
Inferring and Executing Programs for Visual Reasoning

Justin Johnson1 Bharath Hariharan2 Laurens van der Maaten2

Judy Hoffman1 Li Fei-Fei1 C. Lawrence Zitnick2 Ross Girshick2

1Stanford University 2Facebook AI Research

Abstract

Existing methods for visual reasoning attempt to directly
map inputs to outputs using black-box architectures without
explicitly modeling the underlying reasoning processes. As
a result, these black-box models often learn to exploit biases
in the data rather than learning to perform visual reason-
ing. Inspired by module networks, this paper proposes a
model for visual reasoning that consists of a program gen-
erator that constructs an explicit representation of the rea-
soning process to be performed, and an execution engine
that executes the resulting program to produce an answer.
Both the program generator and the execution engine are
implemented by neural networks, and are trained using a
combination of backpropagation and REINFORCE. Using
the CLEVR benchmark for visual reasoning, we show that
our model significantly outperforms strong baselines and
generalizes better in a variety of settings.

1. Introduction
In many applications, computer-vision systems need to

answer sophisticated queries by reasoning about the visual
world (Figure 1). To deal with novel object interactions or
object-attribute combinations, visual reasoning needs to be
compositional: without ever having seen a “person touching
a bike”, the model should be able to understand the phrase
by putting together its understanding of “person”, “bike”
and “touching”. Such compositional reasoning is a hall-
mark of human intelligence, and allows people to solve a
plethora of problems using a limited set of basic skills [28].

In contrast, modern approaches to visual recognition
learn a mapping directly from inputs to outputs; they do
not explicitly formulate and execute compositional plans.
Direct input-output mapping works well for classifying im-
ages [26] and detecting objects [10] for a small, fixed set of
categories. However, it fails to outperform strong baselines
on tasks that require the model to understand an exponen-
tially large space of objects, attributes, actions, and inter-
actions, such as visual question answering (VQA) [3, 51].
Instead, models that learn direct input-output mappings tend

How many chairs are at the table? Is there a pedestrian in my lane?

Is the person with the blue hat
touching the bike in the back?

Is there a matte cube that has the
same size as the red metal object?

Figure 1. Compositional reasoning is a critical component needed
for understanding the complex visual scenes encountered in ap-
plications such as robotic navigation, autonomous driving, and
surveillance. Current models fail to do such reasoning [19].

to learn dataset biases but not reasoning [7, 18, 19].
In this paper, we argue that to successfully perform com-

plex reasoning tasks, it might be necessary to explicitly in-
corporate compositional reasoning in the model structure.
Specifically, we investigate a new model for visual ques-
tion answering that consists of two parts: a program gener-
ator and an execution engine. The program generator reads
the question and produces a plan or program for answer-
ing the question by composing functions from a function
dictionary. The execution engine implements each func-
tion using a small neural module, and executes the resulting
module network on the image to produce an answer. Both
the program generator and the modules in the execution en-
gine are neural networks with generic architectures; they
can be trained separately when ground-truth programs are
available, or jointly in an end-to-end fashion.

Our model builds on prior work on neural module net-
works that incorporate compositional reasoning [1, 2]. Prior
module networks do not generalize well to new problems,

1

ar
X

iv
:1

70
5.

03
63

3v
1

 [
cs

.C
V

]
 1

0
M

ay
 2

01
7

because they rely on a hand-tuned program generator based
on syntactic parsing, and on hand-engineered modules. By
contrast, our model does not rely on such heuristics: we
only define the function vocabulary and the “universal”
module architecture by hand, learning everything else.

We evaluate our model on the recently released CLEVR
dataset [19], which has proven to be challenging for state-
of-the-art VQA models. The CLEVR dataset contains
ground-truth programs that describe the compositional rea-
soning required to answer the given questions. We find that
with only a small amount of reasoning supervision (9000
ground truth programs which is 2% of those available),
our model outperforms state-of-the-art non-compositional
VQA models by ∼20 percentage points on CLEVR. We
also show that our model’s compositional nature allows it
to generalize to novel questions by composing modules in
ways that are not seen during training.

Though our model works well on the algorithmically
generated questions in CLEVR, the true test is whether it
can answer questions asked by humans in the wild. We col-
lect a new dataset of human-posed free-form natural lan-
guage questions about CLEVR images. Many of these
questions have out-of-vocabulary words and require reason-
ing skills that are absent from our model’s repertoire. Nev-
ertheless, when finetuned on this dataset without additional
program supervision, our model learns to compose its mod-
ules in novel but intuitive ways to best answer new types
of questions. The result is an interpretable mapping of free-
form natural language to programs, and a ∼9 point improve-
ment in accuracy over the best competing models.

2. Related Work
Our work is related to to prior research on visual question

answering, reasoning-augmented models, semantic parsers,
and (neural) program-induction methods.

Visual question answering (VQA) is a popular proxy
task for gauging the quality of visual reasoning systems
[21, 44]. Like the CLEVR dataset, benchmark datasets
for VQA typically comprise a set of questions on images
with associated answers [3, 32, 40, 25, 51]; both ques-
tions and answers are generally posed in natural language.
Many systems for VQA employ a very similar architecture
[3, 8, 9, 31, 33, 34, 45]: they combine an RNN-based em-
bedding of the question with a convolutional network-based
embedding of an image in a classification model over possi-
ble answers. Recent work has questioned whether such sys-
tems are capable of developing visual reasoning capabili-
ties: (1) very simple baseline models were found to perform
competitively on VQA benchmarks by exploiting biases in
the data [18, 50, 11] and (2) experiments on CLEVR, which
was designed to control such biases, revealed that current
systems do not learn to reason about spatial relationships or
to learn disentangled representations [19].

Our model aims to address these problems by explic-
itly constructing an intermediate program that defines the
reasoning process required to answer the question. We
show that our model succeeds on several kinds of reason-
ing where other VQA models fail.

Reasoning-augmented models add components to neu-
ral network models to facilitate the development of rea-
soning processes in such models. For example, models
such as neural Turing machines [12, 13], memory networks
[41, 38], and stack-augmented recurrent networks [20] add
explicit memory components to neural networks to facili-
tate learning of reasoning processes that involve long-term
memory. While long-term memory is likely to be a crucial
component of intelligence, it is not a prerequisite for rea-
soning, especially the kind of reasoning that is required for
answering questions about images.1 Therefore, we do not
consider memory-augmented models in this study.

Module networks are an example of reasoning-
augmented models that use a syntactic parse of a question
to determine the architecture of the network [1, 2, 16]. The
final network is composed of trained neural modules that
execute the “program” produced by the parser. The main
difference between our models and existing module net-
works is that we replace hand-designed off-the-shelf syn-
tactic parsers [24], which perform very poorly on complex
questions such as those in CLEVR [19], by a learnt program
generator that can adapt to the task at hand.

Semantic parsers attempt to map natural language sen-
tences to logical forms. Often, the goal is to answer natural
language questions using a knowledge base [30]. Recent
approaches to semantic parsing involve a learnt program-
mer [29]. However, the semantics of the program and the
execution engine are fixed and known a priori, while we
learn both the program generator and the execution engine.

Program-induction methods learn programs from
input-output pairs by fitting the parameters of a neural net-
work to predict the output that corresponds to a particular
input value. Such models can take the form of a feedfor-
ward scoring function over operators in a domain-specific
language that can be used to guide program search [4], or
of a recurrent network that decodes a vectorial program
representation into the actual program [22, 27, 35, 47, 48,
49]. The recurrent networks may incorporate compositional
structure that allows them to learn new programs by com-
bining previously learned sub-programs [36].

Our approach differs from prior work on program induc-
tion in (1) the type of input-output pairs that are used and
(2) the way the domain-specific language is implemented.
Prior work on neural program interpreters considers simple
algorithms such as sorting of a list of integers; by contrast,
we consider inputs that comprise an image and an associ-

1Memory is likely indispensable in more complex settings such as vi-
sual dialogues or SHRDLU [6, 43].

ated question (in natural language). Program induction ap-
proaches also assume knowledge of the low-level operators
such as arithmetic operations. In contrast, we use a learnt
execution engine and assume minimal prior knowledge.

3. Method
We develop a learnable compositional model for visual

question answering. Our model takes as input an image x
and a visual question q about the image. The model selects
an answer a ∈ A to the question from a fixed set A of
possible answers. Internally, the model predicts a program
z representing the reasoning steps required to answer the
question. The model then executes the predicted program
on the image, producing a distribution over answers.

To this end, we organize our system into two compo-
nents: a program generator, z = π(q), which predicts
programs from questions, and an execution engine, a =
φ(x, z), which executes a program z on an image x to pre-
dict an answer a. Both the program generator and the ex-
ecution engine are neural networks that are learned from
data. In contrast to prior work [1, 2], we do not manually
design heuristics for generating or executing the programs.

We present learning procedures both for settings where
(some) ground-truth programs are available during training,
and for settings without ground-truth programs. In practice,
our models need some program supervision during training,
but we find that the program generator requires very few of
such programs in order to learn to generalize (see Figure 4).

3.1. Programs

Like all programming languages, our programs are de-
fined by syntax giving rules for building valid programs,
and semantics defining the behavior of valid programs. We
focus on learning semantics for a fixed syntax. Concretely,
we fix the syntax by pre-specifying a set F of functions f ,
each of which has a fixed arity nf ∈ {1, 2}. Because we are
interested in visual question answering, we include in the
vocabulary a special constant Scene, which represents the
visual features of the image. We represent valid programs
z as syntax trees in which each node contains a function
f ∈ F , and in which each node has as many children as the
arity of the function f .

3.2. Program generator

The program generator z = π(q) predicts programs z
from natural-language questions q that are represented as a
sequence of words. We use a prefix traversal to serialize
the syntax tree, which is a non-sequential discrete structure,
into a sequence of functions. This allows us to implement
the program generator using a standard LSTM sequence-to-
sequence model; see [39] for details.

When decoding at test time, we simply take the argmax
function at each time step. The resulting sequence of func-

CNN

LSTMAre

there

more

cubes

than

yellow

things

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

Program Generator

greater
than

filter
color

[yellow]

count

filter
shape
[cube]

<SCENE>

<SCENE>

count

Predicted
Program

greater_than

count

filter
shape
[cube]

count

Classifier

Answer: Yes

Execution
Engine

filter
color

[yellow]

Question: Are there more cubes than yellow things?

Figure 2. System overview. The program generator is a
sequence-to-sequence model which inputs the question as a se-
quence of words and outputs a program as a sequence of functions,
where the sequence is interpreted as a prefix traversal of the pro-
gram’s abstract syntax tree. The execution engine executes the
program on the image by assembling a neural module network [2]
mirroring the structure of the predicted program.

tions is converted to a syntax tree; this is straightforward
since the arity of each function is known. Some generated
sequences do not correspond to prefix traversals of a tree.
If the sequence is too short (some functions do not have
enough children) then we pad the sequence with Scene

constants. If the sequence is too long (some functions have
no parents) then unused functions are discarded.

3.3. Execution engine

Given a predicted program z and and an input image x,
the execution engine executes the program on the image,
a = φ(x, z), to predict an answer a. The execution en-
gine is implemented using a neural module network [2]: the
program z is used to assemble a question-specific neural
network that is composed from a set of modules. For each
function f ∈ F , the execution engine maintains a neural
network module mf . Given a program z, the execution en-
gine creates a neural network m(z) by mapping each func-
tion f to its corresponding module mf in the order defined
by the program: the outputs of the “child modules” are used
as input into their corresponding “parent module”.

Our modules use a generic architecture, in contrast to [2].
A module of arity n receives n features maps of shape
C×H×W and produces a feature map of shapeC×H×W .
Each unary module is a standard residual block [14] with
two 3×3 convolutional layers. Binary modules concatenate
their inputs along the channel dimension, project from 2C
to C channels using a 1× 1 convolution, and feed the result
to a residual block. The Scene module takes visual features
as input (conv4 features from ResNet-101 [14] pretrained
on ImageNet [37]) and passes these features through four

Compare Integer Query Compare
Method Exist Count Equal Less More Size Color Mat. Shape Size Color Mat. Shape Overall

Q-type mode 50.2 34.6 51.4 51.6 50.5 50.1 13.4 50.8 33.5 50.3 52.5 50.2 51.8 42.1
LSTM 61.8 42.5 63.0 73.2 71.7 49.9 12.2 50.8 33.2 50.5 52.5 49.7 51.8 47.0

CNN+LSTM 68.2 47.8 60.8 74.3 72.5 62.5 22.4 59.9 50.9 56.5 53.0 53.8 55.5 54.3
CNN+LSTM+SA [46] 68.4 57.5 56.8 74.9 68.2 90.1 83.3 89.8 87.6 52.1 55.5 49.7 50.9 69.8

CNN+LSTM+SA+MLP 77.9 59.7 60.3 83.7 76.7 85.4 73.1 84.5 80.7 72.3 71.2 70.1 69.7 73.2

Human† [19] 96.6 86.7 79.0 87.0 91.0 97.0 95.0 94.0 94.0 94.0 98.0 96.0 96.0 92.6

Ours-strong (700K prog.) 97.1 92.7 98.0 99.0 98.9 98.8 98.4 98.1 97.3 99.8 98.5 98.9 98.4 96.9
Ours-semi (18K prog.) 95.3 90.1 93.9 97.1 97.6 98.1 97.1 97.7 96.6 99.0 97.6 98.0 97.3 95.4

Ours-semi (9K prog.) 89.7 79.7 85.2 76.1 77.9 94.8 93.3 93.1 89.2 97.8 94.5 96.6 95.1 88.6

Table 1. Question answering accuracy (higher is better) on the CLEVR dataset for baseline models, humans, and three variants of our
model. The strongly supervised variant of our model uses all 700K ground-truth programs for training, whereas the semi-supervised
variants use 9K and 18K ground-truth programs, respectively. †Human performance is measured on a 5.5K subset of CLEVR questions.

convolutional layers to output a C×H×W feature map.
Using the same architecture for all modules ensures that

every valid program z corresponds to a valid neural network
which inputs the visual features of the image and outputs a
feature map of shape C×H×W . This final feature map is
flattened and passed into a multilayer perceptron classifier
that outputs a distribution over possible answers.

3.4. Training

Given a VQA dataset containing (x, q, z, a) tuples with
ground truth programs z, we can train both the program
generator and execution engine in a supervised manner.
Specifically, we can (1) use pairs (q, z) of questions and
corresponding programs to train the program generator,
which amounts to training a standard sequence-to-sequence
model; and (2) use triplets (x, z, a) of the image, program,
and answer to train the execution engine, using backpropa-
gation to compute the required gradients (as in [2]).

Annotating ground-truth programs for free-form natural
language questions is expensive, so in practice we may have
few or no ground-truth programs. To address this problem,
we opt to train the program generator and execution engine
jointly on (x, q, a) triples without ground-truth programs.
However, we cannot backpropagate through the argmax op-
erations in the program generator. Instead we replace the
argmaxes with sampling and use REINFORCE [42] to esti-
mate gradients on the outputs of the program generator; the
reward for each of its outputs is the negative zero-one loss
of the execution engine, with a moving-average baseline.

In practice, joint training using REINFORCE is diffi-
cult: the program generator needs to produce the right pro-
gram without understanding what the functions mean, and
the execution engine has to produce the right answer from
programs that may not accurately implement the question
asked. We propose a more practical semi-supervised learn-
ing approach. We first use a small set of ground-truth pro-
grams to train the program generator, then fix the program

generator and train the execution engine using predicted
programs on a large dataset of (x, q, a) triples. Finally, we
use REINFORCE to jointly finetune the program generator
and execution engine. Crucially, ground-truth programs are
only used to train the initial program generator.

4. Experiments

We evaluate our model on the recent CLEVR
dataset [19]. Standard VQA methods perform poorly on
this dataset, showing that it is a challenging benchmark. All
questions are equipped with ground-truth programs, allow-
ing for experiments with varying amounts of supervision.

We first perform experiments using strong supervision
in the form of ground-truth programs. We show that in
this strongly supervised setting, the combination of pro-
gram generator and execution engine works much better
on CLEVR than alternative methods. Next, we show that
this strong performance is maintained when a small num-
ber of ground-truth programs, which capture only a frac-
tion of question diversity, is used for training. Finally, we
evaluate the ability of our models to perform compositional
generalization, as well as generalization to free-form ques-
tions posed by humans. Code reproducing the results of our
experiments is available from https://github.com/
facebookresearch/clevr-iep.

4.1. Baselines

Johnson et al. [19] tested several VQA models on
CLEVR. We reproduce these models as baselines here.

Q-type mode: This baseline predicts the most frequent
answer for each of the question types in CLEVR.

LSTM: Similar to [3, 33], questions are processed
with learned word embeddings followed by a word-level
LSTM [15]. The final LSTM hidden state is passed to a
multi-layer perceptron (MLP) that predicts a distribution
over answers. This method uses no image information, so it

https://github.com/facebookresearch/clevr-iep
https://github.com/facebookresearch/clevr-iep

Q: What shape is the. purple thing?

A: cube

. . . blue thing?

A: sphere

. . . red thing right of
the blue thing?

A: sphere

. . . red thing left of
the blue thing?

A: cube

Q: How many cyan
things are. . .

. . . right of the gray cube?

A: 3

. . . left of the small cube?

A: 2

. . . right of the gray cube
and left of the small cube?

A: 1

. . . right of the gray cube
or left of the small cube?

A: 4
Figure 3. Visualizations of the norm of the gradient of the sum of the predicted answer scores with respect to the final feature map. From
left to right, each question adds a module to the program; the new module is underlined in the question. The visualizations illustrate which
objects the model attends to when performing the reasoning steps for question answering. Images are from the validation set.

Figure 4. Accuracy of predicted programs (left) and answers
(right) as we vary the number of ground-truth programs. Blue and
green give accuracy before and after joint finetuning; the dashed
line shows accuracy of our strongly-supervised model.

can only model question-conditional biases.
CNN+LSTM: Images and questions are encoded using

convolutional network (CNN) features and final LSTM hid-
den states, respectively. These features are concatenated
and passed to a MLP that predicts an answer distribution.

CNN+LSTM+SA [46]: Questions and images are en-
coded using a CNN and LSTM as above, then combined
using two rounds of soft spatial attention; a linear transform
of the attention output predicts the answer.

CNN+LSTM+SA+MLP: Replaces the linear transform
with an MLP for better comparison with the other methods.

The models that are most similar to ours are neural mod-
ule networks [1, 2]. Unfortunately, neural module networks
use a hand-engineered, off-the-shelf parser to produce pro-
grams, and this parser fails2 on the complex questions in
CLEVR [19]. Therefore, we were unable to include mod-
ule networks in our experiments.

4.2. Strongly and semi-supervised learning

We first experiment with a model trained using full su-
pervision: we use the ground-truth programs for all ques-

2See supplemental material for example parses of CLEVR questions.

Train A Finetune B
Method A B A B

LSTM 55.2 50.9 51.5 54.9
CNN+LSTM 63.7 57.0 58.3 61.1

CNN+LSTM+SA+MLP 80.3 68.7 75.7 75.8
Ours (18K prog.) 96.6 73.7 76.1 92.7

Figure 5. Question answering accuracy on the CLEVR-CoGenT
dataset (higher is better). Top: We train models on Condition A,
then test them on both Condition A and Condition B. We then
finetune these models on Condition B using 3K images and 30K
questions, and again test on both Conditions. Our model uses 18K
programs during training on Condition A, and does not use any
programs during finetuning on Condition B. Bottom: We investi-
gate the effects of using different amounts of data when finetuning
on Condition B. We show overall accuracy as well as accuracy on
color-query and shape-query questions.

tions in CLEVR to train both the program generator and
the execution engine separately. The question answering
accuracy of the resulting model on CLEVR is shown in Ta-
ble 1 (Ours-strong). The results show that using strong su-
pervision, our model can achieve near-perfect accuracy on
CLEVR (even outperforming Mechanical Turk workers).

In practical scenarios, ground-truth programs are not
available for all questions. We use the semi-supervised
training process described in Section 3.4 to determine how
many ground-truth programs are needed to match fully su-

pervised models. First, the program generator is trained
in a supervised manner using a small number of questions
and ground-truth programs; next, the execution engine is
trained on all CLEVR questions, using predicted rather
than ground-truth programs. Finally, both components are
jointly finetuned without ground-truth programs. Table 1
shows the accuracy of semi-supervised models trained with
9K and 18K ground-truth programs (Ours-semi).

The results show that 18K ground-truth programs are
sufficient to train a model that performs almost on par with
a fully supervised model (that used all 700K programs for
training). This strong performance is not due to the pro-
gram generator simply remembering all programs: the to-
tal number of unique programs in CLEVR is approximately
450K. This implies that after observing only a small fraction
(≤4%) of all possible programs, the model is able to under-
stand the underlying structure of CLEVR questions and use
that understanding to generalize to new questions.

Figure 4 analyzes how the accuracy of the predicted pro-
grams and the final answer vary with the number of ground-
truth programs used. We measure the accuracy of the pro-
gram generator by deserializing the function sequence pro-
duced by the program generator, and marking it as correct
if it matches the ground-truth program exactly.3 Our results
show that with about 20K ground-truth programs, the pro-
gram generator achieves near perfect accuracy, and the final
answer accuracy is almost as good as strongly-supervised
training. Training the execution engine using the predicted
programs from the program generator instead of ground-
truth programs leads to a loss of about 3 points in accuracy,
but some of that loss is mitigated after joint finetuning.

4.3. What do the modules learn?

To obtain additional insight into what the modules in the
execution engine have learned, we visualized the parts of
the image that are being used to answer different questions;
see Figure 3. Specifically, the figure displays the norm of
the gradient of the sum of the predicted answer scores (soft-
max inputs) with respect to the final feature map. This vi-
sualization reveals several important aspects of our model.

First, it clearly attends to the correct objects even for
complicated referring expressions involving spatial rela-
tionships, intersection and union of constraints, etc.

Second, the examples show that changing a single mod-
ule (swapping purple/blue, left/right, and/or) results in
drastic changes in both the predicted answer and model at-
tention, demonstrating that the individual modules do in fact
perform their intended functions. Modules learn specialized
functions such as localization and set operations without ex-
plicit supervision of their outputs.

3Note that this may underestimate the true accuracy, since two different
programs can be functionally equivalent.

Ground-truth question:
Is the number of matte blocks in
front of the small yellow cylinder
greater than the number of red
rubber spheres to the left of the

large red shiny cylinder?
Program length: 20 A: yes 3

Ground-truth question:
How many objects are big rubber
objects that are in front of the big
gray thing or large rubber things

that are in front of the large
rubber sphere?

Program length: 16 A: 1 3

Predicted program (translated):
Is the number of matte blocks in
front of the small yellow cylinder
greater than the number of large

red shiny cylinders?
Program length: 15 A: no 7

Predicted program (translated):
How many objects are big

rubber objects in front of the
big gray thing or large

rubber spheres?
Program length: 12 A: 2 7

Figure 6. Examples of long questions where the program and an-
swer were predicted incorrectly when the model was trained on
short questions, but both program and answer were correctly pre-
dicted after the model was finetuned on long questions. Above
each image we show the ground-truth question and its program
length; below, we show a manual English translation of the pre-
dicted program and answer before finetuning on long questions.

Train Short Finetune Both
Method Short Long Short Long

LSTM 46.4 48.6 46.5 49.9
CNN+LSTM 54.0 52.8 54.3 54.2

CNN+LSTM+SA+MLP 74.2 64.3 74.2 67.8
Ours (25K prog.) 95.9 55.3 95.6 77.8

Table 2. Question answering accuracy on short and long CLEVR
questions. Left columns: Models trained only on short questions;
our model uses 25K ground-truth short programs. Right columns:
Models trained on both short and long questions. Our model is
trained on short questions then finetuned on the entire dataset; no
ground-truth programs are used during finetuning.

4.4. Generalizing to new attribute combinations

Johnson et al. [19] proposed the CLEVR-CoGenT
dataset for investigating the ability of VQA models to per-
form compositional generalization. The dataset contains
data in two different conditions: in Condition A, all cubes
are gray, blue, brown, or yellow and all cylinders are red,
green, purple, or cyan; in Condition B, cubes and cylinders
swap color palettes. Johnson et al. [19] found that VQA
models trained on data from Condition A performed poorly
on data from Condition B, suggesting the models are not
well capable of generalizing to new conditions.

We performed experiments with our model on CLEVR-
CoGenT: in Figure 5, we report accuracy of the semi-
supervised variant of our model trained on data from Con-
dition A and evaluated on data from Condition B. Although
the resulting model performs better than all baseline meth-

ods in Condition B, it still appears to suffer from the prob-
lems identified by [19]. A more detailed analysis of the
results revealed that our model does not outperform the
CNN+LSTM+SA baseline for questions about an object’s
shape or color. This is not surprising: if the model never
sees red cubes, it has no incentive to learn that the attribute
“red” refers to the color and not to the shape.

We also performed experiments in which we used a
small amount of training data without ground-truth pro-
grams from condition B for finetuning. We varied the
amount of data from condition B that is available for fine-
tuning. As shown in Figure 5, our model learns the new at-
tribute combinations from only ∼10K questions (∼1K im-
ages), and outperforms similarly trained baselines across
the board.4 We believe that this is because the model’s com-
positional nature allows it to quickly learn new semantics of
attributes such as “red” from little training data.

4.5. Generalizing to new question types

Our experiments in Section 4.2 showed that relatively
few ground-truth programs are required to train our model
effectively. Due to the large number of unique programs in
CLEVR, it is impossible to capture all possible programs
with a small set of ground-truth programs; however, due to
the synthetic nature of CLEVR questions, it is possible that
a small number of programs could cover all possible pro-
gram structures. In real-world scenarios, models should be
able to generalize to questions with novel program struc-
tures without observing associated ground-truth programs.

To test this, we divide CLEVR questions into two cat-
egories based on their ground-truth programs: short and
long. CLEVR questions are divided into question families,
where all questions in the same family share the same pro-
gram structure. A question is short if its question family has
a mean program length less than 16; otherwise it is long.5

We train the program generator and execution engine
on short questions in a semi-supervised manner using 18K
ground-truth short programs, and test the resulting model
on both short and long questions. This experiment tests the
ability of our model to generalize from short to long chains
of reasoning. Results are shown in Table 2.

The results show that when evaluated on long questions,
our model trained on short questions underperforms the
CNN+LSTM+SA model trained on the same set. Presum-
ably, this result is due to the program generator learning a
bias towards short programs. Indeed, Figure 6 shows that
the program generator produces programs that refer to the
right objects but that are too short.

We can undo this short-program bias through joint fine-

4Note that this finetuning hurts performance on condition A. Joint fine-
tuning on both conditions will likely alleviate this issue.

5Partitioning at the family level rather than the question level allows for
better separation of program structure between short and long questions.

Train Train CLEVR,
Method CLEVR finetune human

LSTM 27.5 36.5
CNN+LSTM 37.7 43.2

CNN+LSTM+SA+MLP 50.4 57.6
Ours (18K prog.) 54.0 66.6

Table 3. Question answering accuracy on the CLEVR-Humans
test set of four models after training on just the CLEVR dataset
(left) and after finetuning on the CLEVR-Humans dataset (right).

tuning of the program generator and execution engine on the
combined set of short and long questions, without ground-
truth programs. To pinpoint the problem of short-program
bias in the program generator, we leave the execution engine
fixed during finetuning; it is only used to compute REIN-
FORCE rewards for the program generator. After finetun-
ing, our model substantially outperforms baseline models
that were trained on the entire dataset; see Table 2.

4.6. Generalizing to human-posed questions

The fact that questions in the CLEVR benchmark were
generated algorithmically may favor some approaches over
others. In particular, natural language tends to be more am-
biguous than algorithmically generated questions. We per-
formed an experiment to assess the extent to which models
trained on CLEVR can be finetuned to answer human ques-
tions. To this end, we collected a new dataset of natural-
language questions and answers for CLEVR images.

The CLEVR-Humans Dataset. Inspired by VQA [3],
workers on Amazon Mechanical Turk were asked to write
questions about CLEVR images that would be hard for a
smart robot to answer; workers were primed with ques-
tions from CLEVR and restricted to answers in CLEVR. We
filtered questions by asking three workers to answer each
question, and removed questions that a majority of workers
could not correctly answer. We collected one question per
image; after filtering, we obtained 17,817 training, 7,202
validation, and 7,145 test questions on CLEVR images. The
data is available from the first author’s website.

The human questions are more challenging than syn-
thetic CLEVR questions because they exhibit more linguis-
tic variety. Unlike existing VQA datasets, however, the
CLEVR-Humans questions do not require common-sense
knowledge: they focus entirely on visual reasoning abilities,
which makes them a good testbed for evaluating reasoning.

Figure 7 shows some example human questions. Some
questions are rewordings of synthetic CLEVR questions;
others are answerable using the same basic functions as
CLEVR but potentially with altered semantics for those
skills. For example, people use spatial relationships “left”,
“right”, etc. differently than their meanings in CLEVR
questions. Finally, some questions require skills not needed
for answering synthetic questions.

Q: Is there a blue box
in the items? A: yes

Predicted Program:
exist

filter shape[cube]
filter color[blue]

scene

Predicted Answer:
3 yes

Q: What shape object
is farthest right?

A: cylinder

Predicted Program:
query shape

unique
relate[right]

unique
filter shape[cylinder]
filter color[blue]

scene

Predicted Answer:
3 cylinder

Q: Are all the balls small?
A: no

Predicted Program:
equal size
query size
unique

filter shape[sphere]
scene

query size
unique

filter shape[sphere]
filter size[small]

scene
Predicted Answer:

3 no

Q: Is the green block to the
right of the yellow sphere?

A: yes

Predicted Program:
exist

filter shape[cube]
filter color[green]

relate[right]
unique

filter shape[sphere]
filter color[yellow]

scene

Predicted Answer:
3yes

Q: Two items share a color, a
material, and a shape; what
is the size of the rightmost
of those items? A: large

Predicted Program:
count

filter shape[cube]
same material

unique
filter shape[cylinder]

scene

Predicted Answer:
7 0

Figure 7. Examples of questions from the CLEVR-Humans dataset, along with predicted programs and answers from our model. Question
words that do not appear in CLEVR questions are underlined. Some predicted programs exactly match the semantics of the question
(green); some programs closely match the question semantics (yellow), and some programs appear unrelated to the question (red).

Results. We train our model on CLEVR, and then fine-
tune only the program generator on the CLEVR-Humans
training set to adapt it to the additional linguistic variety; we
do not adapt the execution engine due to the limited quan-
tity of data. No ground-truth programs are available during
finetuning. The embeddings in the sequence-to-sequence
model of question words that do not appear in CLEVR syn-
thetic questions are initialized randomly before finetuning.

During finetuning, our model learns to reuse the reason-
ing skills it has already mastered in order to answer the
linguistically more diverse natural-language questions. As
shown in Figure 7, it learns to map novel words (“box”) to
known modules. When human questions are not express-
ible using CLEVR functions, our model still learns to pro-
duce reasonable programs closely approximating the ques-
tion’s intent. Our model often fails on questions that cannot
be reasonably approximated using our model’s module in-
ventory, such as the rightmost example in Figure 7. Quan-
titatively, the results in Table 3 show that our model out-
performs all baselines on the CLEVR-Humans test set both
with and without finetuning.

5. Discussion and Future Work

Our results show that our model is able to generalize to
novel scenes and questions and can even infer programs
for free-form human questions using its learned modules.
Whilst these results are encouraging, there still are many
questions that cannot be reasonably approximated using our
fixed set of modules. For example, the question “What

color is the object with a unique shape?” requires a model
to identify unique shapes, for which no module is currently
available. Adding new modules to our model is straight-
forward due to our generic module design, but automat-
ically identifying and learning new modules without pro-
gram supervision is still an open problem. One path for-
ward is to design a Turing-complete set of modules; this
would allow for all programs to be expressed without learn-
ing new modules. For example, by adding ternary oper-
ators (if/then/else) and loops (for/do), the question
“What color is the object with a unique shape?” can
be answered by looping over all shapes, counting the ob-
jects with that shape, and returning it if the count is one.
These control-flow operators could be incorporated into our
framework: for example, a loop could apply the same mod-
ule to an input set and aggregate the results. We emphasize
that learning such programs with limited supervision is an
open research challenge, which we leave to future work.

6. Conclusion
This paper fits into a long line of work on incorporat-

ing symbolic representations into (neural) machine learning
models [4, 5, 29, 36]. We have shown that explicit program
representations can make it easier to compose programs to
answer novel questions about images. Our generic program
representation, learnable program generator and universal
design for modules makes our model much more flexible
than neural module networks [1, 2] and thus more easily
extensible to new problems and domains.

Supplementary Material

A. Implementation Details
We will release code to reproduce our experiments. We

also detail some key implementation details here.

A.1. Program Generator

In all experiments our program generator is an LSTM
sequence-to-sequence model [39]. It comprises two learned
recurrent neural networks: the encoder receives the natural-
language question as a sequence of words, and summarizes
the question as a fixed-length vector; the decoder receives
this fixed-length vector as input and produces the predicted
program as a sequence of functions. The encoder and de-
coder do not share weights.

The encoder converts the discrete words of the input
question to vectors of dimension 300 using a learned word
embedding layer; the resulting sequence of vectors is then
processed with a two-layer LSTM using 256 hidden units
per layer. The hidden state of the second LSTM layer at the
final timestep is used as the input to the decoder network.

At each timestep the decoder network receives both the
function from the previous timestep (or a special <START>
token at the first timestep) and the output from the encoder
network. The function is converted to a 300-dimensional
vector with a learned embedding layer and concatenated
with the decoder output; the resulting sequence of vectors
is processed by a two-layer LSTM with 256 hidden units
per layer. At each timestep the hidden state of the second
LSTM layer is used to compute a distribution over all pos-
sible functions using a linear projection.

During supervised training of the program generator, we
use Adam [23] with a learning rate of 5× 10−4 and a batch
size of 64; we train for a maximum of 32,000 iterations,
employing early stopping based on validation set accuracy.

A.2. Execution Engine

The execution engine uses a Neural Module Network [2]
to compile a custom neural network architecture based on
the predicted program from the program generator. The in-
put image is first resized to 224 × 224 pixels, then passed
through a convolutional network to extract image features;
the architecture of this network is shown in Table 4.

The predicted program takes the form of a syntax tree;
the leaves of the tree are Scene functions which receive vi-
sual input from the convolutional network. For ground-truth
programs, the root of the tree is a function corresponding to
one of the question types from the CLEVR dataset [19],
such as count or query shape. For predicted programs
the root of the program tree could in principle be any func-
tion, but in practice we find that trained models tend only to

Layer Output size
Input image 3× 224× 224

ResNet-101 [14] conv4 6 1024× 14× 14
Conv(3× 3, 1024→ 128) 128× 14× 14

ReLU 128× 14× 14
Conv(3× 3, 128→ 128) 128× 14× 14

ReLU 128× 14× 14

Table 4. Network architecture for the convolutional network used
in our execution engine. The ResNet-101 model is pretrained on
ImageNet [37] and remains fixed while the execution engine is
trained. The output from this network is passed to modules repre-
senting Scene nodes in the program.

predict as roots those function types that appear as roots of
ground-truth programs.

Each function in the predicted program is associated
with a module which receives either one or two inputs; this
association gives rise to a custom neural network architec-
ture corresponding to each program. Previous implemen-
tations of Neural Module networks [1, 2] used different ar-
chitectures for each module type, customizing the module
architecture to the function the module was to perform. In
contrast we use a generic design for our modules: each
module is a small residual block [14]; the exact architec-
tures used for our unary and binary modules are shown in
Tables 5 and 6 respectively.

In initial experiments we used Batch Normalization [17]
after each convolution in the modules, but we found that this
prevented the model from converging. Since each image in
a minibatch may have a different program, our implemen-
tation of the execution engine iterates over each program in
the minibatch one by one; as a result each module is only
run with a batch size of one during training, leading to poor
convergence when modules contain Batch Normalization.

The output from the final module is passed to a classifier
which predicts a distribution over answers; the exact archi-
tecture of the classifier is shown in Table 7.

When training the execution engine alone (using either
ground-truth programs or predicted programs from a fixed
program generator), we train using Adam [23] with a learn-
ing rate of 1 × 10−4 and a batch size of 64; we train for a
maximum of 200,000 iterations and employ early stopping
based on validation set accuracy.

A.3. Joint Training

When jointly training the program generator and execu-
tion engine, we train using Adam with a learning rate of
5 × 10−5 and a batch size of 64; we train for a maximum
of 100,000 iterations, again employing early stopping based
on validation set accuracy.

We use a moving average baseline to reduce the variance
of gradients estimated using REINFORCE; in particular our
baseline is an exponentially decaying moving average of
past rewards, with a decay factor of 0.99.

Index Layer Output size
(1) Previous module output 128× 14× 14
(2) Conv(3× 3, 128→ 128) 128× 14× 14
(3) ReLU 128× 14× 14
(4) Conv(3× 3, 128→ 128) 128× 14× 14
(5) Residual: Add (1) and (4) 128× 14× 14
(6) ReLU 128× 14× 14

Table 5. Architecture for unary modules used in the execution
engine. These modules receive the output from one other module,
except for the special Scene module which instead receives input
from the convolutional network (Table 4).

Index Layer Output size
(1) Previous module output 128× 14× 14
(2) Previous module output 128× 14× 14
(3) Concatenate (1) and (2) 256× 14× 14
(4) Conv(1× 1, 256→ 128) 128× 14× 14
(5) ReLU 128× 14× 14
(6) Conv(3× 3, 128→ 128) 128× 14× 14
(7) ReLU 128× 14× 14
(8) Conv(3× 3, 128→ 128) 128× 14× 14
(9) Residual: Add (5) and (8) 128× 14× 14

(10) ReLU 128× 14× 14

Table 6. Architecture for binary modules in the execution
engine. These modules receive the output from two other
modules. The binary modules in our system are intersect,
union, equal size, equal color, equal material,
equal shape, equal integer, less than, and
greater than.

Layer Output size
Final module output 128× 14× 14

Conv(1× 1, 128→ 512) 512× 14× 14
ReLU 512× 14× 14

MaxPool(2× 2, stride 2) 512× 7× 7
FullyConnected(512 · 7 · 7→ 1024) 1024

ReLU 1024
FullyConnected(1024→ |A|) |A|

Table 7. Network architecture for the classifier used in our ex-
ecution engine. The classifier receives the output from the final
module and predicts a distribution over answers A.

A.4. Baselines

We reimplement the baselines used in [19]:
LSTM. Our LSTM baseline receives the input question

as a sequence of words, converts the words to 300-
dimensional vectors using a learned word embedding layer,
and processes the resulting sequence with a two-layer
LSTM with 512 hidden units per layer. The LSTM hidden
state from the second layer at the final timestep is passed
to an MLP with two hidden layers of 1024 units each, with
ReLU nonlinearities after each layer.

CNN+LSTM. Like the LSTM baseline, the
CNN+LSTM model encodes the question using learned
300-dimensional word embeddings followed by a two-
layer LSTM with 512 hidden units per layer. The image is
encoded using the same CNN architecture as the execution
engine, shown in Table 4. The encoded question and
(flattened) image features are concatenated and passed to a
two-layer MLP with two hidden layers of 1024 units each,
with ReLU nonlinearities after each layer.

CNN+LSTM+SA. The question and image are encoded
in exactly the same manner as the CNN+LSTM baseline.
However rather than concatenating these representations,
they are fed to two consecutive Stacked Attention lay-
ers [46] with a hidden dimension of 512 units; this results
in a 512-dimensional vector which is fed to a linear layer to
predict answer scores.

This matches the CNN+LSTM+SA model as origi-
nally described by Yang et al. [46]; this also matches the
CNN+LSTM+SA model used in [19].

CNN+LSTM+SA+MLP. Identical to CNN+LSTM+
SA; however the output of the final stacked attention mod-
ule is fed to a two-layer MLP with two hidden layers of
1024 units each, with ReLU nonlinearities after each layer.

Since all other other models (LSTM, CNN+LSTM, and
ours) terminate in an MLP to predict the final answer distri-
bution, the CNN+LSTM+SA+MLP gives a more fair com-
parison with the other methods.

Surprisingly, the minor architectural change of re-
placing the linear transform with an MLP signifi-
cantly improves performance on the CLEVR dataset:
CNN+LSTM+SA achieves an overall accuracy of 69.8,
while CNN+LSTM+SA+MLP achieves 73.2. Much of
this gain comes from improved performance on compar-
ison questions; for example on shape comparison ques-
tions CNN+LSTM+SA achieves an accuracy of 50.9 and
CNN+LSTM+SA+MLP achieves 69.7.

Training. All baselines are trained using Adam with a
learning rate of 5×10−4 with a batch size of 64 for a maxi-
mum of 360,000 iterations, employing early stopping based
on validation set accuracy.

B. Neural Module Network parses
The closest method to our own is that of Andreas et

al. [1]. Their dynamic neural module networks first perform
a dependency parse of the sentence; heuristics are then used
to generate a set of layout fragments from the dependency
parse. These fragments are heuristically combined, giving a
set of candidate layouts; the final network layout is selected
from these candidates through a learned reranking step.

Unfortunately we found that the parser used in [1] for
VQA questions did not perform well on the longer ques-
tions in CLEVR. In Table 8 we show random questions
from the CLEVR training set together with the layout frag-

Question:
The brown object that is the same shape as the green

shiny thing is what size?
Fragments: (what thing)

Question: What material is the big purple cylinder?
Fragments: (material purple);(material big);(material (and purple big))

Question:
How big is the cylinder that is in front of the green

metal object left of the tiny shiny thing that is in
front of the big red metal ball?

Fragments: (what thing)

Question:
Are there any metallic cubes that are on the right side

of the brown shiny thing that is behind the small metallic
sphere to the right of the big cyan matte thing?

Fragments: (is brown);(is cubes);(is (and brown cubes))

Question:
Is the number of cyan things in front of the purple matte

cube greater than the number of metal cylinders left of the
small metal sphere?

Fragments: (is cylinder);(is cube);(is (and cylinder cube))
Question: Are there more small blue spheres than tiny green things?

Fragments: (is blue);(is sphere);(is (and blue sphere))
Question: Are there more big green things than large purple shiny cubes?

Fragments: (is cube);(is purple);(is (and cube purple))

Question:
What number of things are large yellow metallic balls or

metallic things that are in front of the gray metallic sphere?
Fragments: (number gray);(number ball);(number (and gray ball))

Question: The tiny cube has what color?
Fragments: (what thing)

Question:
There is a small matte cylinder; is it the same color as the
tiny shiny cube that is behind the large red metallic ball?

Fragments: (what thing)

Table 8. Examples of random questions from the CLEVR training set, parsed using the code by Andreas et al. [1] for parsing questions
from the VQA dataset [3]. Each parse gives a set of layout fragments separated by semicolons; in [1] these fragments are combined to
produce candidate layouts for the module network. When the parser fails, it produces the default fallback fragment (what thing).

ments computed using the parser from [1]. For many ques-
tions the parser fails, falling back to the fragment (what
thing); when this happens then the resulting module net-

work will not respect the structure of the question at all. For
questions where the parser does not fall back to the default
layout, the resulting layout fragments often fail to capture
key elements from the question; for example, after parsing
the question What material is the big purple cylinder?, none
of the resulting fragments mention the cylinder.

Acknowledgements. We thank Ranjay Krishna, Yuke
Zhu, Kevin Chen, and Dhruv Batra for helpful comments
and discussion. J. Johnson is partially supported by an ONR
MURI grant.

References
[1] J. Andreas, M. Rohrbach, T. Darrell, and D. Klein. Learn-

ing to compose neural networks for question answering. In
NAACL, 2016. 1, 2, 3, 5, 8, 9, 10, 11

[2] J. Andreas, M. Rohrbach, T. Darrell, and D. Klein. Neural
module networks. In CVPR, 2016. 1, 2, 3, 4, 5, 8, 9

[3] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. Zit-
nick, and D. Parikh. VQA: Visual question answering. In
ICCV, 2015. 1, 2, 4, 7, 11

[4] M. Balog, A. Gaunt, M. Brockschmidt, S. Nowozin, and
D. Tarlow. Deepcoder: Learning to write programs. In ICLR,
2017. 2, 8

[5] J. Cai, R. Shin, and D. Song. Making neural programming
architectures generalize via recursion. In ICLR, 2017. 8

[6] A. Das, S. Kottur, K. Gupta, A. Singh, D. Yadav, J. Moura,
D. Parikh, and D. Batra. Visual dialog. In CVPR, 2017. 2

[7] J. Devlin, S. Gupta, R. Girshick, M. Mitchell, and C. L. Zit-
nick. Exploring nearest neighbor approaches for image cap-
tioning. arXiv preprint arXiv:1505.04467, 2015. 1

[8] A. Fukui, D. H. Park, D. Yang, A. Rohrbach, T. Darrell,
and M. Rohrbach. Multimodal compact bilinear pooling
for visual question answering and visual grounding. In
arXiv:1606.01847, 2016. 2

[9] Y. Gao, O. Beijbom, N. Zhang, and T. Darrell. Compact
bilinear pooling. In CVPR, 2016. 2

[10] R. Girshick. Fast R-CNN. In ICCV, 2015. 1
[11] Y. Goyal, T. Khot, D. Summers-Stay, D. Batra, and

D. Parikh. Making the V in VQA matter: Elevating the
role of image understanding in visual question answering.
In CVPR, 2017. 2

[12] A. Graves, G. Wayne, and I. Danihelka. Neural turing ma-
chines. arXiv preprint arXiv:1410.5401, 2014. 2

[13] A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka,
A. Grabska-Barwinska, S. Colmenarejo, E. Grefenstette,
T. Ramalho, J. Agapiou, A. Badia, K. Hermann, Y. Zwols,
G. Ostrovski, A. Cain, H. King, C. Summerfield, P. Blun-
som, K. . Kavukcuoglu, and D. Hassabis. Hybrid computing
using a neural network with dynamic external memory. Na-
ture, 2016. 2

[14] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In CVPR, 2016. 3, 9

[15] S. Hochreiter and J. Schmidhuber. Long short-term memory.
Neural Computation, 9(8):1735–1780, 1997. 4

[16] R. Hu, M. Rohrbach, J. Andreas, T. Darrell, and K. Saenko.
Modeling relationships in referential expressions with com-
positional modular networks. In CVPR, 2017. 2

[17] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In
ICML, 2015. 9

[18] A. Jabri, A. Joulin, and L. van der Maaten. Revisiting visual
question answering baselines. In ECCV, 2016. 1, 2

[19] J. Johnson, B. Hariharan, L. van der Maaten, L. Fei-Fei, C. L.
Zitnick, and R. Girshick. CLEVR: A diagnostic dataset for
compositional language and elementary visual reasoning. In
CVPR, 2017. 1, 2, 4, 5, 6, 7, 9, 10

[20] A. Joulin and T. Mikolov. Inferring algorithmic patterns with
stack-augmented recurrent nets. In NIPS, 2015. 2

[21] K. Kafle and C. Kanan. Visual question answering: Datasets,
algorithms, and future challenges. In arXiv preprint
arXiv:1610.01465, 2016. 2

[22] Ł. Kaiser and I. Sutskever. Neural GPUs learn algorithms.
In ICLR, 2016. 2

[23] D. Kingma and J. Ba. Adam: A method for stochastic opti-
mization. In ICLR, 2015. 9

[24] D. Klein and C. D. Manning. Accurate unlexicalized parsing.
In ACL, pages 423–430, 2003. 2

[25] R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz,
S. Chen, Y. Kalantidis, L.-J. Li, D. A. Shamma, et al. Vi-
sual genome: Connecting language and vision using crowd-
sourced dense image annotations. IJCV, 2017. 2

[26] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet
classification with deep convolutional neural networks. In
NIPS. 2012. 1

[27] K. Kurach, M. Andrychowicz, and I. Sutskever. Neural
random-access machines. In ICLR, 2016. 2

[28] B. M. Lake, T. D. Ullman, J. B. Tenenbaum, and S. J. Ger-
shman. Building machines that learn and think like people.
Behavioral and Brain Sciences, 2016. 1

[29] C. Liang, J. Berant, Q. Le, K. D. Forbus, and N. Lao. Neural
symbolic machines: Learning semantic parsers on freebase
with weak supervision. arXiv preprint arXiv:1611.00020,
2016. 2, 8

[30] P. Liang, M. I. Jordan, and D. Klein. Learning dependency-
based compositional semantics. In ACL, 2011. 2

[31] J. Lu, J. Yang, D. Batra, and D. Parikh. Hierarchical
question-image co-attention for visual question answering.
In NIPS, 2016. 2

[32] M. Malinowski and M. Fritz. A multi-world approach to
question answering about real-world scenes based on uncer-
tain input. In NIPS, 2014. 2

[33] M. Malinowski, M. Rohrbach, and M. Fritz. Ask your neu-
rons: A neural-based approach to answering questions about
images. In ICCV, 2015. 2, 4

[34] A. Mallya and S. Lazebnik. Learning models for actions and
person-object interactions with transfer to question answer-
ing. In ECCV, 2016. 2

[35] A. Neelakantan, Q. V. Le, and I. Sutskever. Neural pro-
grammer: Inducing latent programs with gradient descent.
In ICLR, 2016. 2

[36] S. Reed and N. De Freitas. Neural programmer-interpreters.
In ICLR, 2016. 2, 8

[37] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
et al. ImageNet large scale visual recognition challenge.
IJCV, 2015. 3, 9

[38] S. Sukhbaatar, A. Szlam, J. Weston, and R. Fergus. End-to-
end memory networks. In NIPS, 2015. 2

[39] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence
learning with neural networks. In NIPS, 2014. 3, 9

[40] M. Tapaswi, Y. Zhu, R. Stiefelhagen, A. Torralba, R. Urta-
sun, and S. Fidler. Movieqa: Understanding stories in movies
through question-answering. In CVPR, 2016. 2

[41] J. Weston, S. Chopra, and A. Bordes. Memory networks. In
ICLR, 2015. 2

[42] R. J. Williams. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine
Learning, 8(23), 1992. 4

[43] T. Winograd. Understanding Natural Language. Academic
Press, 1972. 2

[44] Q. Wu, D. Teney, P. Wang, C. Shen, A. Dick, and A. van den
Hengel. Visual question answering: A survey of methods
and datasets. In arXiv preprint arXiv:1607.05910, 2016. 2

[45] C. Xiong, S. Merity, and R. Socher. Dynamic memory net-
works for visual and textual question answering. ICML,
2016. 2

[46] Z. Yang, X. He, J. Gao, L. Deng, and A. Smola. Stacked
attention networks for image question answering. In CVPR,
2016. 4, 5, 10

[47] W. Zaremba, T. Mikolov, A. Joulin, and R. Fergus. Learning
simple algorithms from examples. In ICML, 2016. 2

[48] W. Zaremba and I. Sutskever. Learning to execute. arXiv
preprint arXiv:1410.4615, 2014. 2

[49] W. Zaremba and I. Sutskever. Reinforcement learning neural
turing machines. arXiv preprint arXiv:1505.00521, 2015. 2

[50] P. Zhang, Y. Goyal, D. Summers-Stay, D. Batra, and
D. Parikh. Yin and yang: Balancing and answering binary
visual questions. In CVPR, 2016. 2

[51] Y. Zhu, O. Groth, M. Bernstein, and L. Fei-Fei. Visual7W:
Grounded question answering in images. In CVPR, 2016. 1,
2

