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Abstract

In this paper, we tackle the problem of retrieving videos
using complex natural language queries. Towards this goal,
we first parse the sentential descriptions into a semantic
graph, which is then matched to visual concepts using a
generalized bipartite matching algorithm. Our approach
exploits object appearance, motion and spatial relations,
and learns the importance of each term using structure pre-
diction. We demonstrate the effectiveness of our approach
on a new dataset designed for semantic search in the context
of autonomous driving, which exhibits complex and highly
dynamic scenes with many objects. We show that our ap-
proach is able to locate a major portion of the objects de-
scribed in the query with high accuracy, and improve the
relevance in video retrieval.

1. Introduction
One of the fundamental challenges in video search is to

be able to perform retrieval given a semantic query. Con-

sider the following example, where a user wants to retrieve

a movie she has seen but she remembers neither the title nor

the authors. She has, however, a vivid memory of a partic-

ular scene. Thus she enters the following description in a

search engine: “A man is sitting on the staircase. Suddenly
a car from the twenties rushes by and picks him up. That is
the night he meets Ernest Hemingway.” The top queries re-

turned are pictures of Chiang Mai and Steve Jobs. But, what

she really wanted is a scene from “Midnight in Paris”.

Understanding images semantically is key in order to re-

trieve relevant candidates for these complex queries. How-

ever, semantic parsing of images is an extremely difficult

task. Despite decades of research, the performance of visual

recognition algorithms is still rather low. To improve recog-

nition systems, additional information in the form of depth

data [18], contextual models [14] or video can be used.

In this paper, we are interested in performing semantic

retrieval of videos in the context of autonomous driving.

Retrieval of relevant events is particularly beneficial in this

setting due to the abundance of available data, e.g. after a

day of capture. In particular, semantic retrieval in this con-

text has applications in improving driver safety, studying

traffic congestion as well as building autonomous systems.

A white van is moving in front of 
me, while a cyclist and a pedestrian 

is crossing the intersection. 

van cyclist pedestrian

movewhite

in-front-of-me

cross

at-intersectionsemantic graphs

Figure 1. This figure shows a video frame and the associated de-

scription. Our approach constructs semantic graphs to capture the

semantic structure of the description, and infers the matching be-

tween the nouns and objects detected in the video. The action and

relative positions of the objects will also be taken into account and

matched with the verbs and adverbs in the sentence.

Towards this goal, we developed an approach that first

parses the videos semantically by means of object detec-

tion, tracking, and ego-motion estimation, all in 3D. As il-

lustrated in Fig. 1, given a complex query, we first parse the

description into a semantic graph, which is then matched to

the visual concepts using a generalized bipartite matching

algorithm. This enables exact inference via a linear pro-

gram. Our approach takes advantage of object appearance,

motion, and spatial relations, and learns the importance of

each energy term using structure prediction.

We demonstrate the effectiveness of our approach in

the context of videos captured from an autonomous driv-

ing platform. These are particularly interesting as seman-

tic queries can contain temporal as well as spatial informa-

tion about multiple objects and “stuff” (e.g., trees, build-

ings) present in the scene. Towards this goal, we asked

annotators to partition the videos from the KITTI tracking

benchmark [9] into possibly overlapping segments contain-

ing interesting activities, and provide natural sentential de-

scriptions of those activities. These serve as queries for our

semantic search. In a long video sequence, our approach is

able to locate a major portion of the objects described in the

query with remarkably high accuracy (60% vs below 20%
for the baseline). It also substantially improves the rele-

vance of the retrieved segments in our challenging setting.

The contributions of this work consists of three aspects.
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First, we consider a new problem that is fundamentally dif-

ferent from traditional video retrieval tasks. Most previous

work on video retrieval find relevant videos given a query,

while we focus on matching individual words in the query to

specific objects (i.e. a tracklet of 2D boxes) participating in

sub-events in highly dynamic and complex scenes. Second,

we collect a new dataset for semantic retrieval, which pro-

vides lingual descriptions for video segments and includes

detailed time-stamped associations between nouns and vi-

sual objects. This distinguishes it from those used in tradi-

tional video retrieval applications (e.g. TRECVID). Third,

we develop a new framework, where we construct seman-

tic graphs from textual descriptions, formulate the problem

as graph matching allowing efficient exact inference, and

explicitly exploit both spatial and semantic relations.

2. Related Work

Text that appears jointly with images usually contains

useful information for visual analysis. In the past decade,

utilizing textual description to help tasks such as im-

age/video retrieval, has become an active research area.

Relevant work generally falls into several categories, which

we roughly classify into video retrieval and joint modeling.

Video Retrieval: With the explosive growth of online

videos, video search and retrieval has become a hot topic in

computer vision. In their seminal work, Sivic and Zisser-

man described Video Google [19], a system that retrieves

videos from a database via bag-of-words matching. Lew et
al. [13] reviews earlier efforts in video retrieval, which, sim-

ilar to content-based image retrieval, mostly rely on feature-

based relevance feedback or similar methods.

Recently, concept-based methods have emerged as a

popular approach to video retrieval. Snoek et al. [20] pro-

posed a method based on a set of concept detectors, with

the aim to bridge the semantic gap between visual features

and high level concepts. The importance of concepts have

also been recognized by other researchers [25]. Since then,

a series of methods have been developed to improve video

concept detection [1, 21, 5]. It is important to note that most

current work on concept-based retrieval focuses on min-

ing characteristic concepts or improving the performance

of concept detectors. The spatial and semantic relations be-

tween concepts have rarely been explored in practice.

Joint modeling of Images and Text: Several genera-

tive models that couple modeling of text and images were

studied in [3], including a multi-modal extension of Latent

Dirichlet Allocation. Iyengar et al. [11] proposed a proba-

bilistic model that relates words and image parts through an

intermediate layer that captures common concepts. Mod-

els in this category usually rely on strong assumptions,

e.g. words in a document are exchangeable, and thus ne-

glect important relations between words.

Recently, Matuszek et al. [15] proposed a joint model of

language and perception that exploits semantic parsing of a

sentence to align objects to classifiers. The primary goal of

this work is to classify attributes of RGBD objects. Fidler

et al. [8] developed a CRF model that incorporates parsed

sentences for holistic scene understanding, and extended it

to aligning text-to-images [12]. In recent years, many ap-

proaches have been developed to generate image [6, 27, 17]

or video descriptions [2]. For instance, Rohrbach et al. [17]

presented a system, which uses a CRF to capture relations

between image components and generates the description

through statistical machine translation.

3. A New Video Dataset for Semantic Search
In this paper, we are interested in semantic search in the

domain of autonomous driving, where rich visual and con-

textual information (e.g., video, stereo, ego-motion, road

information, traffic patterns) can be exploited. Towards this

goal, we adopted the KITTI benchmark [9] and collected

natural lingual descriptions for the training subset of the

tracking benchmark, which comprises 21 videos of length

381 frames on average, for a total of 8008 frames.

We used in-house annotators to ensure quality. We asked

them to describe whatever (sub)events they felt were rele-

vant for someone driving a car. This could include pick-

ing single static frames, a video segment or the video as a

whole. Towards this goal, we created an annotation tool that

allowed the annotators to watch a video and select a partic-

ular time chunk by choosing a beginning and an end frame.

For each time chunk they wrote a description, and were

asked to link the objects/stuff they were talking about to the

image by either placing a bounding box around the object

or creating a segmentation mask. This link could be done

in any of the frames in the described time chunk. All ob-

jects that were annotated in this way and are part of KITTI

classes (cars, vans, trucks, pedestrians, cyclists) were then

matched to KITTI ground-truth, which provided us with 3D

GT trajectories across each video segment.

Six annotators were employed to label the videos, three

annotators per video in order to capture a wide variety of

events. Our new dataset comprises of 443 descriptions,

which contain 520 sentences and 3520 words in total. These

sentences talk about 1068 objects in the videos.

It is worth emphasizing this database is very challenging:

Video segments are visually similar and difficult to distin-

guish; descriptions provided by the annotators are generally

quite concise, and sometimes ambiguous. This may be seen

from the examples we provide in the supplemental material.

Small training set size and difficulties in tracking also limits

the performance improvement.

4. Visual Semantic Search
In order to be able to perform visual semantic search, we

need to establish correspondences between entities in the
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DC HM MCF SSP HM+MCF HM+SSP MCF+SSP

recall (%) 22.4 32.3 30.0 27.4 35.0 36.1 34.2

# tracklets 3444 2678 1326 1084 3514 3503 2030

Table 1. Recall of tracking methods for our domain vs number of

tracklets (counted over all the video segments).

text and objects/stuff in the visual scene. Towards this goal,

we exploit a variety of cues including object appearance,

motion, and relations/interactions between objects and the

scene. Our approach proceeds as follows: we first detect

and track candidate objects in each input video fragment,

and characterize each object track with a variety of cues

(e.g. appearance, motion). We then construct a graph rep-

resentation to capture the semantic structure of the textual

description given as query. Finally, we develop a matching

algorithm, which takes into account both visual cues and

spatial/semantic relations, to infer correspondence between

the entities described in the query and the objects detected

in the video. It is important that, in this process, we allow

some entities to not match anything as we might have false

negatives and false positives in our visual set of candidates.

4.1. Extracting Candidates from Video Segments

To generate tracks in our videos we utilize the MCF [28]

and SSP [16] trackers (which were provided to us by [9]), as

they have relatively high recall. We say that a ground-truth

(GT) trajectory is recalled by a tracklet if they overlap more

than 50% in space and time. That is, overlap in a frame is

said to be correct if the two bounding boxes overlap more

than 50% IOU, and a tracklet is correct if the number of

correct frames divided by the number of frames spanned by

both the GT and the candidate is higher than 50%. Note that

this is a rather strict criteria, but reasonable in our setting

as our system depends on having longer and quality tracks

with enough discriminative information to classify actions.

Both MCF and SSP are tracking-by-detection ap-

proaches, which first run DPM [7] and then find an optimal

path through the detections. In the KITTI benchmark [9],

the detection performance (AP) for cars, pedestrians, and

cyclists are 56.5%, 39.4%, and 29.9%, respectively. Note

that the benchmark for cars measures performance at 70%

IOU. This low accuracy reflects the difficulty of the dataset,

and limits the success of the tracking methods. We took tra-

jectories from both methods, and performed non-maxima

suppression to remove redundant tracks.

4.2. Constructing Semantic Graph from Text

We use a graph representation to capture the semantic

structure of a descriptive sentence, which we refer to as the

semantic graph. As illustrated in Fig. 2, each node of a se-

mantic graph corresponds to a word with specific meaning

(e.g. car, pedestrian, and walk), which may be a noun, a

verb, an adjective, or an adverb. Nodes are connected by

different types of edges expressing the semantic relations

between them. The procedure for constructing a semantic

There is a orange van parked on the street on the right.

Parse Tree Semantic Graph

parse

transform + distill

1-there

2-is

expl

5-van

nsubj

3-a 4-orange

det amod

6-parked

partmod

9-street

prep_on

8-the

det

12-right

prep_on

11-the

det

5-van

6-park

act

3-a

cardinal

4-orange

color

9-on-street

advmod

12-on-right

advmod

Figure 2. This figure shows a parse tree of a sentence (on the left)

and the constructed semantic graph (on the right). We can see

that the semantic graph captures the key semantic structure of the

sentence: a van is parking, whose color is orange. The action of

parking is modified by two adverb phrases: on-street and on-right.

graph from a text description comprises three steps: pars-

ing, transforming and distilling, which we describe next.

Parsing: We use the Stanford parser [22] to obtain a parse

tree of the sentence, in which each word is attached with a

part-of-speech tag that specifies its syntactic role.

Transforming: The parse tree of a sentence in its original

form is difficult to manipulate. Many grammatical struc-

tures in the trees are not pertinent to visual analysis. For ex-

ample, in a sentence “there is a car in front of me”, the part

“there is” is not relevant to our purpose, while the phrase

“in front of” needs to be compressed into a single com-

pound preposition “in-front-of” to convey a certain spatial

relation. Specifically, we devise a series of transformation

rules by carefully examining the descriptions in the train-

ing set, and apply them to the parse trees in order to obtain

simplified syntactic graphs. We refer the reader to the sup-

plementary material for more details.

Distilling: This step generates a semantic graph by select-

ing relevant nodes and edges from the transformed syntac-

tic graph. More specifically, we classify relevant words into

four categories: entities, actions, cardinalities, colors, and

action modifiers. Each category has several classes: we use

five entity classes (cars, vans, trucks, pedestrians, and cy-
clists), fifteen action classes (such as move, turn, park, walk,

etc), as well as other classes for modifiers. We refer the

reader to the supplemental material for a full list. We use

synonyms obtained from WordNet to match the words to

our classes. Nodes that match our classes are selected for

insertion into the semantic graph, where they are associated

with a class tag. Edges that connect the selected nodes are

also preserved in the distilled graph.

Generally, the algorithm to construct semantic graphs,

which involves both transforming and distilling, is based on

a series of manually derived rules. Due to page limits, we

are unable to present all these rules in the paper. A detailed

documentation will be provided as we release the codes.
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4.3. Matching Text and Video Segments

The primary task in this work is to match the entities in

a semantic graph to the object tracks extracted from a video

clip. We formulate this as a generalized bipartite matching
problem. In particular, our approach tries to match entities

in a textual description, which we refer to as sources, to the

object tracks, which we refer to as sinks. To account for plu-

ral forms, e.g. ”two cars” and ”several people”, we allow

each source to be matched to one or multiple sinks, depend-

ing on the associated cardinality modifier. It is also possible

that some entities mentioned in text have been missed by

our visual detection/tracking algorithm, and thus no match

exists. We thus introduce a no-obj sink, which allows se-

mantic entities to be matched to none of the visual objects.

Suppose we have m sources and n sinks, which are re-

spectively indexed using u and v. We use yuv ∈ {0, 1} to

denote whether the source u is matched to the sink v, and

huv to denote the score of matching u and v. We formulate

the matching problem as a LP as follows:

max
y

∑
uv

huvyuv (1)

s.t.
∑
v

yuv = su, ∀u = 1, . . . ,m

∑
u

yuv ≤ tv, ∀v = 1, . . . , n

0 ≤ yuv ≤ 1, ∀u = 1, . . . ,m, v = 1, . . . , n− 1

where y = (y11, · · · , ymn) denotes the set of all matching

indicators that we are optimizing over, and su, tv are the

capacity for the source u and sink v respectively. Partic-

ularly, the different su are set according to the cardinality

modifier associated with the corresponding noun, while tv
is generally set to 1, as each object in a video clip is very

rarely referenced by more than one instance in a sentence

(the so called coreference resolution), except that when v
refers to the no-obj sink, i.e. v = n, we set tv =

∑
u su,

thus allowing all sources to be matched to it.

This problem has at least one feasible solution (yuv ≡ 0)

when all su and tv values are non-negative. Furthermore,

it can be shown that all basic solutions (i.e. vertices of the

domain) for this problem are integer-valued when su and tv
are all integers. Hence, in our specific setting, the optimum

for this LP must be an integer-valued solution.

We would like the scoring function huv to utilize differ-

ent sources of information, e.g., object appearance, motion,

prior knowledge. We thus define the score of an edge to be

a linear combination of scores coming from different cues:

huv =
K∑

k=1

wkf
(k)
uv = wT fuv. (2)

Here, K is the number of all scoring channels (e.g. appear-

ance, motion, spatial relations), and f
(k)
uv is the k-th match-

ing score between u and v. Note that we learn the weights

w = (w1, · · · , wK) using structure prediction from train-

ing data (see Section 4.5). We now describe the different

scores in more detail.

4.4. Visual Scores

Appearance: Our object appearance scores are based on

the deformable part-based model (DPM) [7]. Specifically,

for each object track we take a bounding box in every other

frame and run a DPM for each object class of interest in

order to predict how likely the patch belongs to particular

class (e.g. cars, pedestrians). Here, we allow the root fil-

ter to be adjusted in position and scale, under the constraint

that the placement overlaps with the original bounding box

at least 60% IOU. For each class we take the score corre-

sponding to the highest scoring placement of the root and

parts. We transform the scores into positive numbers via a

logistic function with unit scale. The final score for the full

track w.r.t. each object class is obtained by averaging the

class scores over all selected frames.

Motion: Consider a description “a car turns left”, where

the “car” is associated with an action “turn”, which is mod-

ified by an adverb “left”. To match this car to a trajectory,

it is useful to test whether the trajectory contains a left turn.

Further, to cope with descriptions like “a car is parking” or

“a speeding car”, we also need to reason about the absolute

speed of the objects in the world. To this end, we exploit

2D and 3D motion information. As 2D features we use: (1)

Scale factor: defined between bounding boxes in consecu-

tive frames as area(boxi)/area(boxi−1). (2) Difference in
foot position:

(
foot(boxi)−foot(boxi−1)

)
/height(boxi),

where foot denotes the middle point of the lower side of the

box, representing the contact point between the object and

the ground. We also use absolute position of the foot nor-

malized by the image size as a feature. (3) Box dimensions:

width and height of the box normalized by image size.

Note that all the features defined between consecutive

frames are in fact computed between the current and a few

past frames (we used 4 frames), averaged to smooth out the

noise in the tracking and depth estimation algorithms. We

also use a simple duration feature, where the duration of the

track is divided by the total length of the video segment.

This helps us score lower shorter and non-salient tracks.

To extract 3D motion features, we project each 2D

bounding box to 3D using depth information. In particular,

we take a smaller centroid region within the box and find

a median of the (non-zero) depth values, computed using

StereoSLIC [26]. We also compute visual odometry [10]

to transform the 3D frame’s local coordinates into a global

coordinate system across the full video. We define the fol-

lowing 3D motion features in bird’s eye perspective. (1) Ve-
locity: We use the displacement vector in 3D between con-

secutive frames, its magnitude and angle. Note that this dis-

placement compensates for the ego-motion and thus mod-
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els object’s absolute movement. (2) Curvature: We use the

curvature of the trajectory, computed by fitting a third-order

polynomial to the curve. (3) Shape-context [4]: We form a

shape context descriptor over the full trajectory to capture

particular shapes of the object’s movement.

Relative motion: Positions of objects are often described

relative to the observer, e.g. “in front of me”, “on my left”,

“is overtaking me”. Note that by “me” the annotators were

typically referring to the ego-car. To exploit such phrases,

we use the following features to characterize the motion and

position of an object relative to the ego-motion. (1) Velocity:

We use the difference between the object’s and ego veloc-

ities, forming a 3-dim vector, as well as the relative angle

between both moving directions. (2) Depth: We use the

difference in depth between the object and the ego-car. (3)

Position: We use the difference in X values corresponding

to the horizontal location of the object and ego-car in 3D,

helping us distinguish, e.g. “to-right-of-me”.

Note that each of the features (appearance, motion and

relative motion) is defined per frame. To turn them into

a descriptor for the entire track (irrespective of its length)

we split the trajectory in K non-overlapping segments (we

used K = 3), average each feature in each segment, and

pool them together to form a K-dimensional feature. All

features are then concatenated to form the final descriptor.

4.5. Learning

We learn the weights w for score combination using a

structural SVM [24, 23]. In what follows, we first present

the learning problem, and then derive a simplified learning

algorithm by exploiting the conciseness of our model.

4.5.1 The Learning Problem

We formalize the learning problem as follows:

min
ξ,w

1

2
‖w‖2 + C

∑
i

ξi (3)

s.t. ξi ≥ wT (φi(y)− φi(y
(i))) + Δ(y,y(i)), ∀y ∈ Y(i).

ξi ≥ 0, ∀i = 1, . . . , N.

Here, y(i) is the ground-truth matching for the i-th instance,

φi(y) a vector of matching scores of y, Δ(y,y(i)) the loss

function, and N the total number of training examples. In

particular, φi(y) can be expressed as

φi(y) = [φ
(1)
i (y), . . . , φ

(K)
i (y)], with φ

(k)
i =

∑
uv

f (ik)
uv yuv.

Note that the domain Y(i) encodes the constraints that y has
to satisfy, and is different for each example, with

Y(i) =

{
y :

∑
v

yuv = s(i)u ,
∑
u

yuv ≤ t(i)v , 0 ≤ yuv ≤ c(i)uv

}
.

Here, cuv equals su when v = n (the no-obj sink), or 1
otherwise. These constraints are the same as those in Eq.(1).

We use the Hamming loss as the loss function, which is

decomposable as

Δ(y,y(i)) =
∑
uv

�(yuv �= y(i)uv ) = a(i) −
∑
uv

yuvy
(i)
uv ,

where a(i) �
∑

u c
(i)
u is the total number of matching

edges, which is a constant.

4.5.2 Simplified Learning by Leveraging Conciseness

We take advantage of the decomposable property of the con-

straints to derived a simplified learning algorithm. The first

set of constraints in Eq.(3) can be rewritten as:

wTφi(y
(i)) ≥ max

y∈Y(i)

(
wTφi(y) + Δ(y,y(i))

)
− ξi,

This model is called concise [23] if there exists a function

f̃i that is concave in μ and a convex set U (i) such that

max
y∈Y(i)

(
wTφi(y) + Δ(y,y(i))

)
= max

μ∈U(i)
f̃i(w,μ) (4)

Proposition 1 Our model is concise with

f̃i(w,μ) = a(i) +
∑
uv

(
wT f (i)uv − y(i)uv

)
μuv. (5)

and the constraint μ ∈ U (i) can be written as
∑
v

μuv = s(i)u ∀u,
∑
u

μuv ≤ t(i)v ∀v,

0 ≤ μuv ≤ c(i)uv ∀u, v.

Note that proofs of propositions are provided in the sup-

plementary material. With Eq.(5), the Lagrangian dual of

maxν∈U(i) f̃i(w,μ) is given by

ρi = a(i) +
∑
u

λus
(i)
u +

∑
v

ηvt
(i)
v +

∑
uv

νuvc
(i)
uv , s (6)

with constraints

wT f (i)uv ≤ y(i)uv + λu + ηv + νuv, ηv ≥ 0, νuv ≥ 0 ∀u, v.

Combining the optimization over w and that over λ, η,

and ν, we finally get the following learning problem:

min
w,ξ,λ,η,ν

1

2
‖w‖2 + C

∑
i

ξi (7)

s.t. wT z(i) ≥ ρi(λ,η,ν)− ξi, ∀i = 1, . . . , N,

wT f (i)uv ≤ y(i)uv + λu + ηv + νuv, ∀u, v, i
ηv ≥ 0, νuv ≥ 0 ∀u, v, i.
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K rand noun verb adv n.+v. v.+a. all

GT 1 .0397 .0613 .0873 .0967 .1061 .1274 .1486

2 .0794 .1250 .1533 .1651 .1910 .2288 .2335

3 .1191 .1840 .2052 .2217 .2712 .3160 .3467

5 .1985 .3042 .3443 .3514 .4057 .4481 .4693

real 1 .0425 .0755 .0566 .0889 .0836 .1078 .0943

2 .0849 .1375 .1132 .1321 .1429 .1698 .1779

3 .1274 .1914 .1752 .1698 .2022 .2264 .2399

5 .2123 .2722 .2857 .2722 .3181 .3342 .3208

Table 3. Average hit rates of video segment retrieval.

K rand noun verb adv n.+v. v.+a. all

GT 1 .1673 .2571 .3029 .2800 .3286 .3429 .3629

2 .1673 .2686 .2771 .2600 .3400 .3386 .3557

3 .1673 .2790 .2714 .2610 .3410 .3267 .3533

5 .1673 .2749 .2640 .2589 .3280 .3109 .3383

real 1 .1673 .2680 .2484 .2876 .2810 .2941 .2941

2 .1673 .2647 .2304 .2484 .2843 .2680 .2908

3 .1673 .2702 .2462 .2495 .2898 .2800 .3017

5 .1673 .2686 .2444 .2477 .2784 .2758 .2869

Table 4. Average relevance of video segment retrieval.

Here, z(i) = [z
(i)
1 , . . . , z

(i)
K ] with z

(i)
k =

∑
uv s

(ik)
uv y

(i)
uv , and

ρi(λ,η,ν) is given by Eq.(6).

We optimize this function using the Gurobi solver. Note

that this optimization is much more efficient than the stan-

dard cutting plane algorithm of [24], as we only have to

solve this QP once to get w, without iteratively adding new

constraints and solving the problem again.

Run-time Complexity: The learning involves solving a

QP problem with K +
∑N

i=1(mi + 1)(ni + 1) and N +∑N
i=1 mini constraints, where mi and ni are the number

of noun entities and the number of object tracks for the i-th
video segment, respectively, K is the dimension of weight

vector, and N the number of video segments. In a typical

video segment, mi and ni are relatively small (less than 10
for most videos). Hence, for large datasets, the problem size

scales linearly as N increases. It takes less than 1 second to

learn w on our training set (using Gurobi). The inference is

an LP problem with mini variables and (mi + 1)(ni + 1)
constraints, and can be solved in the matter of milliseconds

on a standard laptop. Hence, the proposed algorithm is well

suited for real-time applications.

5. Experimental Evaluation
We tested the proposed approach on the dataset intro-

duced in Sec. 3. In particular, we performed experiments in

two applications: (1) find the objects described in a query,

and (2) retrieve the video segment relevant to a query. These

applications demonstrate our method’s ability in both se-

mantic analysis and video retrieval.

5.1. Finding Objects of Interest

In the first application, we are interested in locating the

objects, described by a query, in a video. Specifically, we

partitioned the 21 videos into disjoint training and test sub-

sets. The training set comprises of 13 videos with 296
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Figure 4. The bar charts that compare the F1-scores obtained using

different methods under various configurations.

queries, in which 698 objects are described; while the test

set comprises of 8 videos with 147 queries, describing 370
objects. We measured performance with recall, precision,

and F1-scores. We used the proposed method to infer the

object-id of each tracklet found in the video, and compared

it with the ground-truth trajectory associated with the query

object. A track is regarded as a correct match if its bound-

ing boxes overlap with ground-truth by more than 50% IOU

for at least half of its time span. Then, recall1 is the fraction

of mentioned objects that are correctly matched, precision
the proportion of correct matches in all detected tracks, and

F1-score the harmonic average of precision and recall.

As baseline we implemented an algorithm which instead

of solving the LP problem, uses feature-based classification

scores to associate each detected object track to the highest

scoring noun-entity if the score is above a certain thresh-

old. This threshold is determined empirically via cross-

validation, and is chosen as the one achieving highest over-

all F1-score. We call this method BASE and we refer to our

proposed method as GBPM (Generalized Bipartite Match-
ing). Fig. 3 shows the several results obtained using GBPM.

We tested each method on two scenarios: when employ-

ing ground-truth trajectories, which we refer to as GT, and

those computed using DPM and visual trackers, which we

refer to as Real. Comparison of performance between these

two settings shows how detection and tracking errors influ-

ence the matching performance. Moreover, to identify the

contributions of different components, we compared differ-

ent combinations of features for both methods. Specifically,

we tested six different configurations: only-noun, only-verb,

only-adv, noun+verb, verb+adv, and noun+verb+adv.

1Node: this recall is computed w.r.t. the only those objects actually

mentioned in the queries. This recall value is different from the one that we

used to evaluate trackers in Sec 4.1, which is computed w.r.t. all trajectories

in the KITTI dataset.
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BASE REAL

noun verb adv n.+v. v.+a. all noun verb adv n.+v. v.+a. all

recall .8777 .5897 .2170 .6884 .2485 .6726 .4379 .5700 .5562 .6391 .6430 .6765

GT prec. .2483 .5182 .7006 .3721 .6632 .4906 .4302 .6021 .5434 .6243 .6257 .6583

F1 .3871 .5517 .3313 .4830 .3615 .5674 .4340 .5856 .5497 .6316 .6342 .6673

recall .5301 .5137 .5246 .5246 .5191 .5301 .3251 .4563 .3497 .5328 .4754 .5710

real prec. .1102 .1068 .1091 .1091 .1080 .1102 .2333 .6007 .2485 .5357 .5743 .5633

F1 .1825 .1769 .1806 .1806 .1787 .1825 .2717 .5186 .2906 .5342 .5202 .5672

Table 2. This table lists the performance in terms of recall, precision, and F1-scores, obtained using both BASE and GBPM methods.

A bicyclist is biking on the road, to the right of my car. 
A white van is driving at safe distance in front of me.

There are multiple cars parked on the left side of the street and 
one blue car parked on the right side of the street.

There is a car in front of us. 
A couple of cars are in the opposite street.

Some people are sitting and some pedestrians are on right sidewalk. 
Some pedestrians on left sidewalk, and a van is parked. 

And I see a cyclist.
Figure 3. Results on several scenes obtained using GBPM. Here, each video segment is shown together with the descriptions, where words

are highlighted, with different colors to indicate their different roles (e.g. nouns, verbs, etc). Trajectories that match to the nouns in the

descriptions are shown using a sequence of boxes in gradually varying colors.

Table 2 shows several important observations: (1)
GBPM, which seeks the optimal matching under the capac-

ity constraints, consistently outperforms BASE. This can be

seen more clearly in Fig. 4, which shows the F1-scores of

GBPM and BASE in juxtaposition. (2) The performance of

BASE degrades severely when tested on the real trajecto-

ries, where the F1-scores are below 0.2. This suggests that

the BASE method is very sensitive to feature noise, and re-

lies on high quality features. In contrast, the performance

of GBPM degrades much more gracefully in the presence

of noisy features. Such resilience to noise is partly ascribed

to the capacity constrains that we enforce in the LP prob-

lem. (3) For both methods, the configurations that combine

multiple features generally work better than those that only

use one feature type. For example, on real trajectories, the

configuration noun + verb achieves an F1-score of 0.534,

higher than those obtained with nouns or verbs alone (which

are 0.272 and 0.519). Additional incorporation of adverbs
further pushes the F1-score to 0.567. These results clearly

indicate that the different features are complementary.

5.2. Retrieving Relevant Video Segments

Next, we consider the application of retrieving the rel-

evant video segment given a text query. This is an even

more challenging problem, as we do not have knowledge

about the correspondence between descriptions and video

segments. Our approach to this problem is to evaluate the

total matching score between the given description and each

video segment as the measurement of the relevance, i.e.,∑
uv huv ŷuv, where ŷuv is the optimal solution to Eq.(1).

Then, we sort the video segments in descending order of

the total matching scores. A good ranking algorithm should

place the most relevant segments to the top of the list.

We measured the performance using two different met-

rics. The first metric is the average hit rate, which is de-

fined to be the relative frequency that the ground-truth seg-

ment is placed at one of the top-K positions of the sorted

list. Table 3 shows the results obtained on both GT trajec-

tories and real ones, under all six configurations. We also

compare them with random guesses. It is evident that our

method yields substantially higher performance. Particu-

larly, it raises the hit-rate by three times when working with

GT trajectories, and two times with real trajectories, across

different settings of K. Also, combining multiple types of

features works better than using individual features alone.

We note that in KITTI videos, a query can be a good

match to multiple segments. For example, a sentence “a car
is moving forward” can match pretty well to many segments

in a typical traffic video. Taking this into account, we con-

sider another metric for performance assessment, namely
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the average relevance, which is defined as the average pro-

portion of the top-K segments that are truly relevant. To

provide objective evaluation of the relevance of the results,

we presented pairs of queries and video segments to inde-

pendent annotators, and asked them to judge whether they

are relevant or not. Table 4 shows the average relevance ob-

tained on both GT and real trajectories with different con-

figurations. Again, we observe that the proposed method

considerably increases the relevance of the retrieved video,

which clearly indicates that the total matching scores, which

we used as the criteria in retrieval, are positively correlated

with semantic relevance. The results in this table also cor-

roborate our previous observation that combining comple-

mentary features improves the retrieval accuracy.

6. Conclusions
We have tackled the problem of semantic retrieval of

videos using complex natural language queries, and demon-

strated that our approach is able to locate objects in the

video with high accuracy by parsing the lingual descrip-

tions into a semantic graph that is then matched to the vi-

sual concepts by solving a linear program. In the future, we

plan to further improve the performance by incorporating

additional features and relations for both text and videos.

We also consider connecting descriptions for different video

segments to provide a coherent interpretation of an entire

video and support context-aware retrieval.
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