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1 In the rest of this paper, when we refer to ‘‘moving

for example its centroid.
It is widely held that people tend to use qualitative rather than quantitative phrases when
raising or answering questions about moving objects. Queries about whether an object is
moving towards or away from another object or whether objects are getting closer to each
other or further away from each other, require qualitative responses. This characteristic
should be reflected in a calculus to be used to describe and reason about continuously mov-
ing objects. In this paper, we present a qualitative trajectory calculus of relations between
two disjoint moving objects, whose movement is constrained by a network. The proposed
calculus (QTCN) is formally introduced and illustrated. Particular attention is placed on how
to infer additional knowledge from QTCN relations by means of composition tables and the
transformation of QTCN relations into relations defined by the Relative Trajectory Calculus
on Networks (RTCN).

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Continuously moving objects are prevalent in many domains such as human movement analysis (such as traffic planning
or sports scene analysis) and animal behaviour science [38]. Most applications focus on the positional movement of the ob-
ject, abstracted to a single point.1 Recent advances in various positioning technologies (e.g. GPS, LBA, wireless communication)
[61] allow the capture and storage of large quantities of such moving point data. Research has addressed the generation [5,43],
indexing [1,18,39,47], modelling [29,33,34] and querying [16,25,37,50] of moving objects in spatiotemporal databases. How-
ever, only recently has work been conducted in reasoning about the relations between moving point objects and the transitions
between these relations, especially in a qualitative framework [7,52]. A specific proposal for qualitative relations between dis-
joint moving point objects is the Qualitative Trajectory Calculus (QTC), which formally defines qualitative relations between
disjoint moving point objects [52].

In this paper, building on [52], QTC is adapted to objects moving in networks, resulting in QTCN, and its power for rep-
resenting and reasoning with qualitative information for objects moving in networks is shown. The paper is structured as
follows. Section 2 describes the difference between qualitative and quantitative information and explains why qualitative
information can be useful. Section 3 briefly introduces the Qualitative Trajectory Calculus (QTC), which is the basis for
the Qualitative Trajectory Calculus for Networks (QTCN) and which is formally outlined in Section 4. The next two sections
focus on reasoning with QTCN relations. Section 5 presents the composition of QTCN relations, while Section 6 shows how
. All rights reserved.
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QTCN relations can be transformed into relations defined by the Relative Trajectory Calculus on Networks (RTCN). Section 7
discusses the usefulness of QTCN in possible applications, leading to conclusions and directions for further research in
Section 8.
2. Qualitative versus quantitative questions

When raising or answering questions about moving objects, both qualitative and quantitative responses are possible.
Typically, when responding to a question in a quantitative sense, a predefined unit of a quantity on a continuous measuring
scale is used [27]. For example, when asked for the speed of a car, the most likely quantitative answer to that question would
be that the car drives at, say, 30 km/h. As Galton says [24], quantitative information is ‘measured by quantity’. In the qual-
itative approach, the expected answer will be ‘the car is driving slowly’. Qualitative information is concerned with informa-
tion which ‘depends on a quality’ [24]. A key aspect of qualitative information, is to find ways to represent continuous
aspects of the world (space, time, quantity, etc.) by a small set of symbols [7,17]. In the qualitative approach, continuous
information is qualitatively discretised by landmarks separating neighbouring open intervals, resulting in discrete quantity
spaces [60]. For instance, one might say that a car driving more than 30 km/h is driving fast, and a car driving less than
30 km/h is driving slowly.

When describing the movement of objects, a qualitative description can sometimes give a more satisfactory answer than
a quantitative one. For example, if one does not know the exact speed of a car and a bicycle, but one knows that the speed of
the car is higher than the speed of the bicycle, one can say that the car is moving faster than the bicycle, labelling this with
the qualitative value ‘+’. One could also say that the bicycle is moving slower than the car, by assigning the qualitative value
‘�’ to this relation. Finally, both objects can also move at the same speed, resulting in a qualitative value ‘0’. Note that a dis-
tinction is only introduced if it is relevant to the current context [6,7].

Of particular interest in describing qualitative information, are representations that form a finite set of jointly exhaustive
and pairwise disjoint (JEPD) relations [46]. In a set of JEPD relations, any two entities are related by exactly one of these rela-
tions, and they can be used to represent definite knowledge with respect to the given level of granularity. Incomplete or par-
tial knowledge can be specified by coarse relations representing unions (i.e. disjunctions) of possible JEPD relations.

There are a variety of other grounds why reasoning with qualitative information can be considered complementary to
reasoning in a quantitative way, in areas such as artificial intelligence and geographic information science. A key motive
is the fact that human beings are more likely to prefer to communicate in qualitative categories, supporting their intuition,
rather than using quantitative measures [22]. Representing and reasoning with qualitative information can overcome infor-
mation overload. Information overload occurs whenever more information has to be handled than can be processed [42]. For
example, it is easier to communicate a certain slope characteristic of a region (e.g. flat, steep, hilly) than to provide over a
thousand height points [12]. Also, spatial expressions in natural language are rarely precise (e.g. the library is located in
the centre of the town; he is moving towards the cinema) [28]; in other words, they usually do not provide enough infor-
mation to identify the exact geographical location of an object or event [36]. Abstract, non-coordinate-based methods are
necessary to deal with these uncertainties [20]. Although reasoning with qualitative information may lead only to a partial
answer, such an answer is often better than having no answer at all [21]. In addition, since the information is more granular,
qualitative reasoning can be computationally easier than its quantitative counterpart [22]. Finally, qualitative data often pro-
vides an ideal way to deliver insights into a particular problem rapidly, in order to identify potential issues that warrant a
more detailed quantitative analysis [35].
3. The qualitative trajectory calculus

Mereotopology is the most developed area of qualitative spatial reasoning [3,8,9]. However, when it comes to moving point
objects, topological models such as the 9-intersection model merely distinguish two trivial topological relations between two
point objects: equal and disjoint [15]. Since in the real world the mereotopological relationship between most moving objects
is that of being disjoint, and topological models cannot further differentiate between disjoint objects, nor indeed can any
purely topological representation, important questions remain unanswered. An obvious example is the case of two airplanes,
where it is imperative to know whether both airplanes are likely to stay in a disjoint relation; if not, the consequences are cat-
astrophic. In order to represent and reason about moving objects the Qualitative Trajectory Calculus (QTC) was introduced
[52]. This calculus deals with qualitative relations between two disjoint moving point objects. QTC can distinguish a number
of basic binary relationships between two moving objects. An object can be moving towards another object; it can be moving
away from another object; or it can be stable with respect to the other object. In [52], two QTC calculi are defined. The Qual-
itative Trajectory Calculus – Double Cross (QTCC) [52,54] examines relations between moving point objects based on three ref-
erence lines forming a so-called double cross. The Qualitative Trajectory Calculus – Basic (QTCB) [55,56] defines these relations
by comparing differences in distance over time. In order to elaborate a QTC calculus for network-based moving objects, we will
build on QTCB since QTCC is not suitable to use in a network environment, as it utilises a direction-based spatial reference for
defining relations. In the remainder of this section we will briefly introduce QTCB as defined in [52].

In QTC, time is assumed to be continuous and linear. This time line can be represented by the set of real numbers ðRÞ and
it has a total order associated with it. This implies that one cannot identify two time points next to each other. The density of
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R allows no notion ‘‘nextness’’ [41]. In order to formally define the qualitative relations available in QTCB, we introduce the
following notations and definitions:

– kjt denotes the position of an object k at time point t.
– vkjt denotes the speed of k at time point t.
– d(x,y) denotes the distance between two positions x and y.

Definition 3.1. A relation in QTCB at level 1 between a first object k and a second object l at a time point t is defined by a two
character label. This label represents the following two relationships:

1. Movement of k with respect to l at t:
-: k is moving towards l:
9t1 t1 < t ^ 8t� t1 < t� < t ! dðkjt�; ljtÞ > dðkjt; ljtÞð Þð Þ^ ð1Þ
9t2 t < t2 ^ 8tþ t < tþ < t2 ! d kjt; ljtð Þ > d kjtþ; ljtð Þð Þð Þ

+: k is moving away from l:

9t1 t1 < t ^ 8t� t1 < t� < t ! dðkjt�; ljtÞ < dðkjt; ljtÞð Þð Þ^ ð2Þ
9t2 t < t2 ^ 8tþ t < tþ < t2 ! dðkjt; ljtÞ < dðkjtþ; ljtÞð Þð Þ

0: k is stable with respect to l: all other cases
2. Movement of l with respect to k at t:

Can be described as in 1, with k and l interchanged, hence:
� : lis moving towardsk ð3Þ
þ : lis moving away fromk ð4Þ
0 : lis stable with respect tok
Definition 3.2. A relation in QTCB at level 2 between a first object k and a second object l at a time point t is defined by a
three character label. The first two characters are defined as in Definition 3.1. The third character represents the relative
speed and is defined as follows:

3. Relative speed of k with respect to l at t:
-: k is moving slower than l:
vkjt < v ljt ð5Þ

+: k is moving faster than l:

vkjt > v ljt ð6Þ

0: k and l are moving equally fast:
vkjt ¼ v ljt ð7Þ
4. The qualitative trajectory calculus on networks

Having introduced QTC, we will now elaborate the definition of QTC on networks. Moreira et al. [40] differentiate be-
tween two kinds of moving objects: objects that have a completely free trajectory, only constrained by the dynamics of
the object itself (e.g. a bird flying through the sky) and objects that have a constrained trajectory (e.g. a train on a railway
track). Many trajectories involving humans are bounded to a network. Hence, there is a need to develop a calculus that de-
fines qualitative relations between two disjoint moving objects on trajectories constrained by a network. An informal
description and definition of QTCN was presented in [4,52,53], while a conceptual neighbourhood diagram for QTCN was pre-
sented in [4]. In this paper, QTCN is defined formally. Also, we explore the power of this calculus to infer additional informa-
tion from the basic QTCN-relations.

4.1. Definitions and restrictions concerning networks and moving objects

A network, such as a road, rail or river network, is usually described as a set of interconnected linear spatial features; each
such linear feature can be regarded as a curve, describing a linear path through the space it is embedded in. Thus, in essence,
a network is a co-dimensional structure. The concept of co-dimensionality can be used to express the difference in dimen-
sion between spatial entities (point: zero-dimensional; line: one-dimensional, region: two-dimensional, etc.) and the space
they are embedded in [24]. In the case of a network, one-dimensional structures (a set of interconnected lines) are embedded
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in a two dimensional (co-dimension one) or three dimensional space (co-dimension two). Therefore, we assume an under-
lying spatial framework S for specifying locations. Typically this would be R2, but S could be any set with a metric distance
function d(x,y) obeying the triangle inequality, and a notion of curve defined, such that curves(S) denotes the set of simple
non-closed curves in S.

In order to formally define QTCN relations for two moving point objects, using the network in which they are embedded as
a reference frame, three functions are defined on curves. For any curve c:

– len(c) denotes the length of c;
– end(c,x) is true if x is an endpoint of c;
– if x and y are two points incident in c, then subcurve(c,x,y) denotes the subcurve of c between and including x and y.

The network in which objects move in QTCN is characterised by a graph, whose edges represent a set of linear features and
the nodes of the graph represent the endpoints which bound these linear features (Definition 4.1). A function loc(x) embeds
these nodes and edges in the spatial framework S (Definitions 4.2 and 4.3). As stated above, the edges should represent sim-
ple non-closed curves. To formally define this property, we do not allow two nodes to lie at the same location (Restriction
4.1), the edges should be bounded by two different nodes (Definition 4.3) and two different edges can only intersect at their
respective endpoints (Restriction 4.2). The number of edges representing curves which intersect at a node denotes the degree
of that node (Definition 4.4).

Definition 4.1. If W is a network then nodes(W) is its set of nodes and edges(W) is its set of edges.
Definition 4.2. If n is a node then loc(n) 2 S is the spatial location of n in S.
Restriction 4.1. If W is a network then "{ni,nj} # nodes(W) [loc(ni) – loc(nj)].
Definition 4.3. If W is a network and e 2 edges(W) then loc(e) 2 curves(S) is the curve denoted by e in S, and
[${ni,nj} # nodes(W) [end(loc(e), loc(ni)) ^ end(loc(e), loc(nj))]].
Restriction 4.2. If W is a network then "ei"ej [[{ei, ej} # edges(W)] ) loc(ei) \ loc(ej) # {loc(n) : n 2 nodes(W)}]
Definition 4.4. If W is a network then the degree of a node n 2 nodes(W), deg(n) = j{e : e 2 edges(W) ^ loc(n) 2 loc(e)}j

The movement of objects in QTCN is restricted by the network, which implies that the location of an object should at all
times be situated on an edge (Definition 4.5). As stated in Section 3, QTC only considers relations between disjoint objects,
thus, two different objects cannot be at the same place at the same time (Restriction 4.3).

Definition 4.5. An object k at a time point t is located in a network W iff $e 2 edges(W) [kjt 2 loc(e)].
Restriction 4.3. All two non identical objects k and l are not instantaneously coincident at a time point t:
8t8k8l k – l) kjt – ljt½ �:
To relate two objects in QTCN, there needs to be at least one path between both objects (see Section 4.2). A path is com-
posed of a connected sequence of edges. Since the objects do not necessarily lie at the endpoint of an edge, a notion of edge
segments is required (Definition 4.6). The notation seg(e,x,y) denotes an edge segment which represents (i.e. whose location
is) that part of an edge e between a point x and an endpoint y of the edge e (including x and y). If x is the other endpoint of e,
then the edge segment equals the edge e (as a special case). Thus, a path between two objects is composed of a sequence such
that the first and last elements are edge segments on which the two objects are located (possibly the same segment), and any
intermediate edges form a connected path, such that no edge occurs more than once (Definition 4.7). The length of a path is
defined as the sum of the length of its edges and edge segments (Definition 4.8). A shortest path is defined as a path such that
there is no path having a shorter length between the same two nodes (Definition 4.9). There can be more than one shortest
path between two objects at the same time. If, in this special case, the first edge segment is different for all of these shortest
paths, we refer to these shortest paths as bifurcating shortest paths (Definition 4.10 and Fig. 1).

Definition 4.6. If e is an edge then e
0
= seg(e,x,y) is an edge segment of e iff

end(e,y) ^ x2 loc(e) ^ x – y ^ loc(e
0
) = subcurve(e,x,y)
Definition 4.7. A path p between two different objects k and l in a network W at time point t is a sequence he1, . . . ,emi, m P 1
such that
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endðe1;kjtÞ^endðem;ljtÞ^fe2; ... ;em�1g#edgesðWÞ^9ðe01;e0m;u;vÞ½fe01;e0mg#edgesðWÞ^e1¼segðe01;kjt;uÞ^em¼segðe0m;ljt;vÞ�^
816i<m½locðeiÞ\locðeiþ1Þ–;�^816i<j6m½locðeiÞ–locðejÞ�.
Definition 4.8. jpj =
P

e2plenðlocðeÞÞ is the length of a path p.
Definition 4.9. A shortest path SPt
Wkl in a network W from an object k to an object l at a time point t is a path p such that there

is no path from k to l of length less than jpj. We may write SPt
Wkl (p) when p is such a shortest path.
Definition 4.10. If there are at least two different shortest paths p1, . . . ,pm from an object k to an object l at a time point t,
then there is a bifurcating shortest path from k to l at t iff
9n 2 nodesðWÞ½kjt ¼ locðnÞ� ^ 8ðpi ¼< e1; . . . >; pj ¼< e01; . . . >Þ½1 6 i < j 6 m� ) e1 – e01
It is obvious that objects moving on a network do not always move along the same edge simultaneously. Objects can
move from one edge to another. When doing so, they pass a node (Definition 4.11). If k passes a node lying at the intersection
of two edges e� and e+ at time point t, and neither of these edges is along a shortest path from k to l at t, this event is referred
to as a shortest path omitting node pass event (Definition 4.12 and Fig. 2).

Definition 4.11. An object k on a network W is in a node pass event along edges e�, e+ at a time point t, NPE(k, t, e�,e+) iff

{e�,e+} # edges (W) ^ e� – e+ ^ $ (t�, t+) [t� < t ^ t < t+] ^ "t1 [t� 6 t1 6 t] )kjt1 2 loc(e�) ^ "t2 [t 6 t2 6 t+] )kjt2 2
loc(e+).
Definition 4.12. An object k on a network W is in a shortest path omitting node pass event with respect to another object l at a
time point t iff NPEðk; t; e�; eþÞ ^ 8p½SPt

WklðpÞ ) ½e� R p ^ eþ R p��
4.2. Definition of QTCN relations

The reference used to qualitatively assess the relation between two objects is the distance measured along the shortest
path. If there is no path between two objects, then there is no QTCN relation between these objects. Put differently, these
objects are either not moving along a network, or they occupy disjoint parts of a disconnected network and will hence re-
Fig. 2. A shortest path omitting node pass event.
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Fig. 1. Bifurcating (a) and non-bifurcating shortest paths (b).
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main disjoint. The shortest path is chosen because it seems to encode what it means for one object to approach or recede
from another object in a network. (In Euclidean space, one might naturally define approaching in terms of an angular mea-
sure, but this is not applicable in networks, and shortest path is the appropriate equivalent notion.) In a network, an object
can only approach another object if and only if it moves along a shortest path between these two objects [4]. Using this prop-
erty, we can state that an object k can only approach another object l at a time point t in a network W if it does not lie on SPt

Wkl

immediately before t and if it lies on SPt
Wkl immediately after t. k moves away from l at t if it is on SPt

Wkl immediately before t
and if it does not lie on SPt

Wkl immediately after t. If k lies on SPt
Wkl only at t, but not immediately before and immediately after

t, or if k is on SPt
Wkl immediately before and immediately after t, then k is stable with respect to l (although this relation may

only last for an instantaneous moment in time). This property allows reformulating conditions (1) and (2) of Definition 3.1
for the construction of the first level relation of QTCB to a QTCN setting.

Definition 4.13. A relation in QTCN at level 1 between a first object k and a second object l on a network W at a time point t is
defined by a two character label. This label represents the following two relationships:
1. Movement of k with respect to l at t:
�: k is moving towards l:
9t1 t1 < t ^ 8t� t1 < t� < t ! kjt� R SPt
Wkl

� �� �
^ ð8Þ

9t2 t < t2 ^ 8tþ t < tþ < t2 ! kjtþ 2 SPt
Wkl

� �� �

+: k is moving away from l:

9t1 t1 < t ^ 8t� t1 < t� < t ! kjt� 2 SPt
Wkl

� �� �
^ ð9Þ

9t2 t < t2 ^ 8tþ t < tþ < t2 ! kjtþ R SPt
Wkl

� �� �

0: k is stable with respect to l (all other cases):
� � � t� �� �
9t1 t1 < t ^ 8t t1 < t < t ! kjt 2 SPWkl ^ ð10Þ
9t2 t < t2 ^ 8tþ t < tþ < t2 ! kjtþ 2 SPt

Wkl

� �� �

9t1 t1 < t ^ 8t� t1 < t� < t ! kjt� R SPt
Wkl

� �� �
^ ð11Þ

9t2 t < t2 ^ 8tþ t < tþ < t2 ! kjtþ R SPt
Wkl

� �� �
2. Movement of l with respect to k at t:
Can be described as in 1 with k and l interchanged, hence:
� : lis moving towardsk ð12Þ
þ : lis moving away fromk ð13Þ

0 : lis stable with respect tok ð14;15Þ
The second level relation of QTCN is defined identically to the definition in QTCB – cf. Definition 3.2 (Definition 4.14).
Definition 4.14. A relation in QTCN at level 2 between a first object k and a second object l in a network W at a time point t is
defined by a three character label. The first two characters are defined as in Definition 4.13. The third character represents
the relative speed and is defined as follows:

3. Relative speed of k with respect l at t:
�: k is moving slower than l:
vkjt < v ljt ð16Þ

+: k is moving faster than l:

vkjt > v ljt ð17Þ

0: k and l are moving equally fast:

vkjt ¼ v ljt ð18Þ

Based on Definition 4.14, we can construct all canonical cases for QTCN relations at level 2. Let us analyse all possible
movements of a first object k with respect to a second object l in a QTCN relation at time point t. k can be stationary, i.e.
not moving with respect to the network, or not. If k is stationary at t, it will be located on a shortest path to l at t (and imme-
diately before and immediately after t), and therefore the definition yields ‘0’ for the first character in the label (i). If k is mov-
ing at t, then by definition there are four possibilities (ii – v). k can be on a shortest path to l immediately before t and not
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immediately after t, which returns ‘+’ for the first character in the label (ii). k can be on a shortest path to l immediately after t
but not immediately before t, which returns ‘�’ for the first character in the label (iii). When k is in a shortest path omitting
Fig. 3. 57 Canonical cases for QTCN at level 2.



Fig. 4. Animations for the composition of (+ �) and (� 0); a movement arrow next to an object indicates that the object is passing a node.
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node pass event with respect to l, it will not be on a shortest path to l just before and after t, resulting in a ‘0’ for the first
character in the label (iv). If there is a bifurcating shortest path from k to l, then k will be on a shortest path to l just before
and after t, which also yields ‘0’ for the first character in the label (v). The same five cases exist for the movement of the sec-
ond object in the relation. Hence, there exist 25 (52) canonical cases looking at the first level of QTCN. When considering the
second level, the additional three possibilities for the third label character might be expected to yield 75 (25⁄3) canonical
cases. However, due to the impossibility for a stationary object to move faster than or equally as fast as a non-stationary
object, 18 of these relations cannot physically occur. The remaining 57 canonical cases are presented in Fig. 3. The first col-
umn in the figure presents the QTCN relation. In the other columns, an icon is sketched for all canonical cases. A ‘0n’ denotes a
‘0’ due to a shortest path omitting node pass event. A ‘0b’ denotes a ‘0’ due to the existence of a bifurcating shortest path
between the objects. The left and right dots represent the positions of k (the first object) and l (the second object), respec-
tively. A dot is filled if the object can be stationary. The arrow symbols represent the potential movement directions of the
objects. The arrows can have different lengths indicating the difference in relative speed.
5. Composition

People often make inferences of and from qualitative relations in daily life [6]. For example, if we know that Nico is taller
than Philippe and Frank is taller than Nico, we infer that Frank is taller than Philippe. A specific type of inference mechanism,
which is a fundamental part of a relational calculus, is the composition of its relations [51]. The idea behind composition is to
compose a finite set of new facts and rules from existing ones, i.e. if two existing relations R1(k, l) and R2(l,m) share a common
object (l), they can be composed into a new relation R3(k,m), denoted by: R1(k, l)� R2(l,m) = R3(k,m) – note that R3 may be a
disjunction of base relations. If, for a set of relations, the compositions of all combinations of base relations can be computed,
they are usually stored in a composition table. Composition tables make sense from a computational point of view, since a
compositional inference can simply be looked up, instead of needing complex computations [3,58]. Ever since their introduc-
tion, composition tables have been precomputed for many different temporal (e.g. the interval calculus [2] and the semi
interval calculus [21], spatial (e.g. topological calculi [14,44], directional calculi [19,22], distance calculi [32], and spatiotem-
poral calculi (e.g. QTC [57]).
5.1. Composition of QTCN relations

Since the composition of relative speed (represented by the third character of a level 2 QTCN relation) is straightforward,
this section will focus on the composition of QTCN at level 1. Nine (32) QTCN base relations can be distinguished at level 1. As
a consequence, the composition table at level 1 has 81 (92) entries, each of which potentially contains a subset of these nine
relations. Thus, 729 (93) possible combinations of three relations need to be examined for their existence or non-existence.
For each possibility that actually exists, a simple ‘animation’ can be drawn to demonstrate its existence. Examples of such
animations for the composition of (+ �) and (� 0) are shown in Fig. 4.

Since each composition yields the entire set of base relations, the construction of a composition table is trivial. This triv-
iality results from the fact that QTCN relations do not provide sufficient information about the spatiotemporal configuration
of the network. Therefore, in order to obtain sparser composition tables, additional knowledge of the relation between the
network and the moving objects is required. This can be acquired by imposing temporal as well as spatial constraints.



Table 1
Composition table for QTCN at level 1 restricted to relations lasting over time intervals; A0 and B0 stand for the set {�, +}.

R1 � R2 � � � 0 � + 0 � 0 0 0 + + � + 0 + +

� � A0B0 A00 A0B0 ; ; ; A0B0 A00 A0B0

� 0 ; ; ; A0B0 A00 A0B0 ; ; ;
� + A0B0 A00 A0B0 ; ; ; A0B0 A00 A0B0

0 � 0 B0 0 0 0 B0 ; ; ; 0 B0 0 0 0 B0

0 0 ; ; ; 0 B0 0 0 0 B0 ; ; ;
0 + 0 B0 0 0 0 B0 ; ; ; 0 B0 0 0 0 B0

+ � A0B0 A00 A0B0 ; ; ; A0B0 A00 A0B0

+ 0 ; ; ; A0B0 A00 A0B0 ; ; ;
+ + A0B0 A00 A0B0 ; ; ; A0B0 A00 A0B0

Fig. 5. Possible relative movement configurations in QTCN for R1(k, l) � R2(l,m) where m lies on the simple shortest path betweenk and l and none of the
objects is located at a node 9.
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5.2. Temporal constraints

As a first approach to achieve sparser composition tables, temporal constraints can be considered. One valuable temporal
constraint, perhaps the only general one, is to consider which relations lasting over a time interval (rather than holding only
instantaneously). A ‘0’ in a level 1 QTCN label can only hold over a time interval when an object is stationary with respect to



Fig. 6. Possible relative movement configurations in QTCN for R1(k, l) � R2(l,m) where k lies on the simple shortest path between m and l and none of the
objects is located at a node 9.

Table 2
Composition table for relative movement in QTCN, for R1(k, l) � R2(l,m) where m lies on the simple shortest path between k and l and none of the objects is
located at a node.

R1 � R2 � � � 0 � + 0 � 0 0 0 + + � + 0 + +

� � � + � 0 � � ; ; ; ; ; ;
� 0 ; ; ; � + � 0 � � ; ; ;
� + ; ; ; ; ; ; � + � 0 � �
0 � 0 + 0 0 0 � ; ; ; ; ; ;
0 0 ; ; ; 0 + 0 0 0 � ; ; ;
0 + ; ; ; ; ; ; 0 + 0 0 0 �
+ � + + + 0 + � ; ; ; ; ; ;
+ 0 ; ; ; + + + 0 + � ; ; ;
+ + ; ; ; ; ; ; + + + 0 + �
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the network, as can be proven using the constraints of continuity [4]. As a consequence, an object which is stationary with
respect to one object will also be stationary with respect to any other object. The composition table according to this restric-
tion is provided in Table 1. The composition table consists of five fine results (i.e. singleton base relations), all being (0 0), 18



Table 3
Composition table for relative movement in QTCN, for R1(k, l) � R2(l, m) where k lies on the simple shortest path between m and l and none of the objects is
located at a node.

R1 � R2 � � � 0 � + 0 � 0 0 0 + + � + 0 + +

� � + � + 0 + + ; ; ; ; ; ;
� 0 ; ; ; + � + 0 + + ; ; ;
� + ; ; ; ; ; ; + � + 0 + +
0 � 0 � 0 0 0+ ; ; ; ; ; ;
0 0 ; ; ; 0 � 0 0 0 + ; ; ;
0 + ; ; ; ; ; ; 0 � 0 0 0 +
+ � � � � 0 � + ; ; ; ; ; ;
+ 0 ; ; ; � � � 0 � + ; ; ;
+ + ; ; ; ; ; ; � � � 0 � +

Fig. 7. A transition in QTCN from (� 0 +) via (0 0 +) to (+ 0 +).
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disjunctions of two relations, 22 disjunctions of four relations and 36 inconsistent compositions (denoted by the empty set).
Thus, the total number of possibilities is reduced from 729 to 129.
5.3. Spatial constraints

While the composition results in Table 1 are already much sparser than those obtained without constraints, they merely
provide five fine results. Therefore, as a second approach, spatial constraints can be imposed on top of the temporal restric-
tion. As shown in Section 4, the determination of a level 1 QTCN relation merely involves knowledge about the relative move-
ment with respect to the shortest path(s) between the objects concerned. In composition, this relative movement is known
for the first two object pairs, while nothing is known about the shortest path(s) of the third pair, leaving all relations possible
to occur. For three objects k, l and m, assume that the relations R1(k, l) and R2(l,m) are given and R3(k,m) is unknown, imply-
ing that SPt

kl and SPt
lm are known and that SPt

km is unknown. If it is known that kjt is on SPt
lm or that mjt is on SPt

kl, a simple non-
closed curve can be drawn containing the positions of all three objects at t. On this curve, each object has three movement
possibilities: it can be stable or move in one of two opposite directions. Hence, there are 27 (33) movement configurations of
these three objects. An illustration of each specific configuration is shown in Figs. 5 and 6, respectively illustrating the cases
of mjt lying on SPt

kl and kjt lying on SPt
lm. The associated composition tables are presented in Tables 2 and 3. This kind of com-

position is very useful, since it always leads to exact knowledge: both tables contain 27 fine composition results, whereas 54
compositions are inconsistent.
6. Transforming QTCN into the relative trajectory calculus on networks

Having defined the QTCN relations between a pair of moving objects, a set of trivial qualitative questions can be answered.
For example, by looking at the third character of the label, one can identify which object is moving the fastest. Looking at the
first two characters of the QTCN label, queries such as whether an object is moving towards or away from another object can
be resolved. In addition to these trivial questions, QTCN at level 2 has the power to answer additional questions using the
information contained by all three characters in the label. This information can be obtained by transforming QTC relations
into relations defined by the Relative Trajectory Calculus (RTC) [52].

In contrast to QTC, where distances between objects at different times are compared (e.g. in Definitions 3.1 and 4.13), RTC
defines relations based on the relative motion of an object against another object at the same moment in time [52] (Defini-
tion 6.1).



Table 4
Transformations from all QTCN canonical cases to RTCN relations.
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Definition 6.1. A relation in RTC between a first object k and a second object l at a time point t is defined by a single
character label. This label represents the comparison of the distance between k and l immediately before t with the distance
between k and l immediately after t. This results in three possibilities:
�: the distance between k and l decreases:
9t1; t2 t1 < t < t2 ^ 8t�; tþ t1 < t� < t < tþ < t2 ! dðkjt�; ljt�Þ > dðkjtþ; ljtþÞð Þð Þ ð19Þ
0: the distance between k and l remains the same:
9t1; t2 t1 < t < t2 ^ 8t�; tþ t1 < t� < t < tþ < t2 ! dðkjt�; ljt�Þ ¼ dðkjtþ; ljtþÞð Þð Þ ð20Þ
+: the distance between k and l increases:
9t1; t2 t1 < t < t2 ^ 8t�; tþ t1 < t� < t < tþ < t2 ! dðkjt�; ljt�Þ < dðkjtþ; ljtþÞð Þð Þ ð21Þ
RTCN describes the RTC relations on networks. In what follows, we will show that every QTCN relation can be mapped
onto a single RTCN relation. This allows QTCN at level 2 to answer questions such as whether two objects are getting closer
to each other or whether they are getting further away from each other. To this end, we will first consider the cases where
the union of all shortest paths over the entire time span can be described as a simple curve without junctions. Note that this
excludes, among others, the case of bifurcating shortest paths (Fig. 1) and shortest path omitting node pass events (Fig. 2).
Hence, the following equalities apply for QTCN relation between the objects k and l at time point t:

A ‘-’ in the first character of the relation label implies:
dðkjtþ; lÞ þ dðkjt; kjtþÞ ¼ dðkjt; lÞ ð22Þ
dðkjt�; lÞ � dðkjt; kjt�Þ ¼ dðkjt; lÞ
A ‘+’ in the first character of the relation label implies:
dðkjtþ; lÞ � dðkjt; kjtþÞ ¼ dðkjt; lÞ ð23Þ
dðkjt�; lÞ þ dðkjt; kjt�Þ ¼ dðkjt; lÞ
Analogous reasoning applies for ‘�’ and ‘+’ in the second label character, yielding (24, 25). Regardless of the QTCN relation it
follows from (23–25) that:
dðkjtþ; kjt�Þ ¼ dðkjt; kjtþÞ þ dðkjt; kjt�Þ ð26Þ
dðljtþ; ljt�Þ ¼ dðljt; ljtþÞ þ dðljt; ljt�Þ



Theorem 1. A QTCN relation (� � �) between the objects k and l at a time point t can be transformed into an RTCN relation (�),

such that the RTCN relation is true whenever the QTCN relation is true.

Proof. By definition, the first two characters of (� � �) imply:
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dðkjt�; ljtÞ > dðkjt; ljtÞ > dðkjtþ; ljtÞ ð27Þ
dðkjt; ljt�Þ > dðkjt; ljtÞ > dðkjt; ljtþÞ ð28Þ
From (27) and (28) it follows that:
dðkjt�; ljtÞ > dðkjt; ljtþÞ ð29Þ
() dðkjt�; ljtÞ þ dðljt; ljt�Þ > dðkjt; ljtþÞ ¼ �dðkjt; kjtþÞ ð30Þ
) dðkjt�; ljt�Þ > dðkjtþ; ljtþÞ ð31Þ
which is by definition equal to the RTCN relation (�). h

Analogously, it can be proven that the QTCN relations {(� � 0), (� � +), (� 0 +), (0 � �)} can be converted into the RTCN

relation (�).

Theorem 2. A QTCN relation (+ + +) between the objects k and lat time point t can be transformed into an RTCN relation (+), such
that the RTCN relation is true whenever the QTCN relation is true.
Proof. By definition, the first two characters of (+ + +) imply:
dðkjtþ; ljtÞ > dðkjt; ljtÞ > dðkjt�; ljtÞ ð32Þ
dðkjt; ljtþÞ > dðkjt; ljtÞ > dðkjt; ljt�Þ ð33Þ
From (32) and (33) it follows that:
dðkjtþ; ljtÞ > dðkjt; ljt�Þ ð34Þ
() dðkjtþ; ljtÞ þ dðljt; ljtþÞ > dðkjt; ljt�Þ � dðkjt; kjt�Þ ð35Þ
) dðkjtþ; ljtþÞ > dðkjt�; ljt�Þ ð36Þ
which is by definition equal to the RTCN relation (+). h
Fig. 8. Examples of transformations from QTCB to RTC.

Fig. 9. Simplified animation of three policemen chasing a gangster.



Fig. 10. Two scenes without collision danger for two moving objects.

Table 5
Transformations from QTCN into RTCN relations.

QTCN-label RTCN-label QTCN-label RTCN-label QTCN-label RTCN-label

� � � ) � 0 � � ) � + � � ) �
� � 0 ) � 0 � � 0 ) 0 + � 0 ) 0
� � + ) � 0 � + ) 0 + � + ) +
� 0 � ) 0 0 0 � ) 0 + 0 � ) 0
� 0 0 ) 0 0 0 0 ) 0 + 0 0 ) 0
� 0 + ) � 0 0 + ) 0 + 0 + ) +
� + � ) + 0 + � ) + + + � ) +
� + 0 ) 0 0 + 0 ) 0 + + 0 ) +
� + + ) � 0 + + ) 0 + + + ) +

Table 6
Composition results inferred over [t1, t3] due to spatial and temporal constraints.

Time Known relations Results inferred from temporal constraints Results inferred spatial constraints

t1 R(p1,p2) = (0 �), R(p1,p3) = (0 0),
R(p2,p3) = (� 0), R(p2,g) = (� +)

R(p1,g) = (0 �) _ (0 +),
R(p3,g) = (0 �) _ (0 +)

R(p1,g) = (0 �), R(p3,g) = (� 0)

]t1, t2[ R(p1,p2) = (� �), R(p1,p3) = (� +),
R(p2,p3) = (� �), R(p2,g) = (� +)

R(p1,g) = (� �) _ (� +) _ (+ �) _ (+ +),
R(p3,g) = (� �) _ (� +) _ (+ �) _ (+ +)

R(p1,g) = z (� �), R(p3,g) = (� �)

t2 R(p1,p2) = (0 �), R(p1,p3) = (0 0),
R(p2,p3) = (� 0), R(p2,g) = (� +)

None possible None possible

]t2, t3[ R(p1,p2) = (0�), R(p1,p3) = (0 0),
R(p2,p3) = (� 0), R(p2,g) = (� +)

R(p1,g) = (� �) _ (� +) _ (+ �) _ (+ +),
R(p3,g) = (��) _ (� +) _ (+ �) _ (+ +)

R(p3,g) = (� �)

t3 R(p1,p2) = (0 �), R(p1,p3) = (0 0),
R(p2,p3) = (� 0), R(p2,g) = (� +)

R(p1,g) = (� �) _ (� +) _ (+ �) _ (+ +), 3
R(p3,g) = (� �) _ (� +) _ (+ �) _ (+ +)

R(p3,g) = (� �)
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Analogously, it can be proven that the QTCN relations {(+ + 0), (+ + �), (+ 0 +), (0 + �)} can be converted into the RTCN

relation (+).

Theorem 3. A QTCN relation (� + �) between the objects k and l at time point t can be transformed into an RTCN relation (+), such
that the RTCN relation is true whenever the QTCN relation is true.
Proof. By definition, the third character of (� + �) implies:
mk < ml ð37Þ

() @xk

@t
<
@xl

@t
ð38Þ

() d kjt�; kjtþð Þ
@t

<
d ljt�; ljtþð Þ

@t
ð39Þ

) dðkjt�; kjtÞ þ dðkjt; kjtþÞ < dðljt�; ljtÞ þ dðljt; ljtþÞ ð40Þ
() dðkjt�; kjtÞ þ dðkjt; ljtÞ þ dðkjt; kjtþÞ ð41Þ

< dðljt�; ljtÞ þ dðkjt; ljtÞ þ dðljt; ljtþÞ
() dðkjt�; kjtÞ þ dðkjt; ljtÞ � dðljt�; ljtÞ ð42Þ

< dðljtþ; ljtÞ þ dðkjt; ljtÞ � dðkjt; kjtþÞ
) dðkjt�; ljt�Þ < dðkjtþ; ljtþÞ ð43Þ
which is by definition equal to the RTCN relation (+). h

Analogously, it can be proven that the QTCN relation (� + +) can be converted into the RTCN relation (+), that the QTCN

relations {(+ � �), (+ � +)} can be converted into the RTCN relation (�), and that the QTCN relations {(� + 0), (+ � 0), (0 0
0)} can be converted into the RTCN relation (0).
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Note that the above mentioned theorems are not valid when the union of shortest paths does not constitute a simple
curve over the considered time span, since Eqs. (23–25) are not valid. Based on restrictions imposed by continuity, it can
be shown that, in these cases, there is also a unique transformation from a QTCN relation into a single RTCN relation. Consider
a qualitative variable capable of taking any of the three qualitative values ‘�’, ‘0’ and ‘+’. Due to continuity, this variable can-
not make a direct change from ‘�’ to ‘+’ and vice versa, since such a change must always pass the intermediate value ‘0’ [23].
Let us consider the shortest path omitting node pass event in Fig. 7. In Fig. 7a there is a QTCN relation (� 0 +), which can be
transformed into the RTCN relation (�), according to Theorem 1. Analogously, (+ 0 +) can be transformed into (+) in Fig. 7c.
Then, due to the above restriction imposed by continuity, the QTCN relation (0 0 +) in Fig. 7b must be an RTCN relation (0).

Similar transformations apply for all QTCN relations occurring at shortest path omitting node pass events or when there
are bifurcating shortest paths. Table 4 provides an overview of the transformations from each canonical case in QTCN to the
respective RTCN relation. A ‘0n’ denotes that a ‘0’ is due to a shortest path omitting node pass event. A ‘0b’ denotes that a ‘0’ is
due to the existence of a bifurcating shortest path between the objects. A ‘0s’ denotes a ‘0’ is due to a stationary object. The
black cells indicate that no corresponding RTCN relations physically exist.

Thus, there is a one-to-one mapping from QTCN to RTCN relations. This is notable since for QTC relations of objects having
a free trajectory in R2, this is not the case [52]. The latter is illustrated in Fig. 8. Since the dotted line has a fixed length, the
figure shows that a QTCB relation (� + 0) can be transformed into all possible RTC relations.
7. Discussion

On the one hand, defining and examining the properties of a distance based calculus for moving objects constrained by
networks is a worthwhile theoretical investigation into further aspects of QTC theory. On the other hand, we argue that this
calculus is also convenient for the use in applications. In this section, we will illustrate this usefulness by means of two
examples.

7.1. A police/Gangster example

In order to show the applicability of the composition of QTCN relations at level 1 and the usefulness of the temporal and
spatial constraints stated in Section 5, let us consider the following example where three policemen p1, p2 and p3 are at dif-
ferent locations in a city and wish to catch a gangster g along a road network (Fig. 9). It is assumed that the policemen know
their mutual positions and therefore their mutual shortest paths at any time, but they can only see the gangster if they are in
line of sight. At time t1, while p1 and p3 are still awaiting instructions, policeman p2 has noticed and started chasing the gang-
ster who started to escape, thus yielding R(p2,g) = (� +) (Fig. 9a). Since all shortest paths are simple and gjt1 is on both SPt1

p1p2

and SPt1
p3p2

, composition can be applied using Table 2, such that p2 can give the right orders to p1 and p3 concerning the direc-
tion in which they should move, i.e. p2 directs p1 and p3 to start moving towards p2(since p1 and p3 know where p2 is), which
causes p1 and p3 to move towards g just after t1. At t2, g is at a junction. Hence, composition cannot be applied, since one
cannot know which turn g will take (Fig. 9b). Immediately after t2, p2 will have seen g turning right, and so still knows at
which edge g is, thus enabling composition with respect to p3 and g. This situation lasts until t3 (Fig. 9c) and will continue
after t3, probably until the gangster gets caught. Tables 5 and 6 lists the respective composition results inferred over [t1, t3].
As can be noted, results are only lacking at t2, whereas during the rest of the period there is complete information due to the
existing spatiotemporal constraints.

7.2. A collision avoidance application

An application where QTCN at level 2 can be useful is in collision avoidance systems. If one wants to know if two objects
are going to collide, then it is useful, as a first step, to restrict attention to the objects that might meet. In other words, only
the objects which are getting closer to each other, i.e. objects in an RTCN relation (�), are relevant, because otherwise they
cannot collide. Thus, QTCN relations at level 2 eliminate many movements from further examination, greatly reducing
calculation times. Further examination of the remaining relations gives information on the type of collision. The relations
(� + +) and (+ � �) indicate possible rear-end collisions, whereas (� � �), (� � 0), and (� � +) indicate possible head-on
collisions. The relations (� 0 +) and (0 � �) may indicate collisions with a stationary object. Note that these QTCN relations
indicate potential collisions that do not necessarily result in real collisions. Related work on collision avoidance has, on the
one hand, focussed on detecting possible collisions between objects which have a completely free trajectory in a two dimen-
sional space [13,26,48]. These approaches mainly focus on the direction of movement. Although they have all shown their
usefulness when the movement of objects is unconstrained, directional methods can not directly be transformed to net-
works, since they do not take into account the spatial structure of a network. The movement in Fig. 10a, for example, would
announce a possible collision in all the above mentioned directional approaches, while from QTCN analysis it follows that the
objects move away from each other and therefore cannot collide. Furthermore, none of the methods above incorporates the
relative speed between two moving objects. However, the notion of relative speed is crucial for collision detection in cases
where the objects move in the same direction, while in the other cases, it may offer appealing insights into a finer subdivision
of collision types. Consider the example in Fig. 10b. When using only directional information, this movement would trigger a
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collision detection, but since l is moving faster than k, the distance between them increases, and hence, there is no true col-
lision danger. For both these reasons, directional approaches over-predict possible collisions, while QTCN does not.

Other techniques for collision avoidance considering network-constrained objects mainly focus on railway networks. Col-
lisions in these systems are avoided by disallowing two trains to occupy the same track segment [30,31]. First of all, these
methods also over-predict possible collisions, since two trains may travel on the same track without colliding (e.g. as in
Fig. 10b with k moving slower than l). Secondly, this sole constraint does not capture every possible collision situation. If
two trains are on different segments, they can still be close and moving towards each other. Hence, not all collisions can
be predicted in collision avoidance systems relying on this constraint (especially for objects colliding at network junctions).
8. Conclusions and future work

In this paper, we have formally presented the Qualitative Trajectory Calculus on Networks (QTCN) as a qualitative calculus
to represent and reason about moving point objects which are constrained in their movement by networks.

We have shown two techniques to infer additional knowledge from the basic QTCN relations. On the one hand we have
presented the composition of QTCN relations (Section 5). It was found that, at level 1, each QTCN base relation is a possible
result for each composition of two relations. While this result, at first, can be considered of limited use, it was shown how
sparser and more powerful composition tables may be obtained by imposing realistic additional spatial and temporal con-
straints. By excluding instantaneous relations, we were able to reduce the total of 729 possibilities to 129 (18%). In addition,
by restricting to the case where the union of shortest paths involved in the composition forms a non-closed curve, a further
reduction was made to 27 (4%) fine results (i.e. singleton base relations). These sparser composition tables are more powerful
and useful with respect to potential applications, as has been illustrated in Section 7.1.

On the other hand, we have demonstrated that QTCN is able to answer qualitative questions such as whether objects on a
network are moving towards or away from each other. These queries are not limited to trivial questions which merely relate
to the relationship represented by a single QTCN relation character. Hence, a QTCN relation conveys more information than
each of its individual label characters separately. As pointed out in Section 6, each canonical relation in QTCN at level 2 can be
uniquely transformed into a RTCN relation (this is not the case for QTCB in R2 [52]). Therefore, QTCN is capable of answering
questions such as whether two objects are getting closer to each other or whether they are getting further away from each
other. In Section 7.2, we have illustrated that the definition of QTCN and the unique transformation of its relations into single
RTCN relations can be useful, for example in collision avoidance systems.

The theoretical contributions in this paper complement the earlier contributions vis-à-vis other calculi of the QTC family
(see [10] for an overview) in general, and regarding QTCN in particular. While QTCN relations have been introduced in a brief
and informal manner in earlier work [4,52], this paper offers a formal axiomatisation of QTCN. In addition to the conceptual
neighbourhood diagrams presented in [4], we have presented the composition tables for QTCN as well as the transformation
of QTCN into RTCN relations. Furthermore, we have explored and illustrated the reasoning power of QTCN by means of its
ability to answer qualitative queries. As has been recently shown for QTCB and QTCC [11], these contributions will allow QTCN

to be implemented in an information system in order to represent and reason about moving objects constrained by
networks.

Among the qualitative calculi that deal with relations between moving objects, QTCN is unique in its consideration of net-
work-based objects. An exception is the work of Wang et al. [59] who extend the Directed Interval Algebra [45] to the Road
Network Directed Interval Algebra (RNDIA). Although their algebra is also based on the notion of shortest paths, RNDIA dif-
fers from QTCN as it defines relations among directed network tracks rather than relations among moving point objects.
RNDIA is therefore less appropriate to represent and reason about instantaneous events occurring among objects along their
trajectories. Collisions, for example, are not unambiguously represented in RNDIA as they may occur in the case of different
RNDIA base relations (e.g. the equal, overlay, and cross relations [54]). Given that practically all traffic movements are
bounded by networks, QTCN-based applications are promising in the field of Intelligent Transportation Systems and Geo-
graphic Information Systems for Transportation (GIS-T) [49].

Ongoing research involving QTCN is being conducted on cognitive aspects of the calculus. Major questions to be investi-
gated in this respect include what specific terms such as motion verbs and prepositions do people attach to each of the
canonical cases of the calculus. Future findings on these issues may provide insights on the power of QTCN in natural lan-
guage processing and human computer interaction.
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