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Abstract

We examine the possible use of description logics (DLs) as a knowledge representation and reasoning system for high-level scene inter-
pretation. It is shown that so-called aggregates composed of multiple parts and constrained primarily by temporal and spatial relations
can be used to represent high-level concepts such as object configurations, occurrences, events, and episodes that are required in an appli-
cation context. Scene interpretation is modelled as a stepwise process which exploits the taxonomical and compositional relations
between aggregate concepts while incorporating visual evidence and contextual information. It is shown that aggregates can be repre-
sented by concept expressions of a description logic which provides a concrete-domain extension for quantitative temporal and spatial
constraints. The analysis reveals that different kinds of representation constructs have to be carefully selected in order to provide for the
required expressivity while retaining decidability in general as well as practical support from description logic system implementations in
particular. Reasoning services of the DL system can be used as building blocks for the interpretation process, but additional information
is required to generate preferred interpretations. A probabilistic model is sketched which can be integrated with the knowledge-based
framework.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Interpreting a visual scene is a task which in general
resorts to a large body of prior knowledge and experience
of the viewer. Consider an every-day street scene as illus-
trated in Fig. 1.

Based on common-sense knowledge and experiences, we
recognise that two persons are engaged with garbage col-
lection while a third person is distributing mail. With visual
evidence as sparse as a single snapshot, we obtain an inter-
pretation which extends over time, supplements invisible
objects outside the field of view, ignores uninteresting
details, provides an estimate of daytime and season, and
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may even include assumptions about the intentions and
emotions of the people in the scene. It is evident that scene
interpretation is a knowledge-intensive process which is
decisively shaped by the way common-sense knowledge
and experiences are brought to bear.

While people seem to perform scene interpretations
without effort, this is a formidable and as yet unsolved task
for artificial vision systems. One reason is the often still
unsatisfactory performance of low-level vision, in particu-
lar segmentation, tracking, 3D analysis, object recognition,
and categorisation. Often it is argued that the problem of
complex scene interpretation cannot be tackled before reli-
able low-level results are available. However, low-level
vision is not always the bottleneck. As the above example
suggests, an even more important role may be played by
high-level knowledge and experiences. Given suitable
high-level knowledge structures, far-reaching interpreta-
tions may be obtained including propositions about parts
of the scene for which there is no direct evidence at all.
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Fig. 1. Street scene for scene interpretation.
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Furthermore, high-level knowledge may provide top-
down guidance to facilitate and improve low-level pro-
cesses. This has been known for a long time (e.g. [1]), but
there are few examples (e.g. [2]) where vision systems
exploit high-level knowledge – beyond single-object
descriptions – for low-level processing and decisions.

In view of the importance of knowledge for scene inter-
pretation, it is useful to be aware of the rich body of
research on knowledge representation and knowledge-
based system methodology when designing a scene inter-
pretation system. For an overview see the corresponding
sections in AI textbooks such as [3–5]. Out of the many
aspects of past and ongoing developments in knowledge
representation, the following seem to be particularly signif-
icant for scene interpretation.

1. Knowledge representation needs a sound formal basis
when the body of knowledge becomes large and
diverse. Many of the early representation formalisms
such as semantic networks, early frame languages and
rule systems suffer from the lack of precise semantics
in the sense that the correct use of represented knowl-
edge is partly based on intuitive notions which do not
necessarily provide a consistent basis for large-scale
knowledge processing.

2. Knowledge representation systems may provide stan-
dardised inference services, which can be used (and
reused) for application development. Typical inference
services are consistency checking, inheritance, instance
classification, and model construction, but many more
have been proposed and investigated, for example pat-
tern matching services [6]. Inference services are inter-
esting for scene interpretation as they may provide
important functionality for the interpretation process
in terms of existing software with well-defined
properties.
3. There is a growing body of research about spatial and
temporal knowledge and related reasoning services [7–
9]. Space and time play a dominant role in visual
scenes, and one may hope that spatial and temporal
reasoning services provide useful support for scene
interpretation. However, it is conspicuous that so far
only few examples exist where spatial and temporal
reasoning services have been integrated into a vision
system [10–12]. One of the problems seems to be the
mismatch between the quantitative spatial and tempo-
ral information arising from low-level vision and the
mostly qualitative nature of spatial and temporal rea-
soning services.

4. Description logics (DLs) constitute a family of knowl-
edge representation formalisms which have obtained
much attention in the last decade. DLs provide
object-oriented knowledge representation similar to
frame systems used in many knowledge-based applica-
tion systems, but based on formal semantics. DLs rea-
lise a subset of First Order Predicate Calculus. The
subset is generally chosen as to guarantee the decidabil-
ity of consistency checking and other key inference ser-
vices. Furthermore, recent developments of
sophisticated optimisation techniques have led to
implemented DL systems which combine an expressive
representation language with highly efficient services.
Baader et al. [13] provide an excellent overview of the
state-of-the-art of DL methodology.

In this contribution we report about an approach to
using a DL for high-level scene interpretation. The insights
and results are primarily based on long-standing work both
on high-level vision and on formal knowledge representa-
tion in the Cognitive Systems Laboratory at Hamburg Uni-
versity, but certainly also try to reflect the development of
the two fields in their respective research communities. The
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Fig. 2. Knowledge-based framework for high-level scene interpretation.
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organisation of the following sections roughly mirrors the
corresponding research history.

In Section 2 we examine the conceptual structures
which are needed to represent knowledge for high-level
vision. The guiding scenario is a living-room, observed
by a stationary smart-room camera. A typical scene is
table-laying, when one or more human agents place
dishes onto the table and the system has the task to rec-
ognise table-laying occurrences. Laying a table is, of
course, only an exemplary task, and the goal is to
develop a methodology which is applicable to high-level
scene interpretation in greater generality. For example,
based on this methodology, it should also be possible
to recognise interesting occurrences in traffic scenes (as
a possible task of a driver assistance system), team
behaviour in soccer (or robocup) games, criminal acts
in monitoring tasks, etc. Occurrences, object configura-
tions and other high-level structures can be represented
by aggregates which are introduced informally as
representational units. Compositional and taxonomical
hierarchies of aggregate concepts are proposed as the
main structures of a high-level conceptual knowledge
base. The aggregate structure represents the representa-
tional requirements which must be met by a DL
system.

In Section 3 we discuss requirements for the interpreta-
tion process within the conceptual framework introduced
before. In high-level vision, interpretation tasks may be
highly context-dependent, involving prior information
from diverse sources. Scene evidence may be incomplete,
in particular in evolving time-varying scenes. Hence
hypothesis generation and prediction become important
issues. However, it is known that in the end, a valid scene
interpretation must be a ‘‘model’’ (in the logical sense) of
the conceptual knowledge and the scene data.

After having discussed knowledge-representation
requirements for high-level scene interpretation, we
examine the potential of DL systems for this task. In
Section 4 we give an introduction to the family of DLs
and the conceptual expressions which can be formulated.
As an extension important for scene interpretation, sym-
bolic reasoning may be augmented by predicates over
concrete domains such as real numbers representing tem-
poral or spatial coordinates. We also introduce inference
services offered by DL systems. They provide benefits
both for knowledge base maintenance and application
development.

In Section 5 we examine the use of DL knowledge repre-
sentation and inference services for scene interpretation. It
is shown that the representational requirements for high-
level vision aggregates can in fact be met by description
logic representation constructs. Regarding inference ser-
vices for scene interpretation, logical model construction –
which is a service provided by modern DL systems such
as RACER or FaCT – is in principle a candidate. However,
scene interpretation requires that the logical models not
only satisfy all constraints expressed by conceptual knowl-
edge and visual evidence, but also be most ‘‘plausible’’ or
‘‘preferred’’ with respect to a measure. Furthermore, the
interpretation process must be flexible to adapt to a given
focus of attention and other situational context. While this
poses requirements that cannot be met by existing DL sys-
tems, such an integrated interpretation process appears to
be realisable in principle.

In Section 6 we briefly describe ongoing work
towards an interpretation system where probabilistic
information guides the interpretation process within the
conceptual framework of a formal knowledge representa-
tion system.

Section 7, finally, summarises our findings and suggests
directions for further research. One of the major impedi-
ments for decisive progress appears to be the prevailing
segregation of the respective research communities of Com-
puter Vision and Knowledge Representation. So far, the
Computer Vision community has not succeeded in attract-
ing significant attention of the Knowledge Representation
community for research into high-level vision. But this is
not really surprising in view of the enduring predominance
of lower-level vision research.
2. Conceptual structures for high-level scene interpretation

In this section we first explain what we mean by
‘‘high-level interpretation’’. We then propose conceptual
structures which can describe such ‘‘interpretations’’.
We introduce ‘‘aggregates’’ as representational units for
object configurations, occurrences, episodes and other
concepts which occur in high-level interpretations. We
also discuss the interface between conceptual high-level
descriptions and the data provided by lower-level
processes.
2.1. High-level interpretations

We define high-level scene interpretation as the task of
‘‘understanding’’ a scene beyond single-object recognition.
In a knowledge-based framework, a high-level interpreta-
tion is determined by constructing a description of the
scene in terms of concepts provided in a conceptual knowl-
edge base (Fig. 2). A scene is assumed to be a connected
region of the four-dimensional space–time continuum.
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Our guiding example is a table-laying scene in a living-
room where table-laying actions are observed over a
certain time interval. We do not commit ourselves to a par-
ticular camera setup but simply assume that visual evidence
is associated with the scene.

In order to be able to focus on high-level interpretation
we will bypass lower-level image analysis issues and
assume that a partial geometrical reconstruction of the
scene in terms of objects and their properties is available
which will constitute the input to high-level interpretation.
This intermediate representation, called Geometrical
Scene Description (GSD), has been introduced in earlier
work [14] as a convenient separation between high-level
and lower-level processes. In this work, however, we
assume that high-level and lower-level processes will be
able to interact. In fact, it is one of the goals of high-level
processes to provide expectations and support for lower-
level processes. Hence a GSD is not assumed to be com-
plete and correct in any sense. In particular, objects in the
GSD need not be fully classified, may be missing or may
represent multiple scene objects. Imperfections at the level
of the GSD will be a touchstone for robust high-level
interpretation.

What are the requirements for describing scenes at a
‘‘high’’ conceptual level? From the examples given earlier
we gather several characteristics. High-level scene interpre-
tations typically

- involve several objects and occurrences;
- depend on the temporal and spatial relations between

parts of the scene;
- describe scenes in qualitative terms, omitting geometri-

cal detail;
- exploit contextual information;
- include inferred facts, unobservable in the scene;
- are based on conceptual knowledge and experiences

about the world.

Consider, for example, the table-laying scene with a
snapshot shown in Fig. 3. A high-level interpretation
Fig. 3. Snapshot of a table-laying scene.
would express that a person is placing a cover onto a
table. This is a qualitative summary of several individual
occurrences involving different objects. The scene has a
characteristic spatio-temporal structure. The final spatial
configuration is described by the term ‘‘cover’’ referring
to a priori knowledge about dish arrangements. Similarly,
there is a typical temporal structure of the scene. For
example, usually we would expect that the plate is placed
before the saucer and the cup. Further expectations may
arise from context information. If we know that it is
early in the morning, we might infer that a breakfast
table is laid and someone may intend to have breakfast
soon.

From the example, it is apparent that a scene interpreta-
tion may involve many conceptual levels above the level of
single-object recognition, corresponding to different
degrees of abstraction. At a low abstraction level we may
talk about placing a fork beside a plate. At a higher level
we may say that the table is laid for breakfast. It will be
the task of the conceptual knowledge base to provide the
corresponding conceptual structures.

Intuitively, we may think of the elements of a high-level
scene interpretation as ‘‘occurrences’’. The term emphasises
the general case of a time-varying scene (ranging from sim-
ple object motions to large-scale episodes), but is not meant
to exclude concepts for stationary situations such as a
cover configuration on a table.

It has been mentioned that an interpretation should
exploit contextual information. As ‘‘context’’ of a scene
we denote any information at any abstraction level which
is relevant for the interpretation of that scene but not
observable. For vision, spatial, and temporal context
are particularly important. Spatial context is understood
to influence the interpretation of a scene via spatial con-
straints. For example, context information about the
location of the table border will constrain expected cover
locations. Similarly, temporal context provides temporal
constraints, for example, knowing the daytime may
exclude certain interpretations such as ‘‘breakfast-table’’.
The example suggests that it may be more appropriate
to change certainty values rather than exclude an inter-
pretation altogether. Uncertainty management as an
extension of a logic-based framework will be addressed
in Section 6.

In general, context may be provided in terms of diverse
kinds of information. For example, it may be known by
verbal communication that the table is being laid. This
top-down information may facilitate a detailed scene anal-
ysis and interpretation. Context may also be given in terms
of known intentions of agents. For example, if it is known
that an agent intends to have breakfast, but the table is
covered with other items, say books, then it may be
expected that the agent will clear the table and then place
dishes.

Another kind of context may be given by attention-
directing queries in the sense that only specific information
about the scene is interesting. In the smart-room setting of
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our example scenario, for example, attention may be direc-
ted by queries of a human user such as ‘‘Is there a plate on
the table?’’. The query will restrict the space of interesting
interpretations to those which include a plate.

Similarly, context may also be provided in terms of the
task for which some information is important and other is
not. For example, a navigating agent may only be inter-
ested in obstacle avoidance and hence be interested in
object geometry irrespective of object classes.

In our approach, context will be represented by factual
knowledge about a scene beyond the evidence from visual
sensors and general conceptual knowledge.

2.2. Aggregates

We turn now to the task of describing occurrence con-
cepts in a knowledge-representation framework. This will
be done initially in a frame-based notation. In Section 5,
we will rephrase the frame-based models as conceptual
expressions of a description logic.

The main conceptual entities are called aggregates. An
aggregate consists of a set of parts tied together to form
a concept and satisfying certain constraints. There are no
a priori assumptions about dependencies between parts
or specific reasons to combine them in an aggregate. We
simply assume that one is interested to recognise an aggre-
gate as a whole.

As an example, consider the occurrence of placing a
cover on a table. Fig. 4 shows the corresponding concep-
tual model. It is a crude conceptual description of a scene
where a plate, a saucer and a cup are placed onto a table
to form a cover. The place-cover aggregate includes a table
top, three transport occurrences and a cover configuration
as parts (the spatial constraints expressed by cover are not
shown here). Parts are assumed to be existentially quanti-
fied. Furthermore, there are time marks which refer to
the beginning and ending of the place-cover occurrence.
In the constraints section, there are identity constraints,
such as pc-tp1.tp-ob = pc-cv.cv-pl, which relate constitu-
ents of different parts to each other (the plate of the trans-
port sub-occurrence is identical with the plate in the cover),
and qualitative constraints on the time marks associated
name: place-cover 
parents: :is-a agent-activity 
parts: pc-tt :is-a table-top 

pc-tp1 :is-a transport with (tp-obj :is-a plate) 
pc-tp2:is-a transport with (tp-obj :is-a saucer) 
pc-tp3 :is-a transport with (tp-obj :is-a cup) 
pc-cv :is-a cover 

time marks: pc-tb, pc-te :is-a timepoint 
constraints: pc-tp1.tp-ob = pc-cv.cv-pl 

pc-tp2.tp-ob = pc-cv.cv-sc 
pc-tp3.tp-ob = pc-cv.cv-cp 

... 
pc-tp3.tp-te ≥ pc-tp2.tp-te 
pc-tb ≤ pc-tp3.tb 
pc-te ≥ pc-cv.cv-tb

Fig. 4. Conceptual model of a place-cover scene.
with sub-occurrences. For example, pc-tp3.tp-te P
pc-tp2.tp-te denotes that the cup transport should end after
the saucer transport. Aggregates involving mobile objects
typically require that the objects fulfill certain temporal
and spatial constraints. In high-level scene interpretation,
we typically consider aggregates where spatial and tempo-
ral constraints express qualitative relations and dependen-
cies between parts. But it is also possible to express crisp
quantitative relations as, for example, between rigidly con-
nected parts.

The example shows that an aggregate may have other
aggregates as parts. Hence a compositional hierarchy is
induced. The hierarchy is built on top of primitive occur-
rences which are generated as part of the GSD which will
be discussed further down.

In many cases, the parts of an aggregate will have dis-
joint primitives and the compositional hierarchy will be a
tree. But there may also be aggregate concepts which allow
shared primitives. For example, one might define a ‘‘coffee-
cover’’ as a cover with a coffee pot within reach. Clearly,
one coffee pot may be part of several coffee-covers.
Another example is the arrangement of covers in Dijkstra’s
Dining Philosophers Problem where five covers are
arranged along a circular table, each cover sharing a fork
with the neighbour to the left and right. We propose that,
in general, aggregates may share primitives and disjointed-
ness must be expressed by constraints. A more detailed dis-
cussion of the ontological assumptions in the aggregate
hierarchy will be postponed until Section 5.

As indicated by the ‘‘parents’’ slot, aggregates are also
embedded in a taxonomical hierarchy which is the usual
organisational form for concepts at different abstraction
levels.

Note that scene objects such as plate, saucer etc. are
considered as aggregates composed of (i) a physical object
or ‘‘body’’ in the 3D world and (ii) a ‘‘view’’ which is the
visual evidence of the object in the camera view. As an
example, Fig. 5 shows the conceptual model of a plate in
a scene, where plate body and plate view are combined as
an aggregate.

The constraints section contains constraints which relate
the parts to each other, e.g. ensuring that the view is com-
patible with the 3D shape of the physical object (which is,
of course, not trivial). In our approach, we do not intend
an axiomatisation of depiction as investigated, for exam-
ple, in [15,16], but prefer a model where the association
of views with physical bodies can be learnt by experience.
Hence constraints should be thought of as capturing expe-
riences rather than laws of depiction.
name: plate 
parents: :is-a scene-object 
parts: pl-body :is-a body with pl-body-preds 

pl-view :is-a view with pl-view-preds 
constraints: (constraints between pl-body-preds and pl-view-preds) 

Fig. 5. Conceptual model of a plate in a scene.
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Note that the aggregate and its parts are embedded in
distinct taxonomical hierarchies: scene objects, bodies,
and views. Only aggregates with locally coherent parts will
be modelled with a view, for example a candlestick. Aggre-
gates with disjoint mobile parts, such as a cover, will in
general not be described by views at the aggregate level.

The main motivating criterion for defining an aggregate
is to provide a coherent description of entities which tend
to co-occur in a scene. This is regardless of whether the
entities are visible or not. In fact, aggregates provide the
means to hypothesise parts without evidence. As an
extreme example, aggregates may include mental states of
agents along with occurrences in a scene, in particular
desires or emotional states. The aggregate in Fig. 6 is a
sketch of an ‘‘intended place-cover’’, specifying an agent
along with the place-cover occurrence and a desired cover
configuration as the mental state of the agent. Relational
descriptions including mental states have also been used
in [17] as a basis for situation semantics.

The view concepts associated with physical object con-
cepts refer to the interface between high-level and lower-
level vision, as instances of view concepts are provided by
lower-level processes. The next subsection deals with this
interface.

2.3. Interfacing high-level and lower-level representations

The main task of the interface between high-level and
lower-level vision is to ground symbols of symbolic descrip-
tions in data structures provided by lower-level vision pro-
cesses. It is assumed that, from below, the scene is
described in terms of segments or blobs, each endowed
with a rich quantitative description. As mentioned before,
a similar scene description, denoted Geometrical Scene
Description (GSD), has been introduced in earlier work
[14]. Here, we do not require that objects of the GSD have
been preclassified, but only postulate that view classes can
be distinguished, e.g. ‘‘disk-shaped’’, in addition to the
detailed quantitative description. A single view instance
may be related to several object concepts, hence unambig-
uous recognition solely based on views may not be
possible.

This way, the task of object recognition, i.e. assigning a
view instance to a particular class of scene objects, is inte-
grated into the scene interpretation framework (and thus
can be influenced by contextual information, among oth-
ers). In our approach, we do not attempt to model prefer-
ence information pertaining to ambiguous classification
name: intended-place-cover 
parents: :is-a intended-action 
parts: ipc-pc :is-a place-cover 

ipc-ag :is-a agent 
ipc-cv :is-a cover 

constraints: ipc-ag.desire = ipc-cv 
(and other constraints) 

Fig. 6. Conceptual model of an intended action.
situations within the logic-based framework. While this
might be formally possible, for instance, using default rea-
soning techniques [18,19], the need to formulate explicit
conditions for each default decision does not seem to be
a feasible basis for a general scene interpretation frame-
work. Instead, we will commit preference decisions to
probabilistic methods which can be integrated with the
logic-based framework at such decision points. A sketch
of a probabilistic approach for preference decisions is given
in Section 6.

In addition to instances of object views, qualitative rela-
tions between object views are computed, for example
topological relations such as ‘‘touch’’. There is a large set
of relations which can in principle be computed from the
GSD. From a cognitive perspective, qualitative predicates
over distances and angles between suitable reference fea-
tures, as well as temporal derivatives of distances and
angles, are of primary importance. For example, qualita-
tive spatial relations such as ‘‘right-of’’ or ‘‘parallel-to’’
are of this kind.

In general, it may not be feasible to compute distances
and angles between all pairs of objects. Utility measures
and focus of attention come into play as well as verification
requests of higher-level interpretation processes. It is there-
fore useful to think of instances of qualitative relations in
terms of information which can be provided on demand.

In dynamic scenes, object motion and time-dependency
of relations play an important part. The interface provides
instances of views of primitive occurrences which are the
basic building blocks for occurrences such as ‘‘place-cover’’
and other higher-level concepts. A primitive occurrence is
defined as a conceptual entity where a qualitative relation
is true over a time interval. Typical primitive occurrences
are:

- object motion,
- straight object motion,
- approach or depart segment of an object motion relative

to a second object,
- turning object motion,
- upward or downward motion.

If a predicate over a perceptual primitive is true
throughout a scene, one usually does not talk about an
occurrence. We will use the term primitive relationship

instead, well aware that there is no inherent representa-
tional difference between a constancy which happens to
change within the duration of a scene and one which does
not.

3. Requirements for the high-level scene interpretation

process

In this section we identify requirements which must be
met by a high-level scene interpretation process. Further
down, these requirements will be compared with existing
inference services of DL systems.
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3.1. Context-based interpretation

An interpretation of a scene is a partial description in
terms of instances of concepts of the conceptual knowl-
edge base. It is partial because only parts of the scene
and a subset of the concepts are interesting in general,
depending on the pragmatic context. This principle is well
known from work on Active Vision [20] and knowledge-
based attention mechanisms [21]. In our knowledge-based
framework, we allow an interpretation to be incomplete
in three respects:

(i) Objects need not be identified as parts of an aggre-
gate. In particular, view objects may remain ‘‘unrec-
ognised’’, i.e. not assigned to a scene-object
aggregate.

(ii) An object need not be assigned to the most-specific
concept describing this object.

(iii) Aggregates need not be instantiated at the parts level.

Context information can enter the interpretation process
in terms of instantiated aggregates which constrain other
possible scene objects. For example, if the context of a
breakfast scene is given, it is assumed that a corresponding
aggregate is instantiated and possible parts – such as the
occurrence ‘‘laying-the-breakfast-table’’ – are expected as
constituents of the interpretation. Context-based instances
are often not fully specified, with properties left open or
partially constrained. For example, the begin and end times
of an instance of ‘‘laying-the-breakfast-table’’ may initially
be loosely constrained to the typical morning hours, e.g. to
times between 6 and 11 a.m.

Spatial and temporal context play a special part in scene
interpretation, since spatial and temporal constraints pro-
vide important coherence in visual aggregates. The con-
straints section in aggregates will contain predominantly
spatial and temporal constraints. In view of interpretation
tasks under varying contextual conditions it is highly desir-
able that temporal and spatial constraints can be propa-
gated between all constraint variables. For example, if a
plate is interpreted as part of a cover, the plate location
constrains other part locations, restricting possible choices
and possibly even causing top-down guided image analysis
in restricted areas.

As a consequence of context information, scene inter-
pretation may be performed under diverse boundary condi-
tions and the interpretation process must be influenced
accordingly, in particular regarding the order in which pos-
sible hypotheses are tested. Hence one of the requirements
for interpretation services must be flexibility to adjust to
varying contexts.

3.2. Navigating in hallucination space

An interpretation may reach far beyond visual evi-
dence, for example, by including predictions about the
temporal development of a dynamic scene or expectations
about invisible objects. Hence instantiations with incom-
plete or no visual evidence are more the rule than the
exception. This is aptly expressed by the sentence ‘‘Vision
is controlled hallucination’’ attributed to Max Clowes
(1971).

Considering the potentially large space of possible hallu-
cinations and the flexibility required for varying contexts, it
is useful to model the interpretation process as an incre-
mental construction process with the goal to create and
verify any instance which may be useful for the overall
goals of the vision system. We know that logically, an
instance of an aggregate C can only be verified if it is
asserted by context information or its parts can be verified
under the constraints specified in the concept definition of
C. This recursive definition may eventually bring scene
objects and hence visual evidence of the GSD into play.
But scene objects cannot be verified – logically – from
visual evidence alone as shown in Fig. 5, but would require
assertions about the corresponding physical object. Hence
logical verifiability cannot be a criterion for accepting an
instance in an interpretation. However, it can be assured
that interpretations are consistent with evidence and con-
ceptual knowledge. Unfortunately, the space of consistent
interpretations may be huge and the knowledge-representa-
tion framework does not offer a suitable criterion for pre-
ferring one consistent interpretation over the other.
Hence additional information is required, for example in
terms of likelihoods of interpretations. We will discuss
preference measures for guiding the interpretation process
in Section 6.

In [22] a repertoire of three basic interpretation steps has
been identified: aggregate instantiation, instance refinement
and instance merging. For clarity, it is useful to further dis-
tinguish two variants of instance refinement: instance spe-
cialisation and instance expansion. The interpretation
steps are designed to move around freely in hallucination
space, i.e. to allow the construction of any consistent inter-
pretation. In the following, the four kinds of interpretation
steps will be described.

Aggregate instantiation is the act of inferring an aggre-
gate from parts, also known as part–whole reasoning.
Given instances of (not necessarily all) parts of an aggre-
gate and satisfied constraints, we want to establish an
instance of the aggregate. The question when evidence in
terms of parts justifies aggregate instantiation is, of course,
related to the verification question raised above, and we
note that aggregate instantiation requires guiding
information.

The second kind of interpretation step is instance spe-

cialisation. Specialisation means tightening properties and
constraints, either along the specialisation hierarchy or by
checking objects for possible roles in aggregates. Hence
instance specialisation steps are predetermined by the
structure of the specialisation hierarchy and the aggregate
definitions. As above, it must be noted that the conceptual
structures do not specify preferred choices if alternative
specialisations are possible.
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The degree to which instances should be specialised
depends on the overall task of the vision system, and no
generally valid rule can be given. On the other hand, we
know from Cognitive Science that ‘‘natural kinds’’ play
an important role in human thinking and communication.
Roughly, a natural kind is a concept which describes essen-
tial visual properties of its instances [23]. In our domain,
‘‘plate’’ is a natural kind whereas ‘‘dish’’ is not. Asserting
natural kinds could be a useful guiding goal for specialisa-
tion steps.

Instance expansion is the step of instantiating the parts
of an aggregate if the aggregate itself is already instanti-
ated. Logically, asserting an aggregate instance would gen-
erally imply the assertion of parts instances. But for a task-
oriented and context-dependent interpretation it is useful
to be able to suppress details. Hence it will not be required
that parts are instantiated if an aggregate is instantiated. A
typical reason for instance expansion is the need to connect
higher-level aggregates to visual evidence.

The fourth kind of interpretation step, instance merg-

ing, is required because of the distributed nature of inter-
pretation activities. New instances may be generated at
any level and in any branch of the compositional hierar-
chy depending on visual evidence, context information
and current interpretation state. Hence different sequences
of interpretation steps may lead to identical instances
which must be merged. This will happen in particular
when instantiations are initiated both bottom-up and
top-down, for example caused by visual evidence on one
side and strong context-based expectations on the other.
In our domain, context information such as ‘‘the table is
laid’’ may have led to the top-down instantiation of a
cover and its parts. Visual evidence about a plate and
other items must then be merged with these instances.
Again, we note that there may be many choices, and guid-
ing information is needed.

3.3. Scene interpretation as model construction

As shown by Reiter and Mackworth [24] and further
elaborated in [25,26,15], image interpretation can be for-
mally described as constructing a partial model. ‘‘Model’’
is used here in the logical sense and means a mapping from
the symbols of logical formulae into a domain such that the
formulae are true.

Applied to scene interpretation, there are three sets of
formulae, (i) generic knowledge about the world, (ii)
knowledge about a specific scene in terms of visual evi-
dence and context, and (iii) propositions which are gener-
ated as the scene interpretation. Model construction
means connecting constant, predicate and function sym-
bols of the formulae with corresponding individuals, pred-
icates and functions of a real-world domain. The fact that
the third set of formulae, the scene interpretation, is not
given but incrementally constructed, is one of the differ-
ences to the notion of interpretation as used in formal
knowledge representation.
The constructed model is ‘‘partial’’ in that neither all
possible nor all implied conceptualisations of the scene
must be expressed as formulae, and in particular that image
analysis must not be perfect.

In addition to these general properties of a model,
Schröder [15] postulates that two requirements must be ful-
filled. First, it must be possible to extend the partial model
to a complete model. This ensures consistency of any scene
interpretation since it is always part of a model. Second,
disjunctions must be resolved. This ensures completeness
with respect to specialisation.

It is interesting to transfer Schröder’s criteria for scene
interpretation into the conceptual framework introduced
above, although this is not (yet) formulated in a precise
logical language. Scene interpretation as outlined in Sec-
tions 3.1 and 3.2 is an interpretation in the logical sense,
i.e. the scene interpretation process determines a mapping
from symbolic expressions into the real world, by connect-
ing symbolic constants to individual entities in the scene via
sensory input and computational procedures. For example,
instantiating a place-cover aggregate connects the corre-
sponding formula with the real-world scene via spatio-tem-
poral constraints and whatever visual evidence is related to
the occurrence.

The mapping is a model, if it causes all symbolic expres-
sions of the conceptual knowledge and the scene-specific
knowledge to become true. For example, if a plate is on
the table in the scene, then a corresponding symbolic rela-
tion ON should hold for symbolic tokens PLATE1 and
TABLE1 assigned to the scene objects. This is the case if
the real-world meaning is correctly represented by the com-
putational procedure which determines the ON-relation for
the scene object.

Sometimes, our intuitive notions may differ from what
is being computed and one might argue that in those
cases a vision system does not compute a model. Discrep-
ancies may range from obvious mistakes (e.g. interpreting
a shadow as a physical object) to disputable propositions
where even people might disagree (e.g. calling a spatial
relation ‘‘near’’). For a formal analysis, it is therefore
useful to avoid references to intuition and accept the
operational semantics realised by the conceptual models
and computational procedures. In this sense consistent
scene interpretations always correspond to logical
models.

Schröder’s consistency requirement makes sure that a
partial model is always the kernel of a potentially com-
plete model. In our framework, requirements for scene
interpretations have been introduced without this condi-
tion, and it is not apparent at this stage how one could
ensure that a partial scene interpretation remains consis-
tent if it is completed by further image analysis. As an
example, imagine a scene where a plate is placed onto
an empty table. The vision system may come up with
the interpretation of ‘‘table-laying’’ including predictions
about future actions. The continuation of the scene,
however, may show that the plate is picked up again
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and put elsewhere. Hence the premature interpretation
cannot be completed to be consistent with the scene.

In view of the fact that visual evidence is ambiguous as a
rule (and not as an exception), we expect that Schröder’s
consistency requirement cannot be met in practice. Rather,
we must be prepared to (i) withdraw an interpretation if it
becomes inconsistent with additional information, and (ii)
provide guiding information which helps to select between
multiple possible models.

Let us now consider Schröder’s specialisation require-
ment which calls for interpretations without unresolved
disjunctions. Disjunctions occur naturally in conceptual
descriptions where choices are left open, for example, when
a concept may be specialised further according to the tax-
onomy, or when a property may have several values.
Requiring interpretations without disjunctions is equiva-
lent to enforcing interpretations at the lowest possible
abstraction level. This is clearly not the right answer for
all vision tasks and pragmatic contexts which one can think
of. For example, in an obstacle avoidance task the vision
system could well do without the most-specific classifica-
tion of obstacles as long as their geometry is recognised
properly.

In summary, we see that model construction, although
the right logical framework for scene interpretation, leaves
several questions unanswered regarding a practically useful
interpretation process. These questions will be brought up
again when we examine DLs for possible interpretation ser-
vices, and will also be addressed in Section 6.

4. Knowledge representation and reasoning with description

logics

Description logics (DLs), also called terminological
logics, originated from the work of several researchers
who tried to replace the intuitive semantics of semantic
networks and frame systems by a formal logic-based
semantics [27–30]. It was soon realised that semantic net-
works and frames do not require full first-order logic, but
fragments suffice for typical representation and reasoning
tasks. Moreover, since inference problems are found to be
decidable in these fragments, reasoning can be opera-
tionalised by sound, complete, and terminating algo-
rithms. This is a clear advantage compared to theorem
provers for full first-order logic or theorem provers for
Horn clauses with function symbols (e.g. PROLOG).
DLs have taken a remarkable development as both solid
theoretical foundations and successful operational
systems have been achieved. The interest of using DL sys-
tems for practical applications is due to several attractive
aspects.

• The family of DLs comprises a variety of representation
languages ranging from languages with polynomial
complexity such as CLASSIC [31] to highly expressive
languages which – in the worst case – are no longer poly-
nomial, such as SHIQ(Dn)� [32,33].
• DL systems offer various kinds of inference services
which can be used for application development. Sys-
tems are available off the shelf and are based on
international standards for web-based system devel-
opment (e.g. OWL [34]). An excellent presentation
of the history and current state of DL technology
is offered in [13]. One example for a current DL sys-
tem is RACER [35]. RACER supports the logic
SHIQ(Dn)� and provides extensive support for
OWL.

• The representation language is object-based and sup-
ports frame-like representations.

For the purpose of this contribution it is useful to
introduce DLs in terms of a repertoire of language
features which are potentially important for scene
interpretation, rather than focussing on particular
DLs. In Section 5, we will then examine how to meet
the knowledge-representation requirements for scene
interpretation. Unfortunately, not all features of the
repertoire can be combined in a single language with-
out losing decidability, so a careful analysis is neces-
sary and a restricted use may be imposed. Note that
decidability was not an issue in related work such as
[36].

4.1. Syntax and semantics of description logics

Knowledge representation in DLs is based on unary
predicates called concepts (or concept terms), binary
predicates called roles (or role terms), and so-called
individuals. A concept is interpreted in a Tarski-style
set-theoretical semantics as a set of elements from a
domain of discourse (also called universe), a role is
interpreted as a set of pairs of elements from the
domain, and an individual denotes an element of the
domain. The elements in the second position of a role
pair are called role fillers. Functional roles which map
each first argument into at most one role filler are called
features.

Building Blocks. For each application one has to fix a
set of concept names (so-called atomic concepts), a set
of role names (also called atomic roles), and a set of indi-
viduals. Names can be used to build complex concept and
role terms. This is accomplished with the help of opera-
tors whose meaning is precisely defined in terms of the
set-theoretical semantics. Below we present the language
for building complex concept terms. We rely on a nota-
tion with the following abbreviations (possibly used with
index):

C c
oncept term

R r
ole term

F f
eature term

I i
ndividual

CN c
oncept name

RN r
ole name

n n
atural number
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In the following we introduce concept terms that have
been analysed in the description logic literature. Later on
we focus on specific description logics such as CLASSIC
or SHIQ.
C fi CN c
oncept name
*top* u
niversal concept (containing
all other concepts)
*bottom* e
mpty concept

(not C) n
egation of a concept

(and C1. . .Cn) i
ntersection of concepts

(or C1. . .Cn) u
nion of concepts

(some R C) e
xistential quantification

(all R C) v
alue restriction

(at-least n R C) q
ualified at-least number

restriction

(at-most n R C) q
ualified at-most number

restriction

(exactly n R C) q
ualified exact number

restriction

(same-as F1 F2) f
eature (chain) agreement

(subset R1 R2) r
ole-value map

(one-of I1. . .In) s
ingleton set
For the roles used in qualified number restrictions, addi-
tional restrictions apply: they must be neither transitive nor
must there exist a transitive subrole (see below). Role terms
may be formed as follows:
R fi RN r
ole name
**top** u
niversal role (containing all
other roles)
**bottom** e
mpty role

(inverse R) i
nverse role

(and R1. . .Rn) i
ntersection of roles

(or R1. . .Rn) u
nion of roles

(compose F1. . .Fn) f
eature chain

(compose R1. . .Rn) r
ole composition
The concept expressions involving roles may

require some explanations. The value restriction (all
R C) denotes a class of objects where all role fillers
of R, if there are any, belong to the concept C.
Hence (and plate (all has-shape oval)) describes plates
whose shapes are oval (but specific instances of oval
shapes are not necessarily known). To express that a
candlestick must have at-least one candle, one can
use the existential role restriction (and candlestick
(some has-candle candle)). Several forms of number
restrictions can be used to further restrict the role-
fillers for a class of objects. For example (and can-
dlestick (at-least 2 has-candle candle)(at-most 2 has-
candle candle)), describes the candlesticks with exactly
two candles.

With so-called feature (chain) agreements one can
describe elements of the domain which possess the
same fillers for (possibly different) feature chains. Consider
the definition of a cover which requires that plate and sau-
cer have the same colour. This restriction could be
expressed as

(same-as (compose has-plate has-colour)

(compose has-saucer has-colour))

Feature chain agreement is one of those constructs
which cannot be combined with other critical constructs
without jeopardising decidability. In particular, feature
chain agreement is part of the CLASSIC language, how-
ever it cannot be used in a language as expressive as
SHIQ(Dn)� [37].

Another critical construct not supported in
SHIQ(Dn)� is a role-value map (subset with role chains).
In general, this construct cannot be integrated even into
the (less expressive) CLASSIC language without losing
decidability [38]. But as can be seen from the previous
example and some other examples shown below, both
constructs appear to play a natural role in human con-
cept formation.

SHIQ(Dn)� is an example of a DL language that does
not only support the description of abstract objects (in
the universe) but also supports additional domains with
objects for which, for instance, an order is defined and
certain algebraic operators (functions) such as addition
and multiplication are specified. An additional domain
plus a set of predicates syntactically constructed with ref-
erence to a set of predefined operators is called a concrete
domain.

Concrete domains were introduced with the language
ALC(D) [39]. The (D) part stands for concrete domains.
The language ALC [40] comprises the first eight concept
constructors from the grammar shown above. Another
important extension of DLs in terms of predicates over
concrete domains was established by Baader and Han-
schke [37] with the language ALCFP(D) (i.e. ALC with
feature agreements (same-as), feature composition, and
concrete domains). The integration of concrete domain
predicates allows to include predicates which are evalu-
ated outside the description logic reasoner. Examples of
concrete domain predicates interesting for scene interpre-
tation are inequalities over real numbers, Allen’s interval
calculus [41], or the RCC-8 calculus about spatial regions
[42].

At the time of writing RACER is the only optimised
DL system which supports concrete domains with the
language SHIQ(Dn)�. In particular, the RACER
concept language offers operators for forming concepts
based on predicates involving (in)equalities over the
integers and the reals. The following shows the syntax
for concrete-domain concept expressions (CDCs) which
extend the list of concept terms presented earlier
(symbols on the left-hand side of grammar rules are
treated as nonterminals as usual). AN denotes an attri-
bute name which specifies an integer- or real-valued
variable.
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CDC fi
 (a AN) (an AN) a
ttribute filler exists
restriction
(no AN) c
omplement of attribute

fi
ller exists restriction
(min AN integer) i
nteger predicate exists
restriction
(max AN integer)
(equalANinteger)
(> aexpr aexpr) r
eal predicate exists
restriction
(P aexpr aexpr)
(< aexpr aexpr)
(6 aexpr aexpr)
(= aexpr aexpr)
aexpr fi
 AN
real
(+ aexpr2) s
um expression

aexpr1
aexpr1 fi
 AN
real
(* real AN) p
roduct expression

aexpr2 fi
 aexpr1
aexpr2 fi
 aexpr1 aexpr2
It can be seen that concrete domain predicates offer
an interesting way to integrate quantitative data from
low-level vision with symbolic reasoning in high-level
vision. As an example, we could define an integer-val-
ued attribute size for the number of pixels of a
plate-view and express a conceptual restriction on the
size of the plate-view by means of the concept
expression:
(and (min size 13) (max size 20))
Conceptual knowledge. The language for building concept
terms as introduced above can be used to describe subsets of
the universe. Concept definitions and logical relationships
between concepts are introduced by so-called terminological
axioms. The general forms of terminological axioms are
given as follows (for definitions, C1 is a concept name):
(equivalent C1 C2) (identity relationship between
the sets associated with C1 and C2)
(implies C1 C2) (subset relationship between the sets
associated with C1 and C2)
(disjoint C1. . .Cn) (the sets associated with C1 . . .Cn
are disjoint)

Similar to concept definitions, relationships between
roles can be enforced:

(equivalent R1 R2)

(implies R1 R2)

In addition, in the language SHIQ(Dn)� roles may be
declared to be functional or have other properties such as
transitivity or symmetry. For historical reasons, a set of
axioms is referred to as a TBox (terminological box).

It is apparent that n-ary predicates (or in set terminology:
n-ary relations) cannot be directly represented. However,
there is a well known way around by reifying n-tuples. Let

R ˝ C1 · C2 · . . . ·Cn

be an n-ary relation. Define C as the set of all n-tuples of R,
and Ri as the binary relation between an n-tuple and its ith
component.

Ri ˝ C · Ci, i = 1. . .n

The conceptsCandC1. . .Cn together with the rolesR1. . .Rn
represent the n-ary relation R. The disadvantage of using rei-
fied relations of this kind is that it is possible to introduce mul-
tiple names (aggregate individuals) for the same tuple. In the
following we will see that this problem can be pragmatically
solved in our context. Reification will be used extensively
for defining concepts for high-level scene interpretation
which typically relate many components to each other.

Assertional knowledge: So far, we have presented con-
structs for representing conceptual knowledge in a TBox.
DL syntax also includes constructs for representing factual
(assertional) knowledge about individuals. This body of
knowledge is called an ABox. Let IN, IN1, and IN2 be
individual names, then the following constructs express
concept membership and role membership, respectively:
(instance IN C) I
N is instance of C

(related IN1 IN2 R) I
N1 is related to IN2 via role R
The following ABox constructs are provided for con-
crete domain extensions:

(constrained IN AN ON)

A concrete domain object ON is the filler for an attri-
bute AN with respect to an individual IN.

(constraints constraint-expr1. . .constraint-exprN)

Constraint expressions describe relationships between
objects of a concrete domain.

A knowledge base is a pair of TBox and ABox. Prac-
tical systems such as RACER support multiple knowledge
bases. In particular, one TBox can be referred to by mul-
tiple ABoxes. ABoxes will be used for representing possi-
bly different interpretation results (see below).

4.2. Reasoning services of description logics

In addition to providing the framework for knowledge
bases, a DL system offers specific kinds of reasoning ser-
vices. They are logical inferences based on the formal
semantics, similar to inferences in first-order predicate
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logic. From an application-oriented point of view, the rea-
soning services are useful for two main purposes, (i) organ-
ising and maintaining a potentially large knowledge base,
and (ii) providing complete and correct procedures as
building blocks for application systems.

Typical reasoning services of a DL system determine

- whether a concept is satisfiable (i.e. consistent),
- whether a concept is subsumed by another concept,
- whether two concepts are disjoint,
- whether a TBox is coherent (i.e. contains no inconsistent

concept names),
- what are the parents (children) of a concept,
- whether an ABox is consistent w.r.t. a TBox,
- whether an individual is an instance of a concept,
- what are the most-specific atomic concepts of which an

individual is an instance,
- what are the instances of a concept,
- what are the individuals filling a role for a specified

individual,
- what pairs of individuals are related by a specified role
- answers for general queries about tuples of individuals

(mentioned in ABoxes) that satisfy certain predicates
(so-called conjunctive queries).

It can be shown that, in general, all of these services can
be reduced to consistency checking of an ABox w.r.t. a
TBox. Hence, in implemented DL systems, a premium is
on efficient and optimised algorithms for consistency
checking. One way to do this is by model construction as
this is an elegant way to define an algorithm for proving
satisfiability. Many DL systems are based on model con-
struction techniques (they use so-called tableau provers).
This is interesting because model construction has been
shown to be one of the building blocks for the logical para-
phrase of scene interpretation (Section 3.3).

Usually, inference services of DL systems are based on
the open-world assumption (OWA) as opposed to the
closed-world assumption (CWA). Employing the CWA
means that if a fact does not follow from a knowledge base,
then the negation is assumed to hold. As a consequence of
the OWA in DL systems, inferences are only drawn to the
extent that they are not affected by additional information.
This precludes intuitive inferences which might be useful
for scene interpretation. For example, if there is evidence
for two dinner covers on a table, the interpretation of a
‘‘dinner-for-two’’ cannot be logically inferred as additional
covers may be added to the knowledge base. Some form of
closed-world reasoning was already supported in the
CLASSIC system [31] (see also [43] for a theoretical inves-
tigation of the approach taken in CLASSIC). However,
CLASSIC does not offer an expressive query language
for finding individuals based on closed-world assumptions.
The DL system RACER indeed now supports a very
expressive query language for ABoxes (conjunctive queries)
that also provides CWA-based operators (see below for the
use of queries to formalise image interpretation).
In the DL literature, there are also investigations of
so-called non-standard inference services which have been
intoduced mainly in support of knowledge engineering, for
example providing normalised forms for concept definitions.
Some of the non-standard inferences may also be interesting
for scene interpretation, for example, the generalisation
operation LCS which computes the most-specific concept
subsuming several specified concepts [44]. However, due to
space restrictions we cannot report on details here.

5. Scene interpretation with description logics

We now examine in detail how scene interpretation –
according to the ideas and requirements put forth in the
previous sections – can be supported by knowledge repre-
sentation and reasoning with a DL system. We will first
deal with representational requirements and then with the
interpretation process.

5.1. Representing aggregates with DL concepts

The main representational unit which has been identified
for conceptual knowledge representation is an aggregate.
An aggregate expresses the properties and constraints
which make a particular set of objects worth being recogni-
sed as a whole. As shown in Section 2, aggregates can be
described informally by frames, and it is straightforward
to translate basic frame notation into DL notation: slot
identifiers become role names, concept expressions for slot
values become role-value restrictions, and the whole frame
is represented as a union of role restrictions.

The assignment of role names deserves some consider-
ation. One might be tempted to represent all roles connecting
an aggregate to parts with a single role type ‘‘has-part’’ (or
some other standard name). This would ignore that, in gen-
eral, parts ‘‘play different roles’’ in an aggregate, and
unwanted inheritance relations may result if these roles are
not distinguished. It is useful to think of an aggregate as a rei-
fied n-ary relation where the roles relate components to cor-
responding positions in the n-tuples, as pointed out in
Section 4.1. Hence role names within an aggregate should
in general be distinct.

On the other hand, there may be aggregates related to
one another by specialisation, for example ‘‘cover’’ and
‘‘breakfast-cover’’. Here, parts in different aggregates could
play identical roles and should have identical names so that
the specialisation relation between ‘‘cover’’ and ’’breakfast-
cover’’ can be deduced.

There exists a considerable body of research on reasoning
with part–whole relations, see [45] for an overview. The first
integration of part–whole reasoning in a DL is reported in
[46] where CLASSIC is extended to include ‘‘physical
whole–part relations’’ between a composed object (such as
a stereo system) and its components. Whole–part (and
part–whole) relations enjoy a special status and are used to
induce transitive contains and may-contain relations as well
as several special inference mechanisms. Our approach also



(equivalent  cover 
(and  configuration 

(exactly  1  cv-pl  plate) 
(exactly  1  cv-sc  (and  saucer  (some  near plate))) 
(exactly  1  cv-cp  (and  cup  (some  on  saucer))) 
(subset  cv-pl  (compose  cv-sc  near)) 
(subset  cv-sc  (compose  cv-cp  on)))) 

Fig. 7. DL concept for a simple cover.
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exploits the special status of roles relating parts to aggregates
when a part–whole interpretation step is performed (see Sec-
tion 5.2).

Part–whole relationships differentiated according to dis-
tinct mereological categories (such as component – com-
posite, stuff – object) and their realisability in DLs are
investigated in [47] and [48]. Sattler shows that various
kinds of part–whole relationships can be modeled in SHIQ,
but that there are properties (such as part–whole inheri-
tance) which cannot be achieved in full generality without
losing decidability. In our approach any special part–whole
semantics are modeled based on the specific roles intro-
duced in the aggregates. In particular, one can achieve that
a certain part cannot be shared among two different aggre-
gates by making the respective roles subroles of the role
has-exclusive-part and constraining this role as
follows:
(all has-exclusive-part (at-most 1 (inverse has-exclusive-part)))
Thus, we need number restrictions and inverse roles for
expressing exclusive use of parts in compositions. If roles of
aggregates are not declared subroles of has-exclusive-
part they allow for part sharing as in the coffee pot exam-
ple mentioned above.

In order to function within a vision system, individuals
in the ABox of a DL system must interface to lower-level
vision. Mechanisms to feed concrete data into the ABox
are common-place for DL applications, so this is no serious
challenge. In the framework presented in Section 2, lower-
level processes will supply data for instances of view con-
cepts which are modelled as parts of scene objects. Also,
context information may be entered into the ABox in terms
of instantiated aggregates.

Representing the constraints section of aggregates is a
more difficult issue. In the following simple example a
DL concept is defined for a cover consisting of a plate, a
saucer near the plate, and a cup on the saucer.

The requirement that the saucer is located near the same
plate as referred to by the role cv-pl is expressed by the
subset construct which relates the filler of the role cv-pl
and the filler of the role chain (compose cv-sc near). The
requirement that the cup is located on the same saucer as
referred to by the role cv-sc is expressed in a similar way.

While same-as can be added to inexpressive descrip-
tion logics such as CLASSIC or even ALCFP(D), it can-
not be added to SHIQ without, in general, losing
decidability of main inference problems. However, consid-
ering the example discussed in Fig. 7, it becomes clear that,
due to the nature of the things to be modelled, same-as is
not adequate and subset must be used in the domain
model. This does not only hold for spatial constraints but
also for temporal constraints as the next example
demonstrates.
A special task of the constraint section of an aggregate is
to express spatial and temporal constraints. In principle,
this could be done in a manner similar to the example in
Fig. 7 where the symbolic roles ‘‘near’’ and ‘‘on’’ do the
job. For example, in a (simplified) place-cover aggregate
one could express the temporal ‘‘before’’ relation between
the place-saucer and the place-cup occurrences as follows:

Note that in description logics one can define concepts (in
the TBox) but one cannot define relations using axioms.
Some properties of spatial relations such as the transitivity
of the relation inside are not reflected by just using simple
role names. This may or may not be a problem in applica-
tions. In any case, a concept definition as in Fig. 8 implies
that qualitative temporal and spatial relations needed for
conceptual modelling (such as ‘‘on’’ or ‘‘before’’) must be
instantiated bottom-up by processes outside of the DL sys-
tem. Assuming separate control structures of high-level
and low-level processes, this would lead to bottom-up com-
putation of a potentially very large number of pairwise spa-
tial and temporal relations, from which only a small number
may play a part in a high-level interpretation.

By integrating quantitative computations into the high-
level concepts, a more efficient and also more transparent
solution may be achieved. This can be made possible by con-
crete-domain concept terms as introduced in Section 4.1.

Four temporal constraints are specified:

(i) The end of the place-saucer occurrence must be
before the end of the place-cup occurrence.

(ii) The begin of the place-cover occurrence is the
minimum of the begins of its constituent occurrences.

(iii) The end of the place-cover occurrence is the max-
imum of the ends of its constituent occurrences.

(iv) The overall duration must not exceed a given maxi-
mal duration.

The constraints involve attributes relating an occurrence
to its begin and end time, expressed in terms of values of
the concrete domain of integers. Different from the first
formulation with qualitative roles, the content of the con-
straints is now part of high-level concepts. This opens up
the way for flexible interpretation strategies where con-
straints are propagated in order to restrict possible instan-



(equivalent  place-cover 
(and  agent-activity 

(exactly  1  pc-tp1  (and  transport  (some  tp-obj  plate)) 
(exactly  1  pc-tp2  (and  transport

(some  tp-obj  saucer) 
(some  before  (and  transport  (some tp-obj  cup))) 
(exactly  1  pc-tp3  (and  transport  (some tp-obj  cup)) 

(subset  pc-tp3  (compose  pc-tp2  before)))) 

Fig. 8. Simplified DL concept for place-cover.
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tiations at choice points. In particular, constraints pertain-
ing to hypothesised objects without visual evidence can be
used to constrain lower-level processes. For example, if evi-
dence for a plate has led to instantiating a cover, spatial
constraints between plate and missing cover parts, such
as cup and saucer, can be exploited for top-down guided
image analysis at the constrained locations. Our approach
(equivalent <concept-name>
(and <parent-concept1> . . . <parent-conceptN>
(<number-restriction1> <role-name1> <part-concept1>)
. . .
(<number-restrictionK> <role-nameK> <part-conceptK>)
<constraints between parts>))
differs from temporal or spatial logic approaches in that it
does not attempt to integrate inherent properties of space
and time into the symbolic realm, but rather exploits the
computational facilities of a metric space. The need for a
metric space between signal and symbol processing has also
been pointed out in [49].

Note that the minim and maxim operators are not part
of a regular DL syntax. But the intended semantics can
also be expressed by a disjunction of inequalities between
pairs of variables.

Analysing the representation constructs that are needed
for this kind of modelling approach, there is bad news
again. The example discussed in Fig. 9 requires role com-
position (compose). This cannot be offered in a DL with
expressive concrete domains (such as the one used in the
(equivalent  place-cover 
(and  agent-activity 

(exactly  1  pc-tp1  (and  transport  (some  tp-obj  plate)) 
(exactly  1  pc-tp2  (and  transport  (some tp-obj  saucer)) 
(exactly  1  pc-tp3  (and  transport  (some tp-obj  cup)) 
(<=  (compose pc-tp2 tp-end) (compose  pc-tp3 tp-end)) 
(=  pc-beg  (minim  (compose pc-tp1 tp-beg)  

                           (compose pc-tp2 tp-beg)
                           (compose pc-tp3 tp-beg))) 

(=  pc-end  (maxim  (compose pc-tp1 tp-end) 
                            (compose pc-tp2 tp-end) 
                           (compose pc-tp3 tp-end))) 

(<=  (-  pc-end  pc-beg)  max-duration)))) 

Fig. 9. DL concept of place-cover with temporal constraints.
example) and with expressive concept constructors. Indeed,
role composition is excluded from the DL SHIQ(Dn)� sup-
ported by RACER for decidability reasons (this is what the
minus sign actually indicates).

In summary, we have shown that the basic structure of an
aggregate as introduced in Section 2 can, in principle, be
modelled by a DL system using the following scheme:
Currently, at the TBox level, the expressivity of DL sys-
tems cannot be made as high as required to allow for con-
cise and intuitive formulations of constraints between
parts. The problems are due to decidability problems in
the general case. Note that in the DL community represen-
tation problems such as the ones discussed above are
deemed special cases, and developing the corresponding
decidability proofs and optimised implementations is usu-
ally considered too much work.

It might be possible to consider a combination of Tem-
poral Logics and DL for expressing temporal constraints
(see, for instance [50]). A careful analysis is required to
determine if adequate expressivity can be achieved without
losing decidability. Unfortunately, practical systems for
temporal description logics seem to be out of reach at the
current state of the art. Note that some properties of tem-
poral constraints such as transitivity are indeed reflected by
the approach proposed here due to the transitivity of the 6
predicate used in concrete-domain expressions (see Fig. 9).

So if a reduction to decidable inference problems imple-
mented in practical inference systems such as RACER is to
be used, expressivity w.r.t. constraints between parts must
be reduced and, hence, TBox axioms will be ‘‘too weak’’
in a sense. Additional representation constructs must be
used instead to express required constraints. In subsequent
sections we will explain how the expressive RACER query
(and rule) language allows us to cope with this situation
appropriately. Before this can be explained, however, we
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consider how scene interpretation processes can be mod-
elled using standard inference services as explained above.

5.2. Supporting the scene interpretation process with a DL

system

Support of the interpretation process has already been
an important aspect for choosing particular constraint rep-
resentations in the previous subsection. We now examine in
more generality how the interpretation process can be sup-
ported by reasoning services of a DL system. As pointed
out earlier, the use of DL reasoning services would offer
two main advantages:

1. The formal semantics of a DL language helps to avoid
misunderstandings often arising if knowledge bases
and inference procedures are constructed intuitively.

2. Correct inference procedures may obviate the need for
developing parts of application-specific programs.

Looking at the list of services presented in Section 4.2
we see that the first group deals with concept terms only
and is mainly useful for the construction and maintenance
of a knowledge base. The key inference service of this
group is a satisfiability test from which all other concept-
related services can be derived, for example concept sub-
sumption which tests whether one concept is more general
than another, and concept classification which determines
the parent concepts for a given concept term.

The second group deals with ABoxes and TBoxes
together and hence is more directly relevant for scene inter-
pretation. It should be clear from the preceding that the
TBox of a DL takes the role of the conceptual knowledge
base and the ABox of a container for concrete scene data.
Referring to Fig. 2, the ABox contains (i) visual evidence in
terms of the GSD, (ii) context information in terms of par-
tially specified concept instances, and (iii) the high-level
scene description generated by the interpretation process.
A DL system always checks consistency of the ABox
w.r.t. the TBox, hence the ABox formally corresponds to
a (partial) model of the TBox and – given its role in the
scene interpretation framework – is a (partial) scene inter-
pretation. We conclude that DL consistency checking can
be used to ensure consistent scene interpretations.

Another key inference service is the instance check which
determines whether an individual is an instance of a given
concept w.r.t. the current ABox and the TBox. The most-
specific atomic concepts of which an individual is an instance
can be derived by instance classification (which, internally, is
based on instance checks). The set of most-specific atomic
concepts computed by instance classification is also known
as the set of direct types. If the direct types are computed
for all individuals in advance, this is known as ABox
realization.

At first glance, instance classification appears to be an
inference service which is immediately applicable for scene
interpretation. Given an image segment represented as an
individual in an ABox, this service would deliver the
most-specific concept applicable to this individual. But this
will not work in general because of two main reasons:
(i) Scene interpretation (and image interpretation in gen-
eral) cannot be solely modelled as deduction. It is well
known that image evidence is generally not conclusive
regarding a classification because of the many-to-one
nature of the imaging process. Hence an inference ser-
vice which infers a class membership cannot solve the
full interpretation problem. As elaborated earlier, it
appears to be more adequate to model image interpre-
tation as a (logical) model-construction task.

(ii) Individuals do not yet exist for aggregates which
must be discovered. Hence instance checking cannot
be applied. As a work-around, tentative aggregate
instants could be created. However, this would turn
interpretation into a top-down trial-and-error proce-
dure which cannot be efficient in general. However, if
aggregate individuals are determined by part–whole
reasoning as described below, they result from edu-
cated guesses based on parts, and a classification step
could become obsolete in many cases.

We now turn to the interpretation steps identified in Sec-
tion 3. The first kind is aggregate instantiation, also known
as part–whole reasoning. Given an individual in an ABox,
what are the possible aggregates supported by this individ-
ual, and which aggregate should be chosen first? Assuming
that aggregates are modelled by DL concepts as explicated
above, we can exploit the special syntax of aggregate concept
definitions which allows to identify parts by specific roles.
The idea behind this syntactic construction is to provide a
way for distinguishing roles which model spatio-temporal
co-occurrence which are typical for the parts of an aggregate.
This way we can identify the concept terms which describe
the respective role fillers, and what remains to be done for
part–whole reasoning is instance checking of the individual
against each concept term. This can be done with a readily
available reasoning service. A concrete solution for part–
whole reasoning in RACER will be presented in the next
subsection.

However, no support can be given for the strategic deci-
sion which aggregate – out of possibly many candidates –
should be tried first. This requires a preference measure
which is outside the scope of current DL systems. It must
be expected that uneducated choices will lead to backtrack-
ing and hence inefficiency of the interpretation process. The
development of a preference measure for part–whole reason-
ing must be considered a prerequisite for the employment of
DL systems in practical scene interpretation applications.

The second kind of interpretation step required for scene
interpretation is instance specialisation. One of the main
advantages of a DL system is the specialisation network
automatically generated for all concept definitions. Hence
all specialisations of a given (atomic) concept can be effi-
ciently retrieved. To compute the possible specialisations
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of an individual, the most-specific atomic concepts of
which an individual is an instance (i.e. the so-called direct
types) can be determined by a service called instance classi-
fication, and then more specific concepts can be found by
consulting the specialisation hierarchy. In general, there
will be alternative choices, and it is useful to have guidance
for a ‘‘best’’ choice. As with part–whole reasoning, such
guidance is outside the scope of current DL systems.

Instance expansion is a step applied to instantiated aggre-
gates and causing its parts to be instantiated. This operation
is completely determined by the concept definition of the
aggregate, and extending an existing DL system to include
this new service should be possible without serious problems.

The fourth kind of interpretation step needed for scene
interpretation is instance merging. As pointed out earlier,
this step is typically required when a top-down generated
hypothetical instance has to be connected with bottom-up
evidence. Formally, the reasoning service required here is
to determine whether it is consistent with the TBox and the
current ABox to unify the descriptions of two individuals.
Unification requires specialising the role fillers of the individ-
uals until the most general common representation is found.
This must be applied recursively to the instances of parts of
aggregates and terminates at the level of instances of primi-
tive concepts.

As observed for other kinds of interpretation steps, DL
systems do not offer guidance when alternative choices are
possible and an order of preference becomes important.

In summary, the logical structure of DL concepts can be
exploited for selecting interpretation steps which necessarily
lead to a logical model, i.e. to a description consistent with
visual evidence, context and conceptual knowledge. This
can be a considerable benefit. But in general, there are many
models, and degrees of freedom are left open regarding
choices among alternatives. The decisive question is which
model to prefer in the face of several possiblities. From an
answer to this question one can expect criteria regarding
the preferred order for interpretation steps and other
choices. Our understanding of vision suggests that these
choices are critical for a practically useful performance of
vision systems. In Section 6 we will sketch a probabilistic
approach for determining preferred interpretations.

5.3. Scene interpretation using RACER’s query and rule

language

In previous sections we have discussed how knowledge
necessary for scene interpretation could be modelled using
TBoxes and ABoxes of a DL. One important insight was
that the TBox language provided by current DL systems
such as RACER appears to be ‘‘too weak’’ as important
constructs such as feature chains, subset, and same-as are
not provided. In this section we show how we can compen-
sate for the deficiencies using a sophisticated query lan-
guage for ABox individuals. Recently, the RACER query
language nRQL (new RACER Query Language) has been
developed [51]. It provides an extension to existing ABox
query services in terms of query expressions with variables.
In the following we will show how nRQL can be conve-
niently used to support the scene interpretation process.

The retrieval operator of nRQL has the general format

(retrieve <list-of-objects> <query-body >)

where the list-of-objects may contain variables (beginning
with ‘‘?’’) and individuals. The query-body is essentially a
boolean combination of possible ABox entries with indi-
viduals replaced by variables, augmented by some addi-
tional constructs. A query can be seen as a template
which is applied to the ABox and delivers all variable bind-
ings satisfying the template.

As an example for the use of nRQL in our image inter-
pretation scenario, let us assume that the current ABox
contains various plates, cups and saucers. The following
query will retrieve all combinations of parts which satisfy
the aggregate definition of a cover given in Fig. 7.

(retrieve (?x ?y ?z) (and (?x plate)

(?y saucer)

(?z cup)

(?x ?y near)

(?z ?y on)))

Note that the same-as relation can be expressed by using
the same variable name. The result of the query is a list of
all possible bindings of the variables to individuals of the
ABox. For the fictitious ABox of this example, the result
could be

(((?x plate1) (?y saucer3) (?z cup2))

((?x plate4) (?y saucer2) (?z cup4)))

indicating two combinations of plate, saucer and cup which
satisfy the constraints of the cover definition.

This opens up an interesting way to support part–whole
reasoning for scene interpretation. The query mechanism
can be used to efficiently retrieve combinations of ABox
individuals which justify the assertion of an aggregate
instance. Furthermore, such queries can be automatically
generated from the aggregate definitions. To establish an
aggregate for each set of bindings retrieved by the query,
a new individual must be entered into the ABox as an
instance of the aggregate concept and related to the
retrieved individuals via the roles of the aggregate concept.
For the first set of bindings shown above, the new ABox
entries would be:

(instance cover1 cover)

(related cover1 plate1 cv-pl)

(related cover1 saucer3 cv-sc)

(related cover1 cup2 cv-cp)

As a convenient service of the DL system, the new
individual cover1 will be automatically classified w.r.t.
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all TBox concepts and implicit subsumption by other
concepts – e.g. by specialisations of cover – will be discov-
ered. It is obvious to see that with this approach there will
be just one representative for each tuple of bindings, and
hence, possible problems with reification can be avoided
at a pragmatical level.

RACER also offers a simple rule language. Given a cer-
tain query as the antecedent of a rule, additional con-
straints with respect to existing ABox individuals can be
automatically asserted. Asserting constraints to existing
ABox individuals is the key to compensate for the
restricted expressivity in TBoxes (see the analysis presented
above). Since we do not deal with infinite structures but a
finite number of explicitly mentioned individuals in an
ABox to which rules are applied, the rule language can sup-
port variables, and role composition as in Fig. 9 is no prob-
lem. We only provide a sketch here due to space limitations
(see also the nRQL manual for details about firerule).
P(A1A2 ... AN)

P(B)

b = f(a1a2 ... aN)

• • • • •

•

Fig. 10. Probabilistic structure of an aggregate. The upper node, described
by a JPD P(B), represents export features. The lower nodes, described by a
JPD P(A1A2 . . . AN), represent import features of the parts. f is a
deterministic mapping between import and export features.

(firerule (and(?x place-cover)

(?x ?y pc-tp2)

(?x ?z pc-tp3))

(constraints

(6 (tp-end ?y) (tp-end ?z))

. . .
(6 (- (pc-end ?x) (pc-beg ?x)) max-duration)))
The control strategy must ensure that rules do not trig-
ger the introduction of new aggregates but just add con-
straints (which may rule out some hypothetical ABox due
to unsatisfiability).

In order to be able to assert aggregate instances also in
cases of partial evidence, it is necessary to provide ‘‘partial
queries’’ for subsets of parts, in addition to the ‘‘complete
query’’ for all parts of the aggregate. For the cover in our
example, one could generate queries involving any two of
the three parts of a cover. For aggregates with many parts,
the number of possible queries could become very large,
however, and additional considerations are required to
control query invocation. This points to the need of a pref-
erence measure based on the expected success of a query.
This is the subject of the next section.

6. Preferred models for scene interpretation

It has been shown at several points in the previous sec-
tions that stepwise interpretation needs guidance for select-
ing the most ‘‘plausible’’ or preferred partial interpretation
among alternatives. In AI, various approaches have been
developed to augment the knowledge base with preference
rules of some sort [3]. In earlier work we have explored
extensions of DLs using default rules [52]. The main draw-
back of rule-based approaches is the need to handcraft the
rules, so it is worthwhile to look for preference measures
which can be generated from general principles or can pos-
sibly be learnt. This has led us to investigate probabilistic
approaches and ways to combine probabilistic information
with a structured knowledge base.

There exist several approaches for merging DLs and
probabilities, motivated partly by interest to fuzzify crisp
concept membership [53], partly by the goal to replace
Bayesian Network nodes by structured expressions
[54–56]. Our interest is to embed aggregates and their parts
in a Bayesian Network while maintaining the crisp logical
framework, so the latter category of work is relevant for us.

Our basic idea is to compare alternative interpretation
steps by the probabilities of the resulting (partial) interpre-
tations given current evidence, and to choose the interpre-
tation step which maximises this probability. Intuitively,
the probability of a particular scene follows from statistics
about scenes in a given domain, and it is not implausible to
assume that such statistics can be obtained, at least quali-
tatively. For example, the statistics would tell that in a
table-laying scene a saucer is more likely to be part of a
cover than part of a candlestick. Similarly, typical locations
of cutlery relative to a plate could be distinguished from
less typical locations. Obviously, relating conceptual scene
models to experiences also allows to investigate how these
models could result from learning. This connection to a
learning scenario is intended and first results on learning
spatio-temporal aggregates are reported in [57].

Let us go one step further and assume that the cases giv-
ing rise to the statistics are available in a case-base. Then a
partial interpretation can be viewed as a set of assertions
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which matches a subset of the cases in the case-base.
Turned into a query of the RACER query language nRQL,
the partial interpretation would retrieve this subset from
the case-base. Hence, the probability of a partial interpre-
tation can be viewed as the fraction of cases matching
the interpretation. Furthermore, preferring an interpreta-
tion step which leads to a most probable interpretation
means preferring the interpretation which is least restrictive
regarding the number of remaining cases. Note that this is
a strategy of least commitment.

Different from approaches which try to model the space
of interpretations by a Bayesian Network [58,59] with
aggregate nodes ‘‘causing’’ part nodes, we model a scene
probabilistically at the level of primitive visual events pro-
vided by the GSD. Descriptions at higher abstraction levels
are assigned probabilities according to the constituting
primitive events. This motivates the following probabilistic
structure for aggregates:

Each aggregate is described probabilistically in terms of a
joint probability distribution (JPD) over part features
(‘‘import features’’) and a JPD over aggregate features
(‘‘export features’’) which are derived from the part features
(Fig. 10). For example, the aggregate ‘‘cover’’ is described
probabilistically by a JPD over part features such as loca-
tion, size and colour, and a JPD over the export features of
a cover, such as size and location of an enclosing rectangle.

The JPDs are fragments as each JPD only represents
probabilities for the subspace of features for positive occur-
rences. So if the aggregate in Fig. 10 describes a cover, then
P(B) is actually the fragment describing P(B, cover = yes).
This is equivalent to specifying the prior P(cover = yes)
and the conditional P(Bj cover = yes). Similar structures
have been proposed in [60] and [61].

There are no particular independency assumptions
about part features within a single aggregate. However it
is assumed that dependencies between different aggregates
can be modelled exclusively with export features which
then describe the aggregates as parts in a higher-level
aggregate. For example, a ‘‘romantic-cover’’ could be
defined as an aggregate consisting of a cover and a candle-
scene

lonely-dinner cluttered-table

cover

cv-plate cv-cup

plate-view phys-plate

cv-saucer

candlestick

cs-saucer cs-candle

saucer-view phys-saucer

saucer

?

Fig. 11. Partial interpretation with two choices for assigning the saucer to
an aggregate. Dotted lines denote specialisations, solid lines parts.
stick. Then it is assumed that the export features of cover
suffice to model dependencies between the candlestick
and all parts of the cover.

As a consequence, the probabilistic dependencies
between aggregates remain tree-shaped when partial inter-
pretations are constructed from several aggregates. Within
an aggregate, however, the JPD may not always be repre-
sentable by a tree-shaped Bayes Net, as typical dependen-
cies in our table-setting scenario show. This increases the
computational complexity, but it is limited by the number
of parts and features combined in one aggregate.

To compute a measure of preference for an interpreta-
tion decision, for example of a part–whole-reasoning step,
the probabilities of competing choices given evidence and
context information are computed by a propagation algo-
rithm similar to inferencing in a tree-shaped Bayesian Net-
work [62] except of the structures within aggregates. It is
beyond the scope of this contribution to present the infer-
ence procedure in detail. Instead, we will illustrate a typical
preference computation by an example.

Consider a scene with a plate and a saucer as visual evi-
dence, and context knowledge to the effect that a lonely-
dinner table has been laid (Fig. 11). Let us assume that
the current interpretation step is to assign the saucer either
to the aggregate ‘‘cover’’ or the aggregate ‘‘candlestick’’.
Hence the probabilities of the two alternatives must be
compared:

P(alt1) = P(cv-saucer = saucer j lonely-dinner = yes,
plate-view, saucer-view)
P(alt2) = P(cs-saucer = saucer j lonely-dinner = yes,
plate-view, saucer-view)

Depending on the visual evidence, in particular on the
locations of plate and saucer, and the JPD relating cover
and candlestick in the aggregate cover, one alternative will
be more likely than the other and determine the interpreta-
tion step.

Summarising this section, we have sketched a probabi-
listic inference scheme which provides preferences for
choices left open by consistency-based interpretation.
While probabilistic inferencing for scene interpretation
has been proposed before, the new aspect in this research
is the combination of probabilistic information with
logic-based knowledge representation.

7. Conclusions and future research

We presented a conceptual framework for knowledge-
based scene interpretation and examined how it could be
realised with a DL system (Section 4). It has been shown
that the the conceptual structure of multiple object occur-
rences, in particular temporal and spatial relations, can be
represented using concept expressions and concrete domain
constraints (Section 5.1). Interpretation results are encoded
as satisfiable ABoxes (Section 5.2). ABoxes are generated by
applying a set of generic construction operators using a cer-
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tain control strategy (see Section 5.2). Queries for ABoxes
are part of the control strategy for constructing hypotheses
(Section 5.3). In addition we demonstrate that unwanted
interpretations can be ruled out by applying a set of rules
that, in addition to the TBox axioms, further restricts the
set of satisfiable ABoxes (or possible interpretations).

Instead of extending the expressivity of a DL language
for the sake of more expressive TBox definitions, we use
a more expressive query language as a tool for scene inter-
pretation. As the example of RACER’s query language
nRQL shows, feature chaining and other requirements
for scene interpretation can be expressed intuitively and
operationalised efficiently by a query or rule-based system
which imposes additional constraints on ABox individuals.
This opens up a way for accomplishing scene interpretation
with the combined power of concept definitions and
queries.

It has also been shown that the knowledge-based frame-
work leaves several degrees of freedom regarding the
selection of possible interpretations. A probabilistic
approach has been sketched which provides guidance by
preferring the most probable interpretation at choice points
in the interpretation process. Further research on combin-
ing the probabilistic information with the conceptual units
of the knowledge representation system is in progress.

The engineering-driven approach that we pursue in this
article will ensure that practical experiments are possible
with the RACER system in the very near future.
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Theorie zur rechnergestützten Analyse von Bildern, Dissertation,
DISKI 196, infix, 1999.

[16] E. Di Sciascio, F.M. Donini, M. Mongiello, A description logic for
image retrieval, in: E. Lamma, P. Mello (Eds.), Advances in Artificial
Intelligence (AI*IA 99), LNCS, Springer, 1999.

[17] J. Barwise, J. Perry, Situations and Attitudes, Bradford, 1983.
[18] F. Baader, B. Hollunder, Embedding defaults into terminological

representation systems, J. Autom. Reasoning 14 (1995) 149–180.
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