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Objectives

Todays program

= Recall on Computer vision / Machine learning basics
® |ntroduction to deep learning

= Convolutional Neural Networks

= Applications of CNN in computer vision

Practical
= CNN for image classification
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Machine learning / computer vision basics
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Computer Vision Tasks

Classification Instance ..
Object Detection Segmentation Captioning

Classification + Localization

A person riding a

CAT, DOG, DUCK CAT, DOG, DUCK motorcycle on a dirt road.
- AN J
Y '
Single abject Multiple objects
I | |
Requires Classification
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Recognition

Typical recognition architecture
road

t :ere]\tl;r?m vehicle
ansto pedestrian

image feature machine
processing vector learning

Standard procedure
= Feature transform: problem-dependent, hand-crafted, transforms image

into a form useful for classification
= (Classification: generic, trained, takes feature vector and produces

decision
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Detection

Detection = localization + recognition

How to choose elements to recognize ?
® |n robotics, often use 3D data which simplifies object segmentation

= Segmentation : localization of objects irrespective of identity
" Based on environment hypothesis. e.g., objects on planes
= As difficult as recognition in general




Detection by recognition

Efficient recognition makes localization possible

feature T
p transform classification
o o P
. image feature machine
processing  vector learning

SI|d|ng Wmdow approach
= Slide window over whole image
= detections: positive binary classification results
= for larger objects: repeat after shrinking image
= (Can be very efficient when exploiting windows overlap
= Warning : need very good recognition:
if 10 000 windows/image; 0.1 % error -> 10 errors/image !

road

vehicje
edestrian
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Detection by recognition

Region proposal approach
= (Generate likely object bounding boxes
E.g. : selective search

= Segment images using multiple color spaces

" Hierarchically group regions and process bounding boxes
Bottom-up segmentation, merging regions at multiple scales

ENSTA




Neural Networks

Artificial neuron ~1950
= Element performing sum of weighted input + non linear fct

weights
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Neural network (Perceptron, (Rosenblatt, 58))
" Assembly of neurons, often organized in layers
" Parameterized by all connection weights w;; '1:.\,_, PL
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Neural Networks

Learning in neural networks
" Find weights w; that minimize prediction error
= Backpropagation of error with gradient descent (Werbos, 75)

= Compute: error of output, gradient wrt. weights; update weight following gradient
® Do the same thing for previous layers using ‘chain rule’

. dfi(e) .

Wy = Weay T 779, 1

. dfi(e)

Aa W = Wy +70 ———X
¢ ( (x2)1 (x2)1 1 de 2

Mariusz Bernacki - http://home.agh.edu.pl/~visi/Al/backp_t_en/backprop.html




Training procedure

Data sets

= |f possible, make 3 sets : training, validation, test

= Use Training for training ...

= Use Validation to check training quality, tune algorithm params

= Use test only to report final performance (hidden in ML competitions)

K-fold Cross validation
= When little data : split dataset in k sets i

® Train on k-1, validate on remaning one i i i !

" Repeat k times
= Report mean performances

acy = Average(Round 1, Round 2, ...)

€
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Training procedure

Overfitting

® Training too much on training set limits generalization

" |mportant to keep an eye on validation error

= Trick (early stopping) : Stop learning if validation error increase

Under-fitting Over-fitting

{too simple to (forcefitting — too
explain the good to be true)
variance)

12
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relevant elements
I 1

false negatives true negatives

Reporting performances e, o O o

Detection performance
= Anumber is not sufficient
= Report curve showing performance tradeoff

= Ex: precision/recall curves
= Precision : correct detection / nb of detection
= Recall ; correct detection / nb of true elements

true positives  false positives

selected elements

mm - Baia‘m mm.m - lma'awd How many selected How many relevant
(Positive: 1000, Negatve 1000)  (Positive: 1000, Nengr 10 000) items are relevant? Rams are selacted?

1.004 7 100+
075+ \ ' 075+ Precision = Recall =
s Pooroonym j .
8 050+ 050+ — Good eary retreral '
0254 . 025 — Excellent

0.001. 000+ E’

0.00 0.25 0.50 0.75 1 W 0.00 0.25 0.50 0.75 1.00 ENSTA
Recal Recall -
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Reporting performances

ROC curves

= Receiver Operating Characteristic

= Plot true positive rate (= recall) / false positive rate ( FP/real negative)
= Draw curve by varying detection threshold

1 ROC Space
1 | T T T T T T
Pefect Classification #
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Introduction to Deep Learning
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Deep Learning

Return of the neural networks -,

= Around 2006 ? wn_ =
, e kil
= Neural networks with “many” layers i
P B BR 78 By
" Theory very similar to perceptrons (for most models) Sepass
113 9 Lol R
Why “Deep” ? === =
B BN BN By BN
= Approximate more complex functions - S i s
= Works well in practice (on many problems) "':_::
Why now ? at-F---
. =
= More processing power —:_::
® Found solutions to some learning problems -
= Availability of large datasets -:-
- ENSTA
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Deep Learning

Training with back-propagation (supervised version)

" Dates back to Werbos (75) 1 1
= But did not work on “deep” networks L+ eXp(_eTj)//_

= Many local minima in cost function
= \/anishi ' ient | 0
Vanishing/exploding gradient in the deep layers ReLU(z) = max(0, 2}

= Hard to debug/understand A
What's new ? ]
= Choice on activation function (instead of sigmoid)

= Tanh, ReLU
= |nitialization : unsupervised pre-training

= Train each layer by reconstructing input "Rectified Linear Unit”

= Provides good starting point toward global minima = Increasingly popular

[Nair & Hinton, 2010] ensTA
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Deep Learning

What's new ?

= Choice of parameters : gradient step size, momentum
= Avoids too strong modifications

v :=pv + €, VoL (0)
0:.=0+v
= Dropout

= Train while removing random connections
= Force robustness to noise

= Batch normalization
= Normalize data at each layer, for each batch
= Regularize gradient -> solves most of the problems (no need for pretraining, dropout)

Bengio, 2012: “Practical Recommendations for Gradient-Based Training of Deep Architectures”
Hinton, 2010: “A Practical Guide to Training Restricted Boltzmann Machines” ENSTA
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Deep Learning

Training procedure (1/3)
= Use standard training / validation / test sets

" Normalize data
= Substract mean (computed on training set)
= Divide by std. dev. (computed on training set)

original data Zero-centered data

normalized data

19
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Deep Learning

Training procedure (2/3)

® Choose a Loss function
= For example for softmax classification, use cross entropy:

z-.

A B * .ﬁ -
Ui =3 L(§,y) = — > y;logy;
J j

z;: network output; y;: estimated prob of class i; y;: true prob of class i;

" |nitialize weights randomly around 0
= E.g., Gaussian noise: N(0,¢)
= Use one variant of gradient descent (with momentum, ADAM, ...)

= Compute (automatically) gradient to reduce the loss

ENSTA
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Deep Learning

Training procedure (3/3)

= Use mini-batches

= Compute gradient on a small set of examples

= Take average (sum), perform one step of gradient descent with this value
" |nterest of mini batches

= Smooth gradient noise -> allow larger steps -> learn faster

= But too large mini-batches lead to problems (stuck in local min...)

= Linked to memory size of GPUs

= Sensitive parameters

= Define a schedule of decreasing learning rates

21
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Deep Learning

Many architectures

= Convolutional Neural Networks
= Specialized for image processing

= See later forget gate
self-recurrent
= Recurrent architecture (e.g. LSTM) |
= Processing of t(larnporal ldata ) memory cel _ﬁ T « memry col
= Speech recognition, action recognition | . -
nput ga output gate
= Trained by unfolding + supervised learning LSTM cell

® ® ® © ®
- A

— A — A —

Il
e
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Deep Learning for vision
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Deep learning for vision

Avoid manual feature construction
= Replace traditional architecture by deep network

Prior Knowledge,
Expenence

More abstract representation

High-level

Low-level Mid-level
Features

Features Features

Deep Network

Machine Learning " "
a » Feature Extraction » Algorithrm » Cat

“Cat”?

24
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Deep learning for vision

Avoid manual feature construction
" Process raw data directly
= [ earn directly relevant feature from data

= Natural increase of feature abstraction
= Adapts to other modalities (depth, IR ...)

Problems

= [arge image size -> large networks
= Need lots of training data

® Need to reduce network parameters

3rd layer
“Objects”

2nd layer
“Object parts”

1st layer
“Edges”

Pixels

ENSTA
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Image d ata b ases Number of categories vs. number of instances

1000000

‘Clﬂod\m
100000 COCo
Several large scale databases § o
= Ex : Microsoft COCO E o0 ¢ o =
Common Objects in Context 5§ 0o 4

= |mageNet ... ] ":

1 10 100 1000 10000 100000

Number of categories

person, sheep, dog

AS kdy

(a) Image classification (b) Object localization

(c) Semantic segmentation (d) This work

ENSTA
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Convolutional Neural Networks

Reducing number of network parameters

= Exploiting image invariance to translation
= Use only limited local support

= Use same local weights for all positions -> convolution

= Use several convolutions
at each position -> multiple features layers




Convolution in image processing

Sobel edge detector
= Convolution with ‘Hand made’ filters

12 ]
G,=[0 0 0
-1 -2 -1




Convolutional Neural Networks

Convolution layer parameters | |. .1.1. . -
0 0 .El i} 0 - 0 . 0 . . . 0 | 106
= Kernel size / padding ojejnjofojojo] jejo)s
0025028112763 8 0 0 0 1 0 —>
= Number of Input/output 0 250 252 250 209 56 0 10 0
"0 |260 252|250 250 83 O T
feature maps Tolelolalelsl =™ —
| | — | | 3X3 Feature map
Image
Height H
F convelution filters
....... Kxkxa|R=2arS
Width W
Number of filters F
Input Layer (RGB pixels) Convolution Layer Output

[HxWx3] [HxWxF] ENSTA
assuming stride=1 and zero padding 29 @
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Convolutional Neural Networks

Reducing feature map size
® Pooling (Max / average)

Stride 2
= |ayersize

H| — kernel_size + 2 X padding
stride

W, — kernel_size + 2 X padding
stride

H, = |

|+1

W = | |+1




Convolutional Neural Networks

Convolutions w/
filter bank:

Stack of basic layers

= Non linearity (ReLu)
® Pooling (Reduce resolution)
= Finish with fully connected layers

\ 55
)

Stride
>\ o

.-
—
I ; s
T 77
r £ 4
Ly

55

20x7x7 kernels

Normalized Image
1x500x500
C1: 20x494x494
13 13 13 B
B dit ﬁ: - 13 3’&\-‘; 1 dense| [dens
384 134 256
Max
Max pooling 113
pooling

Krizhevksy et al., 2012

§2: 20x123x123

il

€
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Pre-training

Facing the lack of data

= (Good labeled data are expensive to get

= Qften, related dataset exists, or unlabeled data are cheap

® Training can be started on these and finished on you problem

Pre-training on a large dataset

® Train on a large related dataset (e.g. ImageNet when working on image
processing)

= Fine-tune (continue training) on your specific problem (with limited data)
= \ery common way of starting on a new task

€

ENSTA
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output -

Pre-training

‘decode
hidden -

Unsupervised pre-training
® Train on unlabelled data

® Train auto-encoders to reconstruct data with limited information
= Use regularization, dropout...

= Repeat process with hidden layer as input

= Stack the resulting netwoks and fine tune
A A

encode

input

OO00000 =

N

ENSTA
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Applications of Deep Learning for vision
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Image categorization

ImageNet Classification

= [arge Convnet for classification on ImageNet

® 650K neurons, 832M synapses, 60M parameters Trained with backprop
on GPU

= Error rate: 15% (Previous state of the art: 25%)

motor scooter ‘
mite ﬁﬁp motor scooter leapard
black widow lifeboat go-kart Jaguar
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard
starfish ddlllng platform golfcart Egyptian cat

ImageNet Classification with Deep Convolutional Neural ~ ENs7a
Networks Krizhevksy, Sutskever, Hinton 2012 35 gweans



Image categorization

ImageNet Classification
= | ast layer feature show strong ‘semantic’ invariance

Networks Krizhevksy, Sutskever, Hinton 2012 36 @weans



Image categorization

VGG architecture
®  Standard architecture, often used as reference

224 x224x3 224 x224 x 64

(12 x 128

-‘56“2?268 —— 7x7x512
128 x 28 x
. 10x13x212 1x1x4096 1x1x1000

7 convolution+RelU
. max pooling
fully nected + Rell

softmax VGG16

K. Simonyan and A. Zisserman “Very Deep Convolutional Networks for Large- EnsTA
Scale Image Recognition”, 2014 37 @weans



Image categorization

ResNet architecture
® |ntroducing ‘residual layers’ improves performances and training stability

8 method top-1 err. top-3 err.
VGG [41] (ILSVRC' 14) . 8.43"
weight layer GoogLeNet [44] (ILSVRC' 14) - 7.89
F(x) yrelu = VGG [41] (v5) 244 7

weight layer — PReLU-net [13] 21.59 5.71
BN-inception [16] 21.99 5.81

Flx) +x ResNet-34 B 21.34 571
ResNet-34 C 21.53 5.60

ResNet-50 20,74 5.25

ResNet-101 19.87 4.60

ResNet-152 19.38 4.49

He, Kaiming; Zhang, Xiangyu; Ren, Shaoqing; Sun, Jian (2015-12-10). "Deep Residual Learning for E’

Image Recognition” ENSTA
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Image categorization

DenseNet architecture

= (Generalize densenet by connecting to several forward layers

= Concatenate information instead of summation

= Qverall smaller networks because number of Iayers can Ie reduced

27.5
> Conv 1 input channel + H-BEN'B’[S
Q 265 ResNet-34 | —&— DenseNets-BC |
: ; Conv 3 nput channel -E— 2558
—— o
=
Conv 4 input channel ‘2 24.5
6+4+44+4=18 5
v Transition Layer input channel ‘E 23.5
Gedededed=22
29 5 ResNeat-101
ResMet=152
DenseNet-161(k=48)
21.5 L L . .
Figure 1: A S-layer dense block with a growth rate of k = 4. 0 1 2 3 4 5 6 7 8
Each layer takes all preceding feature-maps as input. #parameters

Densely Connected Convolutional Networks, Gao Huang, Zhuang Liu, Laurens van der
Maaten, Kilian Q. Weinberger, 2017




Object detection

Application in sliding window approach

= Convnet can be optimized for sliding windows
= QverFeat (Sermanet et al., 2014)

= Additional output for bounding box regression

96x96 window
= 12 pixel shift

84x84 overlap

Sliding Window: Overfeat

4096 4096 Class scores:

Winner of ILSVRC 2013 1000
localization challenge ]
FC FC
Convolution — — solo':n:x
+ pooling
Fc U :
FC |
Feature map: FC FC _
1024 x5x5 —_— | — Euclidean
3x 221 X 221 loss
| ) 1024 Boxes: ENSTA
Sermanet et al, “Integrated Recognition, Localization and 4096 1000 x 4
40 OO

Datection using Convolutional Networks®™, ICLR 2014



Object detection

OverFeat: Integrated Recognition, Localization \ ;
and Detection using Convolutional Networks E’
Pierre Sermanet et al., 2014 ENSTA
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Object detection -

Application with bounding box proposal .Ro]poonng

" Predict likely object boxes V.
. proposals :
= Categorize box content / /
Region Proposal Networkl' {
2k scores 4k coordinates <pmm  Kanchor boxes ”aature maps

cls layer \ ’ reg layer
256-d .
intermediate layer conv layers /

;l —fuaﬂ =
sliding window .
conv feature map :
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks ol

Shaoging Ren, Kaiming He, Ross Girshick, Jian Sun, 2015 2 o



Object detection

Faster R-CNN

= Winner of 2015 ILSVRC
= /GG for convolution (13 layers)

= 200 ms/image on GPU |
= Deals with large scale variation

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
Shaoging Ren, Kaiming He, Ross Girshick, Jian Sun, 2015

43

ENSTA




Object detection

YOLO et al.
" Predict boxes/object for all position at once  +
= Only one forward pass
= Much faster than R-CNN ‘
= Similar to SSD, MobileNet ... mmm_mw:
(t=]ts] e [14]) 2o (2] 2] .. p.:]] x B

7x7x1024 4096 7x7x30

448x448x3
You Only Look Once: Unified, Real-Time Object Detection Joseph Redmon, Santosh Divvala,
Ross Girshick, Ali Farhadi, 2016 44
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. Object Grasping

Finding grasp position from RGB-D images
™ RN El

Classification task : graspable/not graspable
Multimodal input : RGB + Depth + Normals

o

Deep Learning for Detecting Robotic Grasps
lan Lenz, Honglak Lee and Ashutosh Saxena, 2014

ENSTA
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Object Grasping

Simple “Deep” network

= Two layers ...

" Pre-training with auto-encoder
= (Cascade of 2 networks to speed-up computation

Deep Learning for Detecting Robotic Grasps ENSTA
lan Lenz, Honglak Lee and Ashutosh Saxena, 2014 46 @ weans




Semantic segmentation

Encoder / decoder network

= Use convolution/pooling
= Then generate label image using upsampling/unpooling
= Standard training using gradient descent

Convolutional Encoder-Decoder

Input Output

L

Foching Irdices

RGB Image B Conv + Batch Normaksation + ReLU Segmentation
I Fociing [ Upsampling Softrnax

Segnet: A deep convolutional encoder-decoder architecture for image segmentation ENSTA
V Badrinarayanan, A Kendall, R Cipolla - 2015 AT @ weans




Semantic segmentation

. = T
“-

ENSTA
48 @ IP PARIS

Encoder / decoder network

Test iamplei




Same representation space

Image captioning

image - sentence score Sk

4 sum

Generating image description
® | earn to describe images from examples
= [ earning first aligns objects with words

sequences
= Creates a common representation

for words and images

Dataset of images and sentence descriptions Inferred cormespondences

training image test image
g % T “Tabby cat is leaning”

Taser mouse”

“office lelephone”
“shiny laptop®
- “Tabby cal is sleaping”

A Tabby cat iz leaning
on a wooden table, with | —%

One paw on a laser Daw"
mouse and the ather on “black laptop” » w:e'{::fc!'en .::-l"l’.ln;'e ..:I.e_l:.lr'. B
a black ‘HP*GP' wooden table Messy e O Jooumeants

Deep Visual-Semantic Alignments for Generating Image Descriptions
Andrej Karpathy Li Fei-Fei 49




“straw” “hat” END

Image captioning

Generating image description \
= Arecurrent Neural network is trained f_ CNN,
To generate sentences starting from Hf T
Image encoding

DOY 1 doing backNip on wakeboard

€

Deep Visual-Semantic Alignments for Generating Image Descriptions  £xg7a
Andrej Karpathy Li Fei-Fei, CVPR 2015 50 @wesns

) N DRk shat s AN INE Baatar CONMrUchION WoOrker i Ooran saf

vest s working on road




Deep Learning: summary

Deep learning works well

= Can be applied to lots of different tasks
= \lery versatile approach

= Best performances in many vision tasks

But be aware of

= \ery computationally intensive (can be optimized though)

= Need a lots of training data

= Quite sensitive parameters and open architectural possibilities

ENSTA
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Deep Learning: practical

COLAB practical

" Goto:

https://colab.research.google.com/drive/1cKLQfym5i2e QXOb0kjpgYtsRI
ovNanRU

® |n the ‘File’ menu, select ‘Save a copy in Drive’
= Follow the notebook
= Send a PDF report to david.filliat@ensta-paris.fr

N

ENSTA
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Fin
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