de-
grees of information. An agent that has to reason about the
state of the world based on this input, will have to trans-
late the source’s degree of information, to its own degree
of belief. Ideally, the more information a source provides,
the more strongly an agent is likely to believe it (i.e. closer
to the extremities of the t-axis). The only exception to this
rule being the case of contradictory information. When two
sources contradict each other, it will cause the agent’s de-
gree of belief to decrease despite the increase in information
content. It is this decoupling of the sources and the abil-
ity of the agent to reason independently along the truth axis
that helps us address the issues raised in the previous sec-
tion. It is important to note that the line joining ⊥ and �
represents the line of indifference. If the final uncertainty
value associated with a hypothesis lies along this line, it
means that the degree of belief for and degree
of belief against it cancel each other out and the
agent cannot say whether the hypothesis is true or false. Ide-
ally the final uncertainty values should be either f or t , but
noise in observation as well as less than completely reliable
rules ensure that this is almost never the case. The horizon-
tal line joining t and f is the line of consistency. For any
point along this line, the degree of belief for will
be exactly equal to (1-degree of belief against)
and thus the final answer will be exactly consistent.

Definition 3 (Rectangular Bilattice (Fitting 1990; Arieli et
al. 2006)) Let L = (L,≤L) and R = (R,≤R) be two com-
plete lattices. A rectangular bilattice is a structure L �R =
(L × R,≤t ,≤k), where for every x1, x2 ∈ L and y1, y2 ∈
R,

1. 〈x1, y1〉 ≤t 〈x2, y2〉 ⇔ x1 ≤L x2 and y1 ≥R y2,
2. 〈x1, y1〉 ≤k 〈x2, y2〉 ⇔ x1 ≤L x2 and y1 ≤R y2

An element 〈x1, y1〉 of the rectangular bilattice L � R
may be interpreted such that x1 represents the amount of
belief for some assertion while y1 represents the amount of
belief against it. If we denote the glb and lub operations of

Fig. 4 The bilattice square B = ([0,1]2,≤t ,≤k). Every element of
this bilattice is of the form 〈evidence_for, evidence_against〉

complete lattices L = (L,≤L), and R = (R,≤R) by ∧L

and ∨L, and ∧R and ∨R respectively, we can define the glb
and lub operations along each axis of the bilattice L � R
as follows (Arieli et al. 2006; Fitting 1990):

〈x1, y1〉 ∧ 〈x2, y2〉 = 〈x1 ∧L x2, y1 ∨R y2〉,
〈x1, y1〉 ∨ 〈x2, y2〉 = 〈x1 ∨L x2, y1 ∧R y2〉,
〈x1, y1〉 ⊗ 〈x2, y2〉 = 〈x1 ∧L x2, y1 ∧R y2〉,
〈x1, y1〉 ⊕ 〈x2, y2〉 = 〈x1 ∨L x2, y1 ∨R y2〉

(1)

Of interest to us in our application is a particular class of
rectangular bilattices where L and R coincide. These struc-
tures are called squares (Arieli et al. 2005) and L � L is
abbreviated as L 2. Since detection likelihoods reported by
the low level detectors are typically normalized to lie in the
[0,1] interval, the underlying lattice that we are interested
in is L = ([0,1],≤).2 The bilattice that is formed by L 2

is depicted in Fig. 4. Each element in this bilattice is a tu-
ple with the first element encoding evidence for a proposi-
tion and the second encoding evidence against. In this bilat-
tice, the element f (false) is denoted by the element 〈0,1〉
indicating, no evidence for but full evidence against, sim-
ilarly element t is denoted by 〈1,0〉, element ⊥ by 〈0,0〉
indicating no information at all and � is denoted by 〈1,1〉.
To fully define glb and lub operators along both the axes of
the bilattice as listed in (1), we need to define the glb and
lub operators for the underlying lattice ([0,1],≤). A pop-
ular choice for such operators are triangular-norms and
triangular-conorms. Triangular norms and conorms were in-
troduced by Schweizer and Sklar (1963) to model the dis-
tances in probabilistic metric spaces and are considered to be

2Note that with this choice of the lattice, ≤ becomes a complete or-
dering, meaning all members of the lattice are comparable. Defini-
tion 3 therefore needs to be modified such that 〈x1, y1〉 ≤t 〈x2, y2〉 ⇔
x1 − y1 ≤ x2 − y2 and 〈x1, y1〉 ≤k 〈x2, y2〉 ⇔ x1 + y1 ≤ x2 + y2.



Int J Comput Vis (2011) 93: 141–161 149

generalizations of classical two valued operators. Triangular
norms are used to model the glb operator and the triangular
conorm to model the lub operator within each lattice.

Definition 4 (Triangular norm) A mapping

T : [0,1] × [0,1] → [0,1]

is a triangular norm (t-norm) iff T satisfies the following
properties:

– Symmetry: T (a, b) = T (b, a),∀a, b ∈ [0,1].
– Associativity: T (a,T (b, c)) = T (T (a, b), c),∀a, b,

c ∈ [0,1].
– Monotonicity: T (a, b) ≤ T (a′, b′)if a ≤ a′ and b ≤ b′.
– One identity: T (a,1) = a,∀a ∈ [0,1].

Definition 5 (Triangular conorm) A mapping

S : [0,1] × [0,1] → [0,1]

is a triangular conorm (t-conorm) iff S satisfies the follow-
ing properties:

– Symmetry: S (a, b) = S (b, a),∀a, b ∈ [0,1].
– Associativity: S (a,S (b, c)) = S (S (a, b), c),∀a, b,

c ∈ [0,1].
– Monotonicity: S (a, b) ≤ S (a′, b′) if a ≤ a′ and b ≤ b′.
– Zero identity: S (a,0) = a,∀a ∈ [0,1].

If T is a t-norm, then the equality S (a, b) = 1 −
T (1 − a,1 − b) defines a t-conorm and we say S is de-
rived from T . There are number of possible t-norms and
t-conorms one can choose. In our application, for the under-
lying lattice, L = ([0,1],≤), we choose the t-norm such
that T (a, b) ≡ a ∧L b = ab and consequently choose the
t-conorm as S (a, b) ≡ a ∨L b = a + b − ab. Based on this,
the glb and lub operators for each axis of the bilattice B can
then be defined as per (1).

3.3 Inference

Inference in bilattice based reasoning frameworks is per-
formed by computing the closure over the truth assignment.

Definition 6 (Truth Assignment) Given a declarative lan-
guage L, a truth assignment is a function φ : L → B where
B is a bilattice on truth values or uncertainty measures.

Definition 7 (Closure) Let K be the knowledge base and φ

be a truth assignment, labeling every formula k ∈ K , then
the closure over k ∈ K , denoted cl(φ) is the truth assign-
ment that labels information entailed by K .

For example, if φ labels sentences {p,q ← p} ∈ K as
〈1,0〉 (true); i.e. φ(p) = 〈1,0〉 and φ(q ← p) = 〈1,0〉, then
cl(φ) should also label q as 〈1,0〉 as it is information en-
tailed by K . Entailment is denoted by the symbol ‘|=’
(K |= q).

Let S+
q ⊂ L be the collection of minimal subsets of sen-

tences in K entailing q . For each minimal subset U ∈ S+
q ,

the uncertainty measure to be assigned to the conjunction of
elements of U is
∧

p∈U

cl(φ)(p) (2)

This term represents the conjunction of the closure of
the elements of U .3 It is important to note that this term
is merely a contribution to the final uncertainty measure of
q and not the final uncertainty measure itself. The reason
it is merely a contribution is because there could be other
sets of sentences in S+

q that entail q representing different
lines of reasoning (or, in our case, different rules and sup-
porting facts). The contributions of these sets of sentences
need to be combined using the ⊕ operator along the infor-
mation (≤k) axis. Also, if the expression in (2) evaluates to
false, then its contribution to the value of q should be 〈0,0〉
(unknown) and not 〈0,1〉 (false). These arguments suggest
that the closure over φ of q is

cl(φ)(q) =
⊕

U∈S+
q

⊥ ∨
[ ∧

p∈U

cl(φ)(p)

]
(3)

where ⊥ is 〈0,0〉. This is however, only part of the informa-
tion. We also need to take into account the sets of sentences
entailing ¬q . Let S−

q be collections of minimal subsets in
K entailing ¬q . Aggregating information from S−

q yields
the following expression

cl(φ)(q) =
⊕

U∈S+
q

⊥ ∨
[ ∧

p∈U

cl(φ)(p)

]
⊕

¬
⊕

U∈S−
q

⊥ ∨
[ ∧

p∈U

cl(φ)(p)

]
. (4)

For more details see Ginsberg (1988).
Table 1 shows an example, using a simplified logic pro-

gram, illustrating the process of computing the closure as
defined above by combining evidence from three sources.
In this example, the final uncertainty value computed is
〈0.4944,0.72〉. This indicates that evidence against the hy-
pothesis at (25,95) at scale 0.9 exceeds evidence in favor
of and, depending on the final threshold for detection, this
hypothesis is likely to be rejected.

3Recall that ∧ and ∨ are glb and lub operators along the ≤t order-
ing and ⊗ and ⊕ along ≤k axis. The symbols

∧
,
∨

,
⊗

,
⊕

are their
infinitary counterparts such that

⊕
p∈S p = p1 ⊕ p2 ⊕ · · · , and so on.
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Table 1 Example showing inference using closure within a ([0,1]2,≤t ,≤k) bilattice for a simplified set of rules for the human detection problem

Assume the following set of rules and facts:

Rules Facts

φ(human(X,Y,S) ← head(X,Y,S)) = 〈0.40,0.60〉 φ(head(25,95,0.9)) = 〈0.90,0.10〉
φ(human(X,Y,S) ← torso(X,Y,S)) = 〈0.30,0.70〉 φ(torso(25,95,0.9)) = 〈0.70,0.30〉
φ(¬human(X,Y,S) ← ¬scene_consistent(X,Y,S)) = 〈0.90,0.10〉 φ(¬scene_consistent(25,95,0.9)) = 〈0.80,0.20〉
Inference is performed as follows:

cl(φ)(human(25,95,0.9)) = 〈0,0〉 ∨ [〈0.4,0.6〉 ∧ 〈0.9,0.1〉] ⊕ 〈0,0〉 ∨ [〈0.3,0.7〉 ∧ 〈0.7,0.3〉] ⊕ ¬(〈0,0〉 ∨ [〈0.9,0.1〉 ∧ 〈0.8,0.2〉])
= 〈0.36,0〉 ⊕ 〈0.21,0〉 ⊕ ¬〈0.72,0〉 = 〈0.4944,0〉 ⊕ 〈0,0.72〉 = 〈0.4944,0.72〉

3.4 Negation

Systems such as this typically employ different kinds of
negation. One kind of negation that has already been men-
tioned earlier is ¬. This negation flips the bilattice along the
≤t axis while leaving the ordering along the ≤k axis un-
changed. Another important kind of negation is negation by
failure to prove, denoted by not. not(A) succeeds if A fails.
This operator flips the bilattice along both the ≤t axis as
well as the ≤k axis. Recall that, in Sect. 3.2, ‘−’ was defined
as the conflation operator that flips the bilattice along the ≤k

axis. Therefore, φ(not(A)) = ¬−φ(A). In other words, if A

evaluates to 〈0,0〉, then not(A) will evaluate to 〈1,1〉. This
operator is important when we want to detect the absence of
a particular object part for a hypothesis.

3.5 Generating Proofs

As mentioned earlier, in addition to using the explanatory
ability of logical rules, we can also provide these explana-
tions to the user as justification of why the system believes
that a given hypothesis is a pattern of interest. The sys-
tem provides a straightforward technique to generate proofs
from its inference tree. Since all of the bilattice based rea-
soning is encoded as meta-logical rules in a logic program-
ming language, it is easy to add predicates that succeed
when the rule fires and propagate character strings through
the inference tree up to the root where they are aggregated
and displayed. Such proofs can either be dumps of the logic
program itself or be English text. In our implementation, we
output the logic program as the proof tree.

4 Pattern Grammars

We can now use this framework to define a knowledge
base to detect different patterns of interest. We begin by
defining a number of predicates and their associated pa-
rameters pertinent to the problem at hand. For instance,
for the human detection problem, we can define atoms

such as human(X,Y,S),4 head(X,Y,S), torso(X,Y,S) etc.
We also define relational and geometric predicates such
as above(X1, Y1, S1,X2, Y2, S2), smaller(X1, Y1, S1,X2,

Y2, S2), sceneconsistent(X,Y,S).5

The next step involves specification of the pattern gram-
mar, as logical rules, over these defined atoms. Such rules
would capture different aspects of the pattern to be recog-
nized such as those shown in Fig. 5. Rules in such systems
can be learnt automatically; however, such approaches are
typically computationally very expensive. We manually en-
code the rules while automatically learning the uncertainties
associated with them as described in Sect. 6.

A desirable property of any reasoning framework is scal-
ability. We may expect scalability in vision systems as dif-
ferent objects or pattern classes are hierarchically composed
of constituent patterns that share features like textures, edges
etc. and as objects inhabit the same optical world and are
imaged by similar optical sensors. We see scalability as a
design principle wherein the model description is modular,
hierarchical and compositional, reflecting the above under-
standing of the world. The proposed framework results in
scalable systems if models are appropriately described as
such.

With this goal in mind, we lay out the following design
principle for object pattern grammar specification. We par-
tition rule specification into three broad categories: object
composition model based, object embodiment model based
and object context model based.

Composition model Rules encoding these models capture
a hierarchical representation of the object pattern as a com-
position of its constituent part detections. These parts might
by themselves be composed of sub-parts. Rules in this cate-
gory try to support or refute the presence of a pattern based
on the presence or absence of its constituent parts.

4Meaning there exists a human at location (X,Y ) and scale S in the
image.
5Meaning the hypothesis at (X,Y ) and scale S is consistent with the
scene geometry and conforms, within bounds, to the expected size of
an object at the location.
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Fig. 5 A sample subset of rules for human detection

Embodiment model These rules model knowledge about
the object pattern’s geometric layout and their embodiment
in 3D projective spaces.

Context model These rules attempt to model the sur-
rounding context within which the pattern of interest is em-
bedded. These rules would for example model interactions
between a given object and other objects or other scene
structures.

As mentioned above, such an object oriented organiza-
tion of the knowledge representation derives from an im-
plicit understanding of our physical world as composed of
objects. Specification and conceptual layering of rules in this
manner induces a natural hierarchy in such a pattern speci-
fication. By enforcing that the specified rules are well struc-
tured, categorized into the above categories and follow gen-
eral principles of composability, we ensure the scalability of
our system.

It is important to note that there would typically exist
multiple rules that derive the same proposition. These mul-
tiple rules are interpreted in logic programming as disjunc-
tions (i.e. rule 1 is true or rule 2 is true etc.). Writing rules
in this manner makes each rule independently ‘vote’ for the
proposition to be inferred. This disjunctive specification re-
sults in a scalable solution where the absence of a single ob-
servation does not completely preempt the final output, but
merely reduces its final confidence value. As can be seen
from the subset of rules in Fig. 5, the inference tree formed
would be comprised of conjunctions, disjunctions and dif-
ferent kinds of negations.

4.1 Human Detection

Human detection in images is a hard problem. There are a
number of approaches in computer vision literature that de-
tect humans both as whole as well as a collection of parts.
Leibe et al. (2005) employs an iterative method combin-
ing local and global cues via a probabilistic segmentation,
Gavrila (2000), Gavrila and Philomin (1999) uses edge tem-
plates to recognize full body patterns, Papageorgiou et al.
(1998) uses SVM detectors, and Felzenszwalb (2001) uses
shape models. A popular detector used in such systems is

a cascade of detectors trained using AdaBoost as proposed
by Viola and Jones (2001). Dalal and Triggs (2005) use an
SVM based classifier based on the histogram of oriented
gradients. This was further extended by Zhu et al. (2006) to
detect whole humans using a cascade of histograms of ori-
ented gradients. Part based representations have also been
used to detect humans. Wu and Nevatia (2005) use edgelet
features and learn nested cascade detectors for each of sev-
eral body parts and detect the whole human using an itera-
tive probabilistic formulation.

Our human body part detectors are inspired by Zhu et
al. (2006). Similar to their approach we train a cascade of
SVM-classifiers on histograms of gradient orientations. In-
stead of the hard threshold function suggested in their paper,
we apply a sigmoid function to the output of each SVM.
These softly thresholded functions are combined using a
boosting algorithm (Freund and Schapire 1997). After each
boosting round, we calibrate the probability of the partial
classifier based on an evaluation set, and set cascade deci-
sion thresholds based on the sequential likelihood ratio test
similar to Sochman and Matas (2005). To train the parts-
based detector, we restrict the location of the windows used
during the feature computation to the areas corresponding to
the different body parts (head/shoulder, torso, legs).

The pattern grammar for the human detection problem is
formulated as per the broad categories listed in the previous
section. Component based rules hypothesize that a human is
present at a particular location if one or more of the body
part detectors described above detects a body part there. In
other words, if a head is detected at some location, we say
there exists a human there. There are positive rules, one each
for the head, torso, legs and full-body based detectors as well
as negative rules that fire in the absence of these detections.

Geometry based rules validate or reject human hypothe-
ses based on geometric and scene information. This infor-
mation is entered a priori in the system at setup time. We
employ information about expected height of people and re-
gions of expected foot location. The expected image height
rule is based on ground plane information and anthropome-
try. Fixing a Gaussian at an adult human’s expected physical
height allows us to generate scene consistency likelihoods
for a particular hypothesis given its location and size. The
expected foot location region is a region demarcated in the
image outside of which no valid feet can occur and therefore
serves to eliminate false positives.

Context based rules are the most important rules for a
system that has to handle occlusions. The idea here is that
if the system does not detect a particular body part, then it
must be able to explain its absence for the hypothesis to be
considered valid. If it fails to explain a missing body part,
then it is construed as evidence against the hypothesis being
a human. Absence of body parts is detected using logic pro-
gramming’s ‘negation as failure’ operator (not). not(A) suc-
ceeds when A evaluates to 〈0,0〉 as described in Sect. 3.4.
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A valid explanation for missing body part could either be
due to occlusions by static objects or due to occlusions by
other humans.

Explaining missed detections due to occlusions by static
objects is straightforward. At setup, all static occlusions are
marked. Image boundaries are also treated as occlusions and
marked as shown in Fig. 1 (black area at the bottom of the
figure). For a given hypothesis, the fraction of overlap of the
missing body part with the static occlusion is computed and
reported as the uncertainty of occlusion. The process is sim-
ilar for occlusions by other human hypotheses, with the only
difference being that, in addition to the degree of occlusion,
we also take into account the degree of confidence of the hy-
pothesis that is responsible for the occlusion, as illustrated
in the second rule in Fig. 5.

This rule will check to see if human(X,Y,S)’s torso is
occluded by human(Xo,Yo, So) under condition that Yo >

Y , meaning the occluded human is behind the ‘occluder’. It
is important to note that this would induce a scene geometry
constrained, hierarchy in the parse graph, since whether or
not a given hypothesis is a human depends on whether or
not a hypothesis in front of it was inferred as being a valid
pattern of interest. There exist similar rules for other com-
ponents and also rules deriving ¬human in the absence of
explanations for missing parts.

4.2 Aerial Object Detection

Typical objects of interest in aerial images are buildings,
roads, factories, rivers, harbors, airfields, golf courses, etc.
We focus on the detection of surface-to-air missile (SAM)
sites. The two primary classes of features we employ are
geometric and contextual. Geometric features extracted are
straight lines, circles, corners etc. In case of SAM sites,
the primary discriminating feature is typically the arrange-
ment of individual missile launchers that compose the SAM
site. Circle feature detectors can be used to detect individual
launchers as shown in Fig. 6 (a) while, line features can help
detect neighboring structures such as a road network.

For contextual features, we attempt to discriminate ter-
rain textures in aerial scenes, such as, “Forest”, “Desert”,
“Road”, “Urban”, “Maritime”, and “Agricultural” on a
coarse level. Terrain textures, such as oceans, forest, urban,
agricultural areas, contain repetitions of fundamental micro-
structures such as waves, trees, houses and streets, agricul-
tural produce, respectively. Such configurations have been
studied in literature as texture (with a texton being the micro
structure) and identified as a significant feature for percep-
tion and identification, both in psychophysics (Julesz 1981)
and computer vision (Leung and Malik 2001). Walker and
Malik (2004) report that texture provides a strong cue for the
identification of natural scenes in the human visual system.
Our context features are inspired by well developed tex-
ture classification techniques; see Leung and Malik (2001),

Fig. 6 Sample features detected in aerial images

Varma and Zisserman (2005). Figure 6(b) shows different
regions of the image color labeled with the corresponding
detected textures. The spatial, geometric and contextual con-
straints that need to be satisfied for an object to be classified
as a SAM site are encoded as logical rules, again broadly
falling in the categories listed above.

4.3 Implementation Details

A predicate logic based reasoning framework can be effi-
ciently implemented in a logic programming language like
Prolog. Distributions of Prolog like SWI-Prolog, allow for
the straightforward integration of C++ with an embedded
Prolog reasoning engine. Predefined rules can be inserted
into the Prolog engine’s knowledge base at set up time by the
C++ module, along with information about scene geometry
and other constraints. At runtime, the C++ module can ap-
ply the detectors on the given image, preprocess the feature
detector output if needed, syntactically structure this output
as logical facts, and finally insert it into the Prolog knowl-
edge base. These detections then serve as initial hypotheses
upon which the query can be performed. Since rules contain
unbounded variables and observed facts contain constants
as parameters, querying for a proposition in Prolog implies
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finding a suitable binding of the rule variables to the con-
stants of the supporting facts. If no such binding is found,
the corresponding rule does not fire.

It is important to note that complexity of general in-
ference in predicate logics can be combinatorial. In prac-
tice, however, variable interdependencies between different
atoms of a rule restrict the search space significantly. Specif-
ically, in the pattern grammar formulation described in this
paper, there exists significant reuse of the variables between
atoms both within and across different rules. Additionally,
Prolog can be set up to index facts based on specific vari-
ables further reducing complexity of variable binding.

5 Evaluation I

In this section, we first describe some qualitative results
on the human detection problem using the USC-CAVIAR
dataset and show how our system reasons and resolves diffi-
cult scenarios. We subsequently present quantitative results
on the USC-CAVIAR dataset as well as on problem of de-
tecting SAM sites from aerial imagery. Please note that for
both the problems, we obtain rule-weights using the positive
predictive value (PPV) approach as described in Sect. 6.1.

5.1 Human Detection

We have evaluated below the performance of the bilattice
based logical reasoning approach on the problem of human
detection on static images.

5.1.1 Qualitative Results

Table 2 lists the proof for Human 4 from Fig. 1. For Hu-
man 4, the head and torso are visible while the legs are miss-
ing due to occlusion by human 2. In Table 2, variables start-
ing with _G · · · are non-unified variables in Prolog, mean-
ing that legs cannot be found and therefore the variables of

the predicate legs cannot be instantiated. It can be seen that
evidence in favor of the hypothesis exceeds that against.

Figure 7(a), shows a sample image from the USC_
CAVIAR dataset and shows the detection results overlaid.
Figure 7(b) plots the uncertainty value for each hypothe-
sis point in the bilattice space. The red circles on the right
are the accepted detections and correspond to the bounding
boxes in (a), while the gray circles in the left half of the bi-
lattice are hypotheses rejected by the reasoning framework
(not displayed in (a)).

5.1.2 Quantitative Results

We applied our framework to the set of static images taken
from USC-CAVIAR (Wu and Nevatia 2005) dataset. This
dataset, a subset of the original CAVIAR (CAVIAR 2003)
data, contains 54 frames with 271 humans of which 75 hu-
mans are partially occluded by other humans and 18 humans

Fig. 7 (a) Figure showing a
sample image from the
USC_CAVIAR dataset with
detection results overlaid and
(b) Computed uncertainty value
(for all human hypotheses in left
image) plotted in the bilattice
space

Table 2 Proof for human marked as ‘4’ in Fig. 1

Total: human(154,177,1.25) 〈0.359727,0.103261〉
+ve evidence: head(154, 177, 1.25) 〈0.94481,0.05519〉

torso(156.25, 178.75, 1.25) 〈0.97871,0.02129〉
on_ground_plane(154, 177, 1.25) 〈1,0〉
scene_consistent(154, 177, 1.25) 〈0.999339,0.000661〉
not((legs(_G7093,_G7094, _G7095),

legs_body_consistent(154, 177, 1.25,_G7093, _G7094, _G7095))) 〈1,1〉
is_part_occluded(134.0, 177.0, 174.0, 237.0) 〈0.260579,0.739421〉

−ve evidence: ¬scene_consistent(154, 177, 1.25) 〈0.000661,0.999339〉
not((legs(_G7260, _G7261, _G7262),

legs_body_consistent(154, 177, 1.25,_G7260, _G7261, _ G7262))) 〈1,1〉
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Fig. 8 ROC curves for evaluation on the USC-CAVIAR dataset. Full
Reasoning* is ROC curve for 75 humans occluded by other humans.
Results of Wu and Nevatia (2005) on the same dataset are copied from
their original paper. WuNevatia* is ROC curve for the 75 humans oc-
cluded by other humans

are occluded by the scene boundary. This data is not part of
our training set. We have trained our parts based detector
on the MIT pedestrian dataset (Papageorgiou et al. 1998).
For training purposes, the size of the human was 32 × 96
centered and embedded within an image of size 64 × 128.
We used 924 positive images and 6384 negative images for
training. The number of layers used in full-body, head, torso
and leg detectors were 12, 20, 20, and 7 respectively. Fig-
ure 8 shows the ROC curves for our parts based detectors as
well as for the full reasoning system. “Full Reasoning*”, in
Fig. 8, is the ROC curve on the 75 occluded humans. ROC
curves for part based detectors represent detections that have
no prior knowledge about scene geometry or other anthropo-
metric constraints. It can be seen that performing high level
reasoning over low level part based detections, especially
in presence of occlusions, greatly increases overall perfor-
mance. We have also compared the performance of our sys-
tem with the results reported by Wu and Nevatia (2005) on
the same dataset. We have taken results reported in their
original paper and plotted them in Fig. 8. As can be seen, re-
sults from both systems are comparable. The results in Fig. 8
were first reported in Shet et al. (2007). Since then Lin et al.
(2007b) and Wu and Nevatia (2007) published new results
on this datasets that show some improvements in the overall
ROC curve. All the reported results however are comparable
to each other.

We also applied our framework on another set of images
taken from a dataset we collected on our own (in this pa-
per we refer to it as Dataset-A). This dataset contains 58
images (see Fig. 9) of 166 humans, walking along a cor-
ridor, 126 of whom are occluded 30% or more, 64 by the

Fig. 9 An image from Dataset-A

Fig. 10 ROC curves for evaluation on Dataset-A. Full Reasoning* is
ROC curve for 126 occluded humans

image boundary and 62 by each other. Dataset-A is signifi-
cantly harder than the USC-CAVIAR dataset due to heavier
occlusions (44 humans are occluded 70% or more), perspec-
tive distortions (causing humans to appear tilted), and due to
the fact that many humans appear in profile view. Figure 10
shows the ROC curves for this dataset. It can be seen that
the low level detectors as well as the full body detector per-
form worse here than on the USC-CAVIAR data, however,
even in such a case, the proposed logical reasoning approach
gives a big improvement in performance.

5.2 Aerial Object Detection

We have evaluated the bilattice based logical reasoning ap-
proach on the problem of detecting SAM sites in aerial im-
agery. As can be seen from Fig. 2, these objects are highly
variable in shape and are hard to detect even for humans.
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Fig. 11 ROC Curves for SAM site detection problem

However, the defining characteristic of such an object is
the arrangement of its constituent missile launchers which
arises from functional requirements. Additionally, there are
a number of contextual cues that can be exploited such as
geographical and topological makeup of the neighboring re-
gions. We created a dataset of SAM sites containing 33 pos-
itive examples and 869 negative examples sampled from a
400 Km2 physical region surrounding the positive example.
Figure 11 shows the ROC curve obtained for this data. Fig-
ure 11 also plots the ROC curve on that data for a AdaBoost
with Haar wavelets approach (Viola and Jones 2001). The
AdaBoost based approach was trained on a separate training
set of 869 negative images and 32 positive images.

As can be seen from Fig. 11, there is a marked improve-
ment in performance using the pattern grammar based ap-
proach over a purely data driven approach. It is important
to note however, that even for relatively simple, well con-
strained objects a purely data driven approach such as Ad-
aBoost would need a lot of data to adequately generalize.
In datasets such SAM sites, it is usually hard to acquire the
required amounts of annotated data for such an approach to
effectively learn. Add to that the high variability in the shape
of the object and even more data would be needed to ade-
quately generalize. In the case of the pattern grammar based
approach, since knowledge of the object structure and sur-
rounding context is directly specified, we would expect the
results to be better than any purely data driven technique.

6 Rule Weight Learning

Although theoretical aspects of bilattices and the nature of
semantics they give rise to in logic programs have been
extensively studied in literature (Arieli et al. 2005; Fitting

1990; Ginsberg 1988), little work exists on automated learn-
ing procedures, which are of grave importance to com-
puter vision applications. Learning in such systems implies:
(a) Learning the structure of the rules, (b) Learning rule
weights. While there exists literature for learning rule struc-
ture from data, such approaches tend to be computationally
prohibitive and require large amounts of data. In this paper,
we assume that the rule structure is given to us and focus
instead on learning and optimizing rule weights within the
bilattice framework.

6.1 Positive Predictive Value Based Learning

A common technique for rule weight learning is to use the
positive predictive value (PPV) of the rule as its weight.
Given training data in the form of observed facts, ground
truth annotations, and a rule of the form A ← B1,B2, . . . ,Bn,
a confidence value of 〈F (A|B1,B2, . . . ,Bn),F (¬A|B1,

B2, . . . ,Bn)〉 is computed. F (A|B1,B2, . . . ,Bn) is the frac-
tion of times A coincides with the ground truth when
B1,B2, . . . ,Bn is true. As the name suggests, this value
computes a measure of the fraction of the time, a rule that
has fired, is expected to be correct with respect to ground
truth. This measure is learnt individually for each rule. Typ-
ically a multiplicative constant is also employed to scale
down all rule weights, if needed, to prevent saturation of
the final uncertainty value of the inferred proposition, when
multiple rules are combined. The results reported in the pre-
vious section of this paper, Sect. 5, have been generated
using rule weights learnt using the PPV.

There are a number of issues with using the rule’s PPV
as its weight.

(1) The PPV depends on the ground truth annotations w.r.t.
inferred variables for the observed facts. Often, how-
ever, ground truth is only known for rules that infer
the output node. Deeper nodes (i.e., input or hidden
nodes) usually lack this information, and hence, defy
PPV based weight adaptation.

(2) Joint optimization of rules is not possible. Each rule
weight is learnt individually, ignoring possible support
or opposition of adjacent rules.

(3) Uncertainty values of the final inferred proposition can
saturate to the maximal contradictory state of the bilat-
tice, especially when multiple rules are combined, again
because each rule weight is learnt individually. To han-
dle this typically an appropriate multiplicative constant
needs to be chosen.

(4) An inherently frequentist interpretation of the rules
weights may not be optimal, due to the fact that the pat-
tern grammar formulation itself may not be complete
and may contain contradictions.
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6.2 Knowledge Based Artificial Neural Networks

In this section, we present a rule weight learning method
that attempts to address these issues. This approach (a) casts
the instantiated inference tree from the logic program as a
knowledge-based neural network, (b) interprets uncertain-
ties associated with logical rules as link weights in this
neural network and (c) applies a constrained, modified back-
propagation algorithm to converge upon a set of rule weights
that give optimal performance. The back-propagation algo-
rithm has been modified to allow computation of local gra-
dients over the bilattice specific inference operation.

The issues raised above are handled in the following
manner:

(1) Similar to the error back-propagation algorithm with
multi-layer perceptrons, ground truth is only required
for rules that infer the output variable. As will be shown,
the algorithm then “back-propagates” the computed er-
ror (of ground truth versus observed activation) to the
deeper nodes of the rule hierarchy.

(2) Due to the choice of t-norm and t-conorm for the bilat-
tice and the formulation of the weight optimization as
a gradient descent algorithm, optimization of individual
rule weights is tempered by the contributions of adja-
cent rules that have fired for a given hypothesis.

(3) Further in the gradient descent formulation, it is straight-
forward to include a regularization term in the error
expression that penalizes extremely large or extremely
small rule weights thus obviating the need for an exter-
nal multiplicative scaling constant.

(4) Due to the fact that the KB may be incomplete or incon-
sistent, a gradient descent based approach might con-
verge upon a set of rule weights that provide a favorable
performance as compared to a PPV based measure.

Traditionally, artificial neural networks (ANNs) are mod-
eled as black boxes. Given a set of input and output vari-
ables, and training data, a network is created in which the
input nodes correspond to the input variables and the out-
put nodes correspond to the output variables. Depending on
the nature of the problem to be solved and a priori assump-
tions, a number of nodes are introduced between the input
and output nodes that are termed hidden nodes. Each link
connecting two nodes is assigned a link weight. Learning
in an ANN implies optimizing link weights to minimize the
mean squared error between the network predicted output
and ground truth, given input data. In such networks, the in-
termediate hidden nodes don’t necessarily have to be mean-
ingful entities.

In knowledge based ANNs (KBANN) (Towell et al.
1990; Mahoney and Mooney 1993), unlike traditional ANNs,
all nodes, hidden or not, have a semantically relevant inter-
pretation. This semantic interpretability arises out of careful

construction of the KBANN. In our case, we construct the
KBANN from the rule base of the logic program. Each node
of the KBANN therefore directly corresponds to each in-
stantiated atom of the logic program while links weights
correspond to rules weights. Given a logic program, opti-
mizing the rule weights thus is a two step process. Step 1 is
to use the rules and facts to create a KBANN and step 2 is to
use a modified version of the standard backpropagation al-
gorithm (Rumelhart et al. 1986) to optimize the link weights
of the KBANN, thus in turn optimizing the rule weights in
the original logic program.

6.2.1 Building the KBANN

The first step in the learning algorithm is to convert the
rule base to a representation of a knowledge-based artificial
neural network. Consider a set of rules, such as those de-
picted in Fig. 5. Given a set of training data, in the form of
observed logical facts and associated ground truth, the first
step is to generate a grounded, propositional, representation
for each of the rules. Below is one such set of propositional
rule representation.

φ(j ← o11, o12, o13) = w+
j1

φ(j ← o21, o22) = w+
j2 (5)

φ(¬j ← o31, o32) = w−
j3

where each term, j , o11, o12, etc., represent grounded
atoms such as human(23,47,0.4), head(43,55,0.9), etc.
The weights associated with these propositional rules corre-
sponds to the evidence_for component of the original rules.6

This grounded, propositional, rules representation can now
be directly used to construct the artificial neural network.
In such a network, observed features (logical facts) become
the input nodes, while propositions corresponding to the rule
heads become output nodes and are placed at the top of the
network. Rule weights become link weights in the network.

Figure 13 shows the KBANN derived from the set of
grounded, propositional rules from (5). It is important to
note that conjuncts within a single rule need to first pass
through a conjunction node before reaching the consequent
node where along with the weights they would get com-
bined with contributions from other rules in a disjunction.

6Recall that for a given rule, only the evidence_for component of the
uncertainty attached to the rule is relevant. The evidence_against com-
ponent of the rule weight gets discarded during inference due to the
disjunction with 〈0,0〉 (see (4)). Given a proposition, j , to be reasoned
about, positive rules will contribute evidence supporting j , while nega-
tive rules will contribute evidence refuting it. The evidence_for compo-
nent of the negative rule will contribute to the evidence_against com-
ponent of the proposition to be reasoned about due to the negation.
Please refer to the example in Table 1 for more details.
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In Fig. 13, the links connecting the conjuncts to the product
node are depicted using solid lines. This indicates that this
weight is unadjustable and is always set to unity. Only the
weights corresponding to the links depicted in dotted lines
are adjustable as they correspond to the rule weights.

6.2.2 Computing Gradients

The approach proposed in this paper is inspired by the back
propagation algorithm from neural networks, specifically,
knowledge based artificial neural networks (KBANN) intro-
duced by Towell et al. (1990) and applied by Mahoney and
Mooney (1993).

Consider a simple ANN as shown in Fig. 12. In tradi-
tional back propagation, the output of an output node is

dj = σ(zj ) = 2

1 + e−λ(zj )
− 1 (6)

where σ is the sigmoid function and where

zj = φ(j) =
∑

i

wjiσ (φ(oi)) (7)

The error at the output node is

E = 1

2

∑

j

(tj − dj )
2 (8)

where tj is the ground truth for node j . Based on this mea-
sure of error, the change of a particular link weight is set to
be proportional to the rate of change of error with respect to
that link weight. Thus

�wji ∝ − ∂E

∂wji

(9)

Using standard backpropagation calculus, the change in link
weight can be computed to be

�wji = ηδjσ (φ(oj )) (10)

where

δj = (tj − dj )
∂σ (zj )

∂zj

(11)

if j is an output node and

δj = ∂σ (zj )

∂zj

∑

k∈DS(j)

δkwkj (12)

if j is a non-output node, where DS(j) is the set of nodes
downstream from j .

We now need to extend these equations to the KBANN
depicted in Fig. 13. This involves computing gradients over
the bilattice specific inference operation. Recall that in the

Fig. 12 A simple ANN

bilattice based logical reasoning approach, inference is per-
formed by computing the closure over a logic program us-
ing (4). This equation can be simplified as

zj = φ(j)

=
+ve⊕

i

w+
ji ∧

[∧

l

φ(oil)

]
⊕ ¬

−ve⊕

i

w−
ji ∧

[∧

l

φ(oil)

]

(13)

Note that this equation represents a general form of the
closure operation before a commitment has been made on
the underlying lattice structure and its corresponding glb and
lub operators. Once the choice of the underlying lattice and
corresponding operators has been made, in conjunction with
(8), (9) and (13), it should be possible to compute the rate of
change of each of the rule weights.

Consistent with Sect. 3.2, for the rest of this section,
we choose the underlying lattice to be L = ([0,1],≤) and
choose the t-norm to be T (a, b) ≡ a ∧L b = ab and t-
conorm as S (a, b) ≡ a ∨L b = a + b − ab. As defined in
Sect. 3.2, the glb and lub operators for each axis of the bilat-
tice B can then be defined as per (1). Plugging these operator
instantiations in the (13), we can further simplify it to

zj =
+ve⊎

i

w+
ji

∏

l

φ(oil) −
−ve⊎

i

w−
ji

∏

l

φ(oil) (14)

where a � b = a + b − ab.
Note that, unlike the traditional output equation for back

propagation (7), this formulation is slightly more complex
due to the combination of observation nodes via the con-
junction (product) node and then further combination of out-
puts of multiple rules via disjunction (probabilistic sum).
A key point to note is that the probabilistic sum of weights,⊎

i wi , can be easily differentiated, with respect to given
weight wk , as follows:

∂
⊎

i wi

∂wk

= 1 −
⊎

i �=k

wi (15)

Using (14) and (15), we can compute the gradients to be
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Fig. 13 Example of a knowledge based artificial neural network rep-
resenting rules depicted in (5)

∂E

∂w+
ji

= −(tj − dj )

[
∏

l

φ(oil)

][
1 −

⊎

m �=i

w+
jm

∏

l

φ(oml)

]

(16)

∂E

∂w−
ji

= (tj − dj )

[
∏

l

φ(oil)

][
1 −

⊎

m �=i

w−
jm

∏

l

φ(oml)

]

(17)

We can now compute the rate of change of each rule weight
as follows

�w+
ji = ηδj

[
∏

l

φ(oil)

][
1 −

⊎

k �=m

w+
jm

∏

l

φ(oml)

]

�w−
ji = −ηδj

[
∏

l

φ(oil)

][
1 −

⊎

k �=m

w−
jm

∏

l

φ(oml)

] (18)

where

δj = tj − dj (19)

if j is an output node and

δj =
∑

m∈DS(j)

δmwmj

∏

l �=j

φ(ojl)

[
1 −

⊎

k �=j

wmk

∏

l

φ(okl)

]

(20)

if j is a non-output node, where DS(j) is the set of nodes
downstream from j .

Once we analytically compute the gradient there are a
number of techniques we can adopt to perform the actual op-
timization. In this work, we choose to perform online weight

update, where for each data point we computed the gradient
and used it to instantaneously modify the rule weight. This
is in contrast to a batch approach where the cumulative gra-
dient of a batch of data points is used to update the weights.
We believe an online approach such as the one adopted is
better suited for applications with limited access to anno-
tated data as has been suggested in LeCun et al. (1998b).

7 Evaluation II

In this section, we evaluate the proposed rule weight op-
timization algorithm for the bilattice based logical reason-
ing framework. For the purpose, we have chosen the hu-
man detection problem and not the SAM site detection prob-
lem. Our decision was influenced by the amount of available
training data. There are practical difficulties in accessing a
large amount of SAM site data due to its sensitive nature.
This results in difficulty in setting up training, testing and
validation subsets of any meaningful sizes.

Given the fact that the final accuracy of the overall frame-
work is a function of the performance of the low level detec-
tors in addition to how well the optimization algorithm opti-
mizes rule weights, we attempt to isolate the performance
of the optimization algorithm in two ways: (1) By fixing
the rule set and performing multiple runs. For each run, the
weights are randomly initialized and performance is mea-
sured both with the random initialization as well as after op-
timization. (2) By measuring performance improvements on
simulated data. Working with simulated data allows us to
model varying degrees of low level detector noise and eval-
uate performance of the optimization algorithm as a function
of the detector noise.

7.1 Experimental Methodology

The experimental methodology we adopt is the repeated ran-
dom sub-sampling based two-fold cross validation. We ran-
domly split the data into two sets, training and testing, for
the training set, we randomly initialize the rule weights, we
then perform the proposed optimization with the random
weights as a starting point and finally measure performance
for the optimized weights on the testing dataset. To isolate
the performance improvement attained by the optimization
algorithm, we also measure the performance on the testing
set with the initial random weights. This procedure is re-
peated multiple times, each time selecting different random
training and testing subsets from the full dataset and each
time, initializing the rule weights to different random val-
ues. Performance for a given set of rule weights is measured
as the area under the ROC (AUROC) curve for the problem
of human detection.
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Fig. 14 Plot showing area under ROC curve for random initial-
ization of rule weights and trained rules for multiple runs on the
USC_CAVIAR dataset

Table 3 Table showing average increase in AUROC and reduc-
tion in variance after optimization over random initialization on the
USC_CAVIAR

Average AUROC for randomly initialized 0.7084

rule weights

Average AUROC for optimized rule weights 0.8519

% change in AUROC 20.2659 %

Variance of AUROC for randomly initialized 0.0230

rule weights

Variance of AUROC for optimized rule weights 0.000903

% change in variance −96.0695 %

AUROC for Positive Predictive value based 0.8073

rule weight initialization

7.2 Pedestrian Dataset

We applied our framework to the set of static images taken
from USC-CAVIAR dataset. Figure 14 displays the results
of the each of the 242 randomly initialized runs on the
USC_CAVIAR dataset. The red circles represent the AU-
ROC for a random weight initialization, say w0, while the
blue diamonds directly above the red circle represents the
AUROC for the optimized rule weights w with w0 as the
initial starting point.

As can be seen from both the graphs, optimizing the
rule weights using the proposed approach significantly im-
proves the overall results as well as significantly reduces the
variance of the results over multiple runs as compared to a
purely random initialization. This trend is numerically pre-
sented in Table 3. It can be seen that the proposed optimiza-
tion approach increases the average AUROC by about 20%
while reducing the average variance by 96%. We also com-
pare in Table 3, the AUROC results for rule weight obtained
in a frequentist manner by computing the positive predictive

Fig. 15 Figure showing the approach adopted to generate simulated
data

value. As can be seen, the proposed optimization approach
also outperforms in this case.

7.3 Simulated Data

We also evaluate the optimization algorithm on simulated
data. Figure 15 depicts the approach adopted by us to gener-
ate the simulated data.

We first start by building a randomly initialized globally
consistent world model of humans standing on the ground
plane 15(a). We then transform this world model into camera
coordinates to render the humans from a simulated camera’s
field of view 15(b). We then generate body part responses
respecting any inter-human/human-scene occlusions 15(c).
These responses represent the ideal, noise free detector re-
sponse. We then introduce noise into these responses that
results in the introduction of false positives and missed de-
tections as well as a reduction in separability between the
positive and negative class. The detector response is mod-
eled using an exponential distribution conditioned to lie be-
tween [0,1] for the negative class. For the positive class the
distribution is mirrored around 0.5. This exponential distri-
bution is characterized by parameter λ. The higher the λ the
lower the false positives and missed detections and better the
separability, while the converse is true for a small λ.
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Fig. 16 Plot showing mean AUROC and associated variance on sim-
ulated data for varying values of λ

Varying λ allows us to represent a range of simulated
detector performance over which we can evaluate the op-
timization algorithm as well as the overall bilattice based
logical reasoning approach. For each λ, we executed multi-
ple runs randomizing both over the training/testing dataset
as well as initial starting rule weights. The results of each of
these runs is shown in Fig. 16. As can be seen from the re-
sults, as expected as the amount of detector error increases,
it gets harder to separate out the two classes and therefore
overall AUROC is low. As the low level detectors are made
stronger, AUROC improves significantly. In all these cases,
applying the proposed rule weight optimization algorithm is
clearly advantageous.

8 Conclusions

In this paper, we presented a predicate logic based reason-
ing approach that provides a means of formally specifying
domain knowledge and manipulating symbolic information
to explicitly reason about the presence of different patterns
of interest. Such logic programs help easily model hierar-
chical, compositional patterns to combine contextual infor-
mation with the detection of low level parts via conjunc-
tions, disjunctions and different kinds of negations. First or-
der predicate logic separates out the name, property or type
of a logical construct from its associated parameters and
further, via the use of existential and universal quantifiers,
allows for enumeration over its parameters. This provides
for a powerful language that can be used to specify pattern
grammars to parse a set of image features to detect the pres-
ence of the pattern of interest. In order to admit stochastic
definitions of visual patterns and to reason in the presence
of uncertainty in facts (observations), we used the bilattice
formalism as proposed by Ginsberg (1988). We believe that
the framework presented in this paper is uniquely suited for

high level reasoning in vision applications as it provides a
means to (a) formally specify (stochastic) domain knowl-
edge; (b) handle uncertainty in observations; (c) reconcile
contradictory evidence (d) perform layered (hierarchical) in-
ference; and, (d) explicitly generate justification for accept-
ing/rejecting a pattern hypothesis.

We made several contributions in this paper: We pro-
posed using of first order predicate logics, extended with a
bilattice based uncertainty handling formalism, as a means
of formally encoding pattern grammars, to parse a set of
image features, and detect the presence of different pat-
terns of interest. We then proposed a rule weight optimiza-
tion method which casts the instantiated inference tree as a
knowledge-based neural network, interprets rule uncertain-
ties as link weights in the network, and applies a constrained,
back-propagation algorithm to converge upon a set of rule
weights that give optimal performance within the bilattice
framework. Finally, we evaluated the proposed predicate
logic based pattern grammar formulation via application to
the problems of (a) detecting the presence of humans under
partial occlusions and (b) detecting large complex man made
structures as viewed in satellite imagery. We also evaluated
the optimization approach on real as well as simulated data
and showed favorable results.
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