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Abstract—Nowadays, the development of products for modern
cyber-physical systems consists of many stages defined by the
product life cycle (PLC). However, many manufacturers are not
paying full attention - if any at all - to each PLC stage. This,
among others, is causing growth of development costs. Therefore,
the first stage of PLC becomes crucial. Moreover, a significant
part of the development costs might be saved via testing the
required parameters in this early stage, e.g., via modeling tools,
simulation tools or emulators. Considering among others the
current cyber-warfare and everyday growing number of threats,
security is becoming one of the most critical topics in PLC. How-
ever, the security aspects come with significant trade-offs with
performance. This paper focuses on methodology for dealing with
these trade-offs via simulation in the early stage of PLC, where
basic requirements are settled. To establish security requirements,
an extensive Secure Software Development Life Cycle catalog
is used together with an advanced modeling framework TTool
based on UML/SysML-Sec for performance trade-off analysis.
This combination creates a powerful approach for establishing
the balance between security and performance requirements. As
an example, a particular security requirement is selected. Namely,
confidentiality, fulfilled by the encryption algorithm AES. This
introduces the methodology and approach to the co-engineering
issue in the PLC stages, where two different development teams
with also different goals (security, performance) are dealing
together with the single combined issue. Our results should help
to understand the importance of the early PLC stage and show
one possible approach on how to deal with these issues.

I. INTRODUCTION

Nowadays, the product life cycle (PLC) and the product life
cycle management (PLM) belong to the most crucial stages
of manufacturing development processes. These stages help
to manage the company’s product all the way throughout its
whole life-cycle [1]. The PLM considers several product life-
cycle stages [2]: (i) conceive (specification, and concept design
stage), (ii) design (detailed design, validation and analysis
stage containing simulation, and tool design), (iii) realisation
(plan for manufacturing, manufacturing, building/assembling,
and testing together with quality control), and (iv) service (sell
and deliver, use, maintain and support, and dispose). However,
many manufacturers are still not paying sufficient attention
to the PLC processes [3], although, optimization in this area

may result in significant saving of energy, costs, workforce
and much more [4].

The design of modern cyber-physical systems (CPSs) is
currently facing many challenges including the implementa-
tion of safety, security and also performance requirements.
Moreover, the safety, security and performance are mostly
interdependent and the target is to find a reasonable balance or
trade-off [5]. To do so, the companies are investing significant
amounts of their resources into the design and realization
stages. In the past decades, researchers and developers have
created abstractions, which are helping in terms of product
design [6]. These might help in terms of co-engineering and
modeling during the design stage and provide a significant
reduction of invested resources during this specific phase, as
well as during the whole product life cycle [7].

During the development stage, many challenges might oc-
cur, which could throw the developers back to the beginning
of their work. Modeling is a powerful method, which helps to
avoid these mistakes and discover hidden relations or impacts
on the monitored parameters. There are several projects which
are dealing with these issues, such as enCOMPASS (H2020)
[8], CRYSTAL (FP7) [9], ITEA2 MERgE [10], AMASS
(H2020) [11], ASSERT (FP6) [12], INDENICA (FP7) [13],
AQUAS (H2020) [14] and many others. The recent projects,
AQUAS and AMASS, consider the interplay and trade-offs
of all mentioned main parameters - security, safety and per-
formance. This paper focuses on one selected part of the
H2020 AQUAS project, namely the trade-offs between the
security and performance parameters. The catalog tool Secure
Software Development Life Cycle (SSDLC) was considered
for defining the security parameters and security level based
on the most current norms, standards, risk analysis, and best
practice. Together with SSDLC, the simulation, modeling and
verification framework TTool toolkit was used to help discover
possible interconnections between the security requirements
(security) and its impact on the final system response (perfor-
mance) during the development stage, which should result in
significant savings of resources in the later stages of the PLC.



II. BACKGROUND

The continuous digitalization brings new trends such as the
fourth industrial revolution, known as Industry 4.0, in which
the old paradigm of isolated systems is no longer valid [7],
[15], [16], [17]. It consists of a future vision of industrial
development to the smart factory, including reliance on Cyber-
Physical Systems (CPS) and construction of Cyber-Physical
Production Systems (CPPS) [18]. These changes foster au-
tomation, productivity, reliability and completely change the
business model of the current industry. However, these modern
cyber-physical systems increasingly constitute a target for
cyber-attacks [19] for example the 2014 steel mill attack in
Germany [20] or in general attacks such as ICS Insider, IT
Insider, Common Ransomware, Target Ransomware, Zero-Day
Ransomware, Ukraine Attack, Sophisticated Ukraine Attack,
Market Manipulation, and many others [21]. Therefore, en-
suring the security and protecting the system are among the
most crucial tasks for nowadays CPS [22]. The aspects of
the cyber-physical systems that are ensuring security are very
often negatively impacting the performance parameters such as
system response, memory load, CPU load and more [5]. The
negative correlation between performance and security creates
many challenges over the whole PLC. Selection of right
algorithms with considering the possible negative impact on
each other is one of the essential steps before the development,
which might help the companies to save significant resources
in the following stages of the PLC [7]. The current approach
of benchmark testing might be generalized and used for future
projects as well.

This paper summarizes parts of the work that was completed
in the first year of the AQUAS H2020 project [14] for indus-
trial use-case led by Siemens company, and is dealing with co-
engineering (development teams’ cooperation in the different
stages of PLC), tooling (tool interaction in the different stages
of PLC), methodology (methodological work to generalize the
cooperation processes through the PLC processes), and re-
quired trade-offs of safety, security and performance (everyday
issues in the current PLC processes of modern CPS).

The main contribution of this paper is the introduction of
the open tools, which might be used during the early stage of
the PLC - TTool and SSDLC. Moreover, complex analyses of
the mathematical background for the selected algorithm and
security requirement are also provided. The novelty of this
paper relies on a different approach towards the complexity
and trade-off issue between security and performance. The im-
plementation approach is always costly from the development
point of view. Therefore, an example of a possible solution for
an earlier stage of PLC is provided as well. The introduced
methodology may be used across the security requirements and
different use-cases because it consists of independent hardware
and software implementation. Thus it is also portable. It brings
a simple-solve solution for questions such as which security
algorithm might be appropriate, which security level should
be selected, which security recommendation might be still
followed and others.

III. EXPERIMENTAL ENVIRONMENT

The experimental environment includes the two main tools
SSDLC and TTool, which are closely described in the fol-
lowing sub-chapters A and B. The experimental environment
is displayed in Fig. 1 (SL stands for security level and t
represents the system response time).
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Fig. 1. The experimental environment used in the modeling.

The SSDLC software processes the current trends, stan-
dards, security requirements, norms and best practice expe-
riences and based on this information creates a well-arranged
catalog of security requirements with a clear division into
different security levels. These requirements are provided
via UML/XML notation. The UML/XML is a generalized
language, which provides common ground for exchanging data
between different environments. In this case, UML/XML is
used for connecting with other (modeling) tools, particularly
TTool. The TTool analyzes the performance parameters (e.g.,
system response) based on the provided security requirements
while responding to the selected system model.

The security level corresponds to various strength of the
security, which was selected based on several different criteria
mentioned before. The SLmin is the minimal level, which
must be fulfilled based on local law or/and specific standard,
best practice, use-case environment or/and others. On the
other hand, tmax is the maximal acceptable response time,
which might be appropriate in the selected use-case (this
should serve as an example for selected performance and
security parameters for a demonstrative purpose). These two
parameters create in the end the difficult challenge for trade-
off between security and performance:

(SL ≥ SLmin) ∧ (t ≤ tmax). (1)

(1) is the condition, which selects the direction whether the
PLC will continue to the next stage or it will be necessary
to make significant changes and start with the process again.
Also, if the SL will drop under the minimum value (SLmin),
the model must be changed, e.g., we must consider changing
the hardware setup for the model or reconsider our security
approach and significantly change the security direction in the
specific project. This also proves the necessity of this approach
earlier in the PLC stages. The right selection might save
valuable investments and may contribute to saving unnecessary
costs of the development of a product, which would not fulfil
the required parameters in the end.



A. Secure Software Development Life Cycle

The Secure Software Development Life Cycle (SSDLC) is
a complex software developed during the AQUAS project to
help in the initial stages of PLC. It aims to define a general set
of security requirements concerning safety and performance.
It also defines threat models for specific use-cases and creates
a simple tool for implementing the security requirements in
a PLC. Moreover, it provides a common vulnerability scor-
ing system, scoring severities of potential threats and offers
appropriate mitigation. The SSDLC approach includes several
security aspects into development in PLC and provides:

• General security controls for effective risk management
of information systems.

• Flexible catalog of security controls to meet the security
threats, requirements and technologies.

• Involving activities to ensure security of the whole PLC
(creating security requirements, verification of the analy-
sis and design from the security point of view, developer
guidelines, code reviews, verification of security require-
ments, security assessment).

• Treatment of various attack vectors based on generally
accepted standards (NIST, OWASP, Microsoft SDL) .

• Measurement metrics for security control effectiveness.
Secure SDLC approach includes several security aspects
into development in PLC and provides particularly:

– Integration of security activities into the application
development process (creation of security require-
ments, design analysis, guidelines for developers,
code review, penetration tests and others).

– Depending on the business criticality of the devel-
oped application, the appropriate security engage-
ment in the development is made to ensure that
security activities do not disturb the development of
the application unnecessarily.

– Secure SDLC is based on generally accepted stan-
dards and best practice (NIST FIPS, STIG, Microsoft
SDL, CIS Benchmarks) to treat various attack vec-
tors with even quality.

– Ability to integrate security activities into different
developmental models (especially Waterfall, Agile
development).

The SSDLC tool is an environment where different ap-
proaches from standards, recommendations, best practice, and
many others (e.g., ISO/IEC 27034, ISO/IEC 11073-00103
or the frameworks from HITRUST, NIST or FDA/FTC) are
brought together into a sorted list of requirements divided
into security levels (e.g., based on strength of the algorithms).
Connecting the SSDLC with other tools (e.g., TTool) improves
the automation process of PLC. The SSDLC gives a connec-
tion and context between security, safety and performance
parameters. Compared to the static security requirements
definition, the SSDLC provides simple future extension and
straight integration into the PLC process that requires none-
or almost-none personal interaction.

B. TTool and SysML-Sec

TTool is a modeling and verification framework for em-
bedded systems. TTool supports several modeling profiles,
including SysML-Sec [23]. The main idea of SysML-Sec is
to support safety, security and performance mechanisms all
along its method (Fig. 2). The main features are:

1) Analysis is built upon requirements, fault trees and
attack trees.

2) System-level HW/SW partitioning is made upon a func-
tional view (functions and their logical communica-
tions), an architectural view (abstract HW components
e.g. CPUs, buses, etc.), and finally a mapping view
in which functions and communications are mapped to
the architecture. A function mapped onto a processor
becomes a software function. Conversely, a function
mapped onto a HW accelerator becomes a HW function.

3) Software design is mainly built upon the design of
software components and their deployment on more
concrete hardware components.

Verification based on formal verification techniques or sim-
ulation can be performed throughout the SysML-Sec method
using a press-button approach. Reachability of a given fault
or attack can be checked to assess whether a countermeasure
is efficient. Mapped software models can be checked against
safety, security and/or performance properties. Safety verifica-
tion relies on an internal model-checker. Security verification
is performed by an external tool (ProVerif) according to a
default attacker model (Dolev-Yao [24]) or to user-specific
attack scenarios. Performance evaluation relies on abstract
simulation (HW/SW partitioning) or on Cycle Accurate Bit
Accurate simulations (deployment). Finally, executable code
generation can be performed either from mapping or software
models.
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Fig. 2. Diagram of SysML-Sec method used for the modeling in TTool.



IV. ALGORITHMIC MODELLING

To determine the trade-offs between security and perfor-
mance, we need to seek the complexity for different strength
of selected security algorithms. As an example, the data
confidentiality was selected as sufficient demonstrative case
in the general industrial area. The SSDLC defines the AES
algorithm as one of the most suitable algorithms for solving
the data confidentiality for the given system in the indus-
trial environment based (mainly) on standards IEC 62443 and
NIST 800-53. Four main security levels are defined in this
context, depending on the key length (and the corresponding
number of AES rounds) see Table I.

TABLE I
DEFINED SECURITY LEVELS FROM SSDLC FOR DATA CONFIDENTIALITY

SOLVED BY AES CIPHER.

SL 0 1 2 3
Confidentiality N/A AES-128 AES-192 AES-256
Rounds (raes−n) N/A 10 12 14

To estimate the computational complexity, a standard soft-
ware implementation on a low-end microprocessor has been
considered, using well known optimizations (e.g. [25]). To
simplify the explanation we assume that encryption and de-
cryption have the same complexity but different complexities
could very easily be modelled too. Other targets and imple-
mentations (high-end CPU, AES-specific instructions, custom
hardware. . . ) could as well be considered, with different
figures. In the considered use case the AES is used in the
Cipher Block Chaining (CBC) mode, with an initialization
vector, as shown in Figure 3, for which a few extra operations
(loads, looping, exclusive OR) must also be accounted for.

Pi: plaintext block #i
Ci: ciphertext block #i
IV : initialization vector

AESK : encryption with key K
AES−1

K : decryption with key K

P1 Pb−2 Pb−1P0

IV

C0 C1 Cb−2 Cb−1

C1 Cb−2 Cb−1C0

IV

P0 P1 Pb−2 Pb−1

AES−1
K AES−1

K AES−1
K AES−1

K

AESKAESKAESKAESK

Fig. 3. The AES cipher in CBC mode - encryption (top) and decryption
(bottom).

Equation (2) models the number of instructions per 128-bits
block encryption for different AES key lengths where i0 is the
initialization and CBC processing, im is the number of internal
rounds, iraes−n

is the last round and iaes−n is the encryption
of a 128-bits block using AES-n in CBC mode.

iaes−n = i0 + (raes−n − 1)× im + iraes−n . (2)

The estimated number of instructions, for AES encryption,
is displayed in Table II

TABLE II
THE ESTIMATED NUMBER OF INSTRUCTIONS FOR DIFFERENT PARTS OF

AES ALGORITHM AND DIFFERENT KEY-SIZES.

i0 im iraes−n iaes−128 iaes−192 iaes−256

100 300 200 3000 3600 3900

Finally, equation (3) models the total number of instructions
for a b-blocks message.

iaes−n−cbc−b = b× iaes−n. (3)

The model used in TTool is described in Figure 4. There
are two communication sides (T1, T2), for which the encryp-
tion/decryption logic E(K,M) = C and D(K,C) = M (K
for key, M for message, C for cipherdata, E for encryption,
and D for decryption) and defined communication link be-
tween these two sides have been implemented.

comm(1)

sec:Cipherdata

sec:Cipherdata

T1 T2
comm

comm

comm(1)

sec:Cipherdata

sec:Cipherdata

comm

Fig. 4. The encryption and decryption model used in simulation environemtn
TTool framework

V. EXPERIMENTAL RESULTS

The experimental measurements were conducted with the
following settings for CPU: 1 core of CPU, 8 B of data size,
idle time 10 cycles, pipeline of 5 slots, task switch time 20
cycles, one instruction per clock cycle, and CPU clock rate
was set to 2,9 GHz. For each testing, the input data was set on
1024 B with an ideal transmission channel. The final results
from experimental measurements are displayed in Figure 5.
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Fig. 5. Computational complexity for different key-sizes of AES cipher.



However, generalization and more relative numbers are
needed for trade-off investigation. Tab. III shows comparison
of two different known public benchmarks for cryptographic
libraries CMTool [26] and Crypto++ [27].

TABLE III
ENCRYPTION SPEED BASED ON DIFFERENT SECURITY LEVELS

(KEY-SIZES) IN CYCLES PER BYTE.

SL 0 1 2 3
Simulated N/A 201.236 240.116 278.996
CMTool N/A 17.783 20.283 23.217
Crypto++ N/A 12.600 15.400 18.200

As the table shows the accuracy of relative numbers is
varied and it does not fully correspond to the real use-cases.
This is caused by different approaches, implementations and/or
optimization methods (memory, sbox, speedup, security and
many others) [28], [29], [30], [31], [32], [33]. Therefore,
we might look at the percentual difference of complexity in
security levels. We define TTool simulation as the default value
and use the delta approach to define the difference, see Tab.
IV

TABLE IV
RECOMPUTED PERCENTUAL DIFFERENCES IN SPEED FOR DIFFERENT

SECURITY LEVELS.

SL 0 1 2 3
Simulated N/A 100%+0 +19%+0 +38%+0
CMTool N/A 100%+0 +14%-5 +31%-7
Crypto++ N/A 100%+0 +22%+3 +44%+6

These results show that each security level slows down
the speed by 19 ± 5% (difference between SL1 and SL3
38 ± 7%). However, the issue with different implementation
still remains, which might be a hard challenge. We might
look at the current public benchmark of lightweight BearSSL
[34]. There are different implementations of AES: (i) a classic
implementation with lookup tables (not constant-time) - ”big”,
(ii) a compact implementation with small tables (non constant-
time) - ”small”, (iii) a constant-time implementation with
bitslicing over 32-bit registers with two blocks processed
in parallel when the encryption mode allows it - ”ct”, and
(iv) a constant-time implementation to ”ct” with using 64-bit
variable - ”ct64”. Three different types of CPUs have been
measured: (i) an Intel Xeon CPU (E3-1220 V2) at 3.10 GHz
(x64) - ”amd64”, (ii) an Intel Xeon CPU (E3-1220 V2) at
3.10 GHz (x86) - ”i386”, and (iii) an ARM Cortex M0+ at
48 MHz - ”m0+”. The recomputed results for percentual delta
difference and speed in cycles per byte are displayed in Tab.
V.

The results show that the 38 ± 8% is accurate for the
difference between SL1 and SL3 and correspond to all deltas
in the table above. This approach helps when there is an
investigation of whether or not the solution might move to
the next security level (e.g., because of new regulations or
others) without any necessary additional implementations or
tests. This, of course, saves many resources on the side of

TABLE V
RECOMPUTED PERCENTUAL DIFFERENCES IN SPEED FOR DIFFERENT

SECURITY LEVELS IN BEARSSL FOR DIFFERENT IMPLEMENTATIONS AND
HARDWARE.

CPU big small ct ct64

amd64
SL 1 [cyc./B] 18.257 77.384 56.353 33.557
SL 3 [cyc./B] 23.957 105.802 77.365 43.928

∆ [%] 31.2 36.7 37.3 30.9

i386
SL 1 [cyc./B] 24.369 95.946 72.396 83.468
SL 3 [cyc./B] 31.084 130.088 98.163 111.712

∆ [%] 27.62 35.6 35.6 33.8

m0+
SL 1 [cyc./B] 246.457 640.512 425.909 455.927
SL 3 [cyc./B] 332.341 880.411 580.411 610.454

∆ [%] 34.7 37.5 36.3 33.9

development and might help with the decision process, e.g.,
with addressing the minimum time needed for delivering
critical messages or different performance questions.
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VI. CONCLUSION

The paper discusses the importance of the product life cycle
process and its stages. In this context, a particular trade-off
issue between performance and security is discussed. Several
approaches from different international projects were analysed,
with particular focus on AQUAS project. The security-level
approach derived from IEC 62443 and other international
standardization such as NIST 800-53 or best practice was
highlighted. The security requirements were processed via the
SSDLC catalogue and particular confidentiality requirements
were selected with solution via Advanced Encryption Standard
(AES). These serve as an example for introduced appraoch
in early-stages of PLC. The security levels were settled and
computational complexity was computed. These results serve
as an input to the TTool simulation environment. The final
results of the complexity analysis and simulation showed that
it is possible to show the percentual relation between each
security level independently on hardware and implementation.
This should serve in the decision processes in PLC phases
before design or for example after regulation (law) change. It
is obvious that it is necessary to think about the performance
and security parameters already in the early stages of PLC
as it might reduce significant number of issues caused by
insufficient number proposal, which will lead to going back
in PLC.
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