
AI-Driven Consistency of SysML Diagrams
Bastien Sultan

bastien.sultan@telecom-paris.fr
LTCI, Télécom Paris, Institut Polytechnique de Paris

Sophia-Antipolis, France

Ludovic Apvrille
ludovic.apvrille@telecom-paris.fr

LTCI, Télécom Paris, Institut Polytechnique de Paris
Sophia-Antipolis, France

ABSTRACT
Graphical modeling languages, expected to simplify systems anal-
ysis and design, present a challenge in maintaining consistency
across their varied views. Traditional rule-based methods for ensur-
ing consistency in languages like UML often fall short in addressing
complex semantic dimensions. Moreover, the integration of Large
Language Models (LLMs) into Model Driven Engineering (MDE) in-
troduces additional consistency challenges, as LLM’s limited output
contexts requires the integration of responses. This paper presents
a new framework that automates the detection and correction of
inconsistencies across different views, leveraging formally defined
rules and incorporating OpenAI’s GPT, as implemented in TTool.
Focusing on the consistency between use case and block diagrams,
the framework is evaluated through its application to three case
studies, highlighting its potential to significantly enhance consis-
tency management in graphical modeling.

CCS CONCEPTS
• Computing methodologies→Model development and anal-
ysis; Artificial intelligence; • Software and its engineering
→ System modeling languages; Unified Modeling Language
(UML).

ACM Reference Format:
Bastien Sultan and Ludovic Apvrille. 2024. AI-Driven Consistency of SysML
Diagrams. In ACM/IEEE 27th International Conference on Model Driven En-
gineering Languages and Systems (MODELS ’24), September 22–27, 2024,
Linz, Austria. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/
3640310.3674079

1 INTRODUCTION
In the context of MDE methods, system design typically involves
the creation of various models, each providing a distinct perspective
of the system. For example, UML and SysML employ several types
of diagrams, including use case diagrams (UCDs) for describing
the high-level functional architecture and interactions with the sys-
tem’s environment, class/block diagrams for detailing the system’s
logical architecture, and state-machine diagrams (SMDs) for mod-
eling algorithmic behavior aspects. Ensuring consistency between
those diagrams is challenging and time consuming, while being
critical to ensure system correctness. Traditionally, consistency has
been managed through the definition and enforcement of sets of

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MODELS’24, September 22–27, 2024, Linz, Austria
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0504-5/24/09
https://doi.org/10.1145/3640310.3674079

rules [14, 27, 28]. These approaches, while capturing critical seman-
tic relationships, may leave more complex semantic gaps unbridged
between the models. Recent contributions in the domain of Large
Language Models (LLMs) suggest a promising way for addressing
these more advanced semantic gaps more effectively [9, 17].

Furthermore, il will become increasingly common to generate
different system views from the same system specification using
LLMs [3, 6]. New challenges then arise, due to the inherent limi-
tations of these models, such as their maximum token output (for
instance, capped at 4,096 tokens for OpenAI’s GPT-3.5 and 4). This
limitation induces the generation of diagrams through multiple
queries and answers. Due to the stochastic nature of LLMs, this
multi-step generation introduces the risk of inconsistencies not
only between different diagrams but also within different parts of
the same diagram, highlighting the need for adapted mechanisms
to ensure diagram consistency [6].

This paper introduces a new approach to (1) use LLMs to ensure
coherence between SysML diagrams and (2) ensure the internal con-
sistency of LLM-generated diagrams. To achieve this, we propose
a novel framework that builds upon TToolAI [3], incorporating
a feedback loop that leverages rules, LLMs, and, when required,
human engineers to enforce consistency both across diagrams and
within diagrams. Our general consistency approach applies to any
UML or SysML diagram, yet the paper and our current implemen-
tation focuses on the internal consistency of UCDs and block dia-
grams (BDs), and on the coherence between UCDs (used for system
analysis) and BDs (used for system design).

The rest of the paper is organized as follows. Section 2 gives
an overview of the related works. Section 3 introduces formal def-
initions of SysML UCDs and BDs, a set of formal rules tailored
to ensure internal consistency of LLM-generated UCDs and BDs
and to ensure coherence1 between these two classes of diagrams.
Section 4 provides the description of our framework. Section 5
evaluates the contribution on three case-studies and provides a
step-by-step description of the approach. Section 6 discusses our
approach in light of its evaluation and Section 7 concludes the
article.

2 RELATEDWORKS
2.1 Enforcing UML/SysML Models Consistency
The design of complex systems always involves the development of
various models employing diverse formalisms. Each model empha-
sizes a specific aspect of the system, such as software architecture
through class diagrams, discrete behavior via automata/statecharts,
continuous behavior through differential equations and state rep-
resentations, or the physical architecture through plans. Establish-
ing semantic correspondences among these heterogeneous views

1In this paper, we treat the terms consistency and coherence as synonymous.

https://conf.researchr.org/track/models-2024/models-2024-artifact-evaluation#Submission-Guidelines-
https://conf.researchr.org/track/models-2024/models-2024-artifact-evaluation#Submission-Guidelines-
https://orcid.org/0000-0002-5031-5794
https://orcid.org/0000-0002-1167-4639
https://doi.org/10.1145/3640310.3674079
https://doi.org/10.1145/3640310.3674079
https://doi.org/10.1145/3640310.3674079

MODELS’24, September 22–27, 2024, Linz, Austria Sultan et Apvrille

presents a significant challenge in the field of complex systems
engineering [10]. Even when narrowing the scope to a unified
formalism like UML/SysML, this issue persists: UML indeed encom-
passes multiple views, each based on distinct concepts. Some of
these concepts recur across different views: for instance, actors ap-
pear in both UCDs and sequence diagrams, while signals are found
in block/class diagrams and statecharts. This recurrence provides a
basis for reinforcing consistency across different views.

A substantial body of work focuses on ensuring the consistency
of UML/SysML views, including maintaining cross-view consis-
tency as well as internal consistency within each view. Some stud-
ies introduce new models aimed at deriving various views from a
unified metamodel, such as [23], others rely on mapping models
to formal ontologies to check for their internal consistency with
a set of constraints—including OCL constraints—as demonstrated
by [18], and most of them focus on the definition and application
of consistency rules. Comprehensive literature reviews on these
rule-based methodologies are available [15, 26, 27]: Torre et al. [27]
identified 95 publications, starting from 2013, that address UML
diagram consistency by proposing at least one consistency rule. As
explained in [28], these publications propose approaches ranging
from manual to automated consistency rule checks, including tool-
assisted methods [20]. While these strategies are highly effective
and relevant, they inherently only address inconsistencies defined
by rules or predefined constraints, potentially leaving semantical
inconsistencies unresolved. As evidence of this, to the best of our
knowledge, some rules we propose in Section 3, especially those
focusing on crossed-consistency between SysML UCDs and BDs,
have not been covered in existing literature reviews.

Furthermore, existing rules may not adequately address the inter-
nal consistency of diagrams generated by LLMs: since they where
mainly designed to ensure consistency of human-generated dia-
grams, they may not cover trivial aspects (e.g., ensuring a UCD
is not empty) that however need to be enforced when generating
models with LLM-based tools.

Finally, some semantic inconsistencies may be difficult to address
by rules that can be checked algorithmically (e.g., if two synony-
mous names are used in different diagrams to designate the same
modeled object—as Subsection 5.1 will illustrate), therefore calling
for complementary approaches.

2.2 Integrating LLMs into MDE
In the past two years, the broad release of LLMs like OpenAI’s
GPT [1] has opened new promising solutions for enhancing engi-
neering methodologies, particularly in modeling stages. The avail-
able literature reports the use of LLMs for generating diverse types
of models with promising outcomes, including domain models [8],
goal models [7, 21], business process models [11], and scenario-
based models [12]. In direct link with this paper’s very subject is
the work by Ahmad et al. [2], which provides an insightful overview
of ChatGPT’s application in various software architecture tasks,
including generating requirements, creating UML models, and eval-
uating these models. Similarly, Camara et al. [6] have conducted a
detailed investigation into the use of GPT for generating UML class
diagrams from natural language specifications. Their findings high-
light that while GPT can efficiently produce syntactically correct

models, these models often lack consistency and require iterative
refinement to achieve semantic accuracy, demanding considerable
effort from the users in the modeling process. TTool-AI [3] tackles
this iterative refinement issue. This GPT-based framework, inte-
grated with the MDE toolkit TTool, incorporates an automated
feedback loop, significantly reducing the need for manual interven-
tion in refining LLM outputs. Consequently, TTool-AI enables for
the generation of SysML BDs and SMDs directly from natural lan-
guage specifications through a single-click operation. However, the
diagrams generated by TTool-AI may still require manual refine-
ment for improving their consistency, and the framework does not
yet support AI-based generation for all SysML diagrams. The work
we present in this paper builds upon TTool-AI and takes an initial
step towards addressing these two limitations and more broadly, to-
wards helping TTool users ensuring the consistency of their models
throughout the entire MDE process, as discussed below.

2.3 TTool
TTool2 is an open-source MDE framework. It supports graphi-
cal and textual creation of SysML models using formally defined
SysML profiles targeting real-time systems and design space explo-
ration [16, 22], code generation, and formal verification through
simulation and model-checking—the formal semantics of SysML
profiles enable direct model-checking of SysML models [5] without
the need for intermediate formalisms, minimizing the discrepancy
between the model creator’s intentions and the semantics being
verified. TTool incorporates mechanisms to ensure the consistency
of certain SysML views within its graphical interface. For example,
in a block diagram, the user cannot connect two signals unless they
were previously defined within the blocks. However, the scope of
these mechanisms is limited and does not cover all diagram types. In
particular, there are no mechanisms to enforce consistency between
analysis diagrams—such as use-case and activity diagrams—and de-
sign diagrams—such as block diagrams. Our contribution enhances
TTool by introducing a modeling assistant that takes a first step
towards helping users in creating consistent diagrams from system
analysis to system design.

2.4 AI-Driven UML/SysML Models Consistency
While LLMs have been widely used for model generation, to the
best of our knowledge, no research has been published on their
application in ensuring both internal consistency within modeling
views and consistency across different views. In a related area,
a recent bachelor’s thesis explores the use of LLMs to maintain
consistency between UML activity diagrams and the corresponding
generated source code [4]. On connected research topics, LLMs
have also been used to detect inconsistencies, whether between
source code and its description in natural language [17], or for
detecting grammatical inconsistencies [9].

Given that their functioning relies on detecting similarities be-
tween a text and a corpus of texts, and given their proficiency in
understanding models and specifications—as demonstrated by the
works cited above—LLMs might be effective tools for determining
whether two models, and therefore two texts, accurately describe

2https://ttool.telecom-paris.fr

https://ttool.telecom-paris.fr

AI-Driven Consistency of SysML Diagrams MODELS’24, September 22–27, 2024, Linz, Austria

the same object. Consequently, they should constitute an interest-
ing complementary approach to rule-based methods for achieving
cross-view consistency in UML/SysML diagrams.

3 THEORETICAL CONTRIBUTIONS
Our contribution integrates rule-based and LLM-based method-
ologies to guarantee both internal and cross-consistency among
LLM-generated or manually-generated SysML diagrams. In this
section, we outline the specific consistency rules incorporated into
our framework. As in this paper we emphasize UCDs and BDs, we
initiate our discussion with their formal definitions. These defini-
tions then enable for the accurate establishment of our consistency
rules.

3.1 Formal Semantics of SysML Use Case and
Block Diagrams

Definition 1 (Alphabet and Names).
• A = {𝑎,𝐴,𝑏, 𝐵, . . . , 𝑧, 𝑍 } ∪ {_} is the alphabet.
• A∗ is the set of all finite sequences over A, ∗ being the Kleene
star operator.

• A∗𝑉 ⊊ A∗ is the set of verbs, and A∗𝑁 ⊊ A∗ is the set of
nouns.

• ∀𝑎 ∈ A∗ with a length exceeding 𝑖 ∈ N, we define 𝑎𝑖 as the
subsequence composed of its initial 𝑖 characters.

3.1.1 Use Case Diagrams.

Definition 2 (Basic Sets for Use Case Diagrams).
• TypesE = {𝑖𝑛𝑐𝑙𝑢𝑑𝑒, 𝑒𝑥𝑡𝑒𝑛𝑑, 𝑠𝑝𝑒𝑐𝑖𝑎𝑙𝑖𝑧𝑒, 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒} is a set of
edge types.

• TypesV = {𝑎𝑐𝑡𝑜𝑟,𝑢𝑠𝑒𝑐𝑎𝑠𝑒} is a set of vertex types.

Definition 3 (Use Case Diagram).
A use case diagram is a 4-uple ⟨(𝑉 , 𝐸), 𝑡𝑦𝑝𝑒𝑉 , 𝑛𝑎𝑚𝑒𝑉 , 𝑡𝑦𝑝𝑒𝐸⟩ where:

• (𝑉 , 𝐸) is a directed graph.
• 𝑉 is a set of vertices.
• 𝑡𝑦𝑝𝑒𝑉 : 𝑉 → TypesV is a function that types vertices.

Note: 𝑉 = 𝑉𝐴 ⊔ 𝑉𝑈
3, where 𝑉𝐴 = {𝑣 ∈ 𝑉 |𝑡𝑦𝑝𝑒𝑉 (𝑣) = 𝑎𝑐𝑡𝑜𝑟 } and

𝑉𝑈 = {𝑣 ∈ 𝑉 |𝑡𝑦𝑝𝑒𝑉 (𝑣) = 𝑢𝑠𝑒𝑐𝑎𝑠𝑒}. Each vertex of 𝑉 has a name,
and a vertex of 𝑉𝑈 may have in addition an extension point name.
We denote with𝑉𝑈𝑒𝑥𝑡 ⊆ 𝑉𝑈 the set of vertices that have an extension
point, and 𝑉𝑈𝑒𝑥𝑡 = 𝑉𝑈 \𝑉𝑈𝑒𝑥𝑡 .

• 𝑛𝑎𝑚𝑒𝑉 :

{
𝑉𝐴 ⊔𝑉𝑈𝑒𝑥𝑡 → A∗
𝑉𝑈𝑒𝑥𝑡 → A∗2

is a total function that names

vertices (and their possible extension point). It is such that
∀𝑣 ∈ 𝑉𝐴, ∃𝑖 ∈ N s.t. 𝑛𝑎𝑚𝑒𝑉 (𝑣)𝑖 ∈ A∗𝑁 , ∀𝑣 ∈ 𝑉𝑈𝑒𝑥𝑡 , ∃𝑖 ∈
N s.t. 𝑛𝑎𝑚𝑒𝑉 (𝑣)𝑖 ∈ A∗𝑉 and ∀𝑣 ∈ 𝑉𝑈𝑒𝑥𝑡 , ∃(𝑖, 𝑗) ∈ N2

s.t., if we denote 𝑛𝑎𝑚𝑒𝑉 (𝑣) with (𝑛𝑎𝑚𝑒𝑉 (𝑣)1, 𝑛𝑎𝑚𝑒𝑉 (𝑣)2),
𝑛𝑎𝑚𝑒𝑉 (𝑣)1𝑖 ∈ A ∗𝑉 ∧𝑛𝑎𝑚𝑒𝑉 (𝑣)2𝑗 ∈ A∗𝑉 .

• 𝐸 ⊂ 𝑉 2 is a set of edges. It is an irreflexive and antisymmetric
relation such that ∀𝛼 ∈ 𝑉𝐴, ∃(𝑢, 𝛼) ∈ 𝐸.

• 𝑡𝑦𝑝𝑒𝐸 : 𝐸 → TypesE is a function that types edges, such that
𝑡𝑦𝑝𝑒𝐸 : 𝐸 ∩ 𝑉𝑈 × 𝑉𝐴 → {𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒}, 𝑡𝑦𝑝𝑒𝐸 : 𝐸 ∩ 𝑉 2

𝑈
→

TypesE \ {𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒} and 𝑡𝑦𝑝𝑒𝐸 : 𝐸 ∩𝑉 2
𝐴
→ {𝑠𝑝𝑒𝑐𝑖𝑎𝑙𝑖𝑧𝑒}.

3"⊔" denotes the disjoint union operator.

3.1.2 Block Diagrams.
The definitions below derive from the block diagrams definitions
previously introduced in [24, 25].

Definition 4 (Basic Sets for Block Diagrams).
• Blocks is a set of SysML blocks.
• TypesA = {Bool,Z,N} is a set of attribute types.
• Attr is a set of attributes, typed by typeA : Attr → TypesA.
• Profiles = {(𝑡1, · · · , 𝑡𝑛) | 𝑛 ∈ N ∧ ∀1 ≤ 𝑖 ≤ 𝑛, 𝑡𝑖 ∈ TypesA}.
• Sign = InSign⊔OutSign is a set of signals, typed by 𝑝𝑟𝑜 𝑓 𝑖𝑙𝑒 :
Sign → Profiles.
Signals may be input or output signals: InSign contains input
signals and OutSign contains output signals.

• Meth is a set ofmethods, typed by 𝑝𝑟𝑜 𝑓 𝑖𝑙𝑒 : Meth → Profiles.
• Ports is a set of untyped ports enabling the connection of
signals between blocks over links. A link is a pair of ports
having a communication semantics.

• CommSemantics = {({𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑜𝑢𝑠}×{𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡,𝑢𝑛𝑖𝑐𝑎𝑠𝑡}∪
{𝑎𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑜𝑢𝑠} × {𝑙𝑜𝑠𝑠𝑦, 𝑢𝑛𝑙𝑜𝑠𝑠𝑦} × {𝑏𝑙𝑜𝑐𝑘𝑖𝑛𝑔 𝑤𝑟𝑖𝑡𝑒, 𝑛𝑜𝑛 −
𝑏𝑙𝑜𝑐𝑘𝑖𝑛𝑔 𝑤𝑟𝑖𝑡𝑒}) × {𝑝𝑢𝑏𝑙𝑖𝑐, 𝑝𝑟𝑖𝑣𝑎𝑡𝑒}} is the set of links com-
munication semantics.

Definition 5 (Block Description).
A block description is a 10-uple ⟨𝐴,𝑀, 𝑃, 𝑆𝑖 , 𝑆𝑜 , 𝑛𝑎𝑚𝑒𝐴, 𝑛𝑎𝑚𝑒𝑀 ,

𝑛𝑎𝑚𝑒𝑆𝑖 , 𝑛𝑎𝑚𝑒𝑆𝑜 , 𝑡𝑦𝑝𝑒⟩ where 𝐴 ⊂ Attr, 𝑀 ⊂ Meth, 𝑆𝑖 ⊂ InSign,
𝑆𝑜 ⊂ OutSign, 𝑃 ⊂ Ports and all these sets are finite. For 𝑋 ∈
{𝐴,𝑀, 𝑆𝑖 , 𝑆𝑜 }, 𝑛𝑎𝑚𝑒𝑋 : 𝑋 → A∗ is an injective function that names
each element of 𝑋 . 𝑡𝑦𝑝𝑒 ∈ {𝑠𝑦𝑠𝑡𝑒𝑚, 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡} defines the type
of the block.

The concept of block type is introduced in Definition 5 to clearly
distinguish between blocks in the BD that represent parts of the sys-
tem, and those necessary for simulation or modeling the system’s
external communications, which depict its environment

Definition 6 (Block Diagram).
A block diagram is a 6-uple ⟨B, 𝑑, 𝑛𝑎𝑚𝑒𝐵,L, 𝜎, C⟩ where:

• B is a finite set of blocks.
• The function 𝑑 assigns a description to each block in the set B.
For𝐵 ∈ B, we denote𝑑 (𝐵) with {𝐴𝐵, 𝑀𝐵, 𝑃𝐵, 𝑆𝑖𝐵, 𝑆𝑜𝐵, 𝑛𝑎𝑚𝑒𝐴𝐵

,

𝑛𝑎𝑚𝑒𝑀𝐵
, 𝑛𝑎𝑚𝑒𝑆𝑖𝐵, 𝑛𝑎𝑚𝑒𝑆𝑜𝐵, 𝑡𝑦𝑝𝑒𝐵},

⊔
𝐵∈B

𝑃𝐵 withP,
⊔

𝐵∈B
𝑆𝑜𝐵

with S𝑜 and
⊔

𝐵∈B
𝑆𝑖𝐵 with S𝑖 .

• 𝑛𝑎𝑚𝑒𝐵 : B → A∗ is an injective function that names blocks.
• L ⊂ P × P is a set of links. It is an irreflexive and antisym-
metric partial injection.

• The function 𝜎 : L → CommSemantics assigns a communi-
cation semantics to each link.

• C ⊆ L ×S𝑜 ×S𝑖 is a set of connections ⟨⟨𝑝𝑜 , 𝑝𝑖 ⟩, 𝑠𝑜 , 𝑠𝑖 ⟩ such
that 𝑝𝑜 and 𝑠𝑜 belong to the same block, and 𝑝𝑖 and 𝑠𝑖 belong
to the same block.

3.2 Consistency Rules
The rule-based approach we employ in our contribution is primarily
intended to tackle common errors made by LLMs (and sometimes
even by experts) in constructing SysML diagrams. Consequently,
the rules we propose below are rules firstly designed for LLM-
generated outputs rather than comprehensive consistency rules. It

MODELS’24, September 22–27, 2024, Linz, Austria Sultan et Apvrille

Table 1: UCD internal consistency rules

Rule Formal expression Reference (when appli-
cable)

RU1. There is at least one actor and one use case
in the diagram

𝑉𝐴 ≠ ∅ ∧𝑉𝑈 ≠ ∅ —

RU2. Any link shall involve two actors/use cases
existing in the diagram

𝐸 ⊂ 𝑉 2. Algorithmically, our framework enforces this condition:
∀(𝑣1, 𝑣2) ∈ 𝐸, ∃(𝑣3, 𝑣4) ∈ 𝑉 2 such that (𝑛𝑎𝑚𝑒𝑉 (𝑣3) = 𝑛𝑎𝑚𝑒𝑉 (𝑣1) ∧
𝑛𝑎𝑚𝑒𝑉 (𝑣4) = 𝑛𝑎𝑚𝑒𝑉 (𝑣2))

—

RU3. Each actor/use case shall have a name 𝑛𝑎𝑚𝑒𝑉 is a total function —

RU4. Actor names shall start with a noun ∀𝑣 ∈ 𝑉𝐴, ∃𝑖 ∈ N s.t. 𝑛𝑎𝑚𝑒𝑉 (𝑣)𝑖 ∈ A∗𝑁 [13]

RU5. Use case names shall start with
a verb

∀𝑣 ∈ 𝑉𝑈𝑒𝑥𝑡 , ∃𝑖 ∈ N s.t. 𝑛𝑎𝑚𝑒𝑉 (𝑣)𝑖 ∈ A∗𝑉 Derives from [27] and [13]∀𝑣 ∈ 𝑉𝑈𝑒𝑥𝑡 , ∃(𝑖, 𝑗) ∈ N2 s.t., if we denote 𝑛𝑎𝑚𝑒𝑉 (𝑣) with
(𝑛𝑎𝑚𝑒𝑉 (𝑣)1, 𝑛𝑎𝑚𝑒𝑉 (𝑣)2) , 𝑛𝑎𝑚𝑒𝑉 (𝑣)1𝑖 ∈ A ∗𝑉 ∧𝑛𝑎𝑚𝑒𝑉 (𝑣)2𝑗 ∈
A∗𝑉

RU6. Any link between an actor and a use case
shall be an association link

𝑡𝑦𝑝𝑒𝐸 : 𝐸 ∩𝑉𝑈 × 𝑉𝐴 → {𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒 } [13]

RU7. Any link between two actors shall be an
specialization link

𝑡𝑦𝑝𝑒𝐸 : 𝐸 ∩𝑉 2
𝐴
→ {𝑠𝑝𝑒𝑐𝑖𝑎𝑙𝑖𝑧𝑒 } —

RU8. Each actor shall be linked to at least one use
case

∀𝛼 ∈ 𝑉𝐴, ∃(𝑢, 𝛼) ∈ 𝐸 —

RU9. At most one link shall exist between two
given elements

𝐸 is an antisymmetric relation —

RU10. Any link between two use cases shall be
either a specialization, inclusion or extension link

𝑡𝑦𝑝𝑒𝐸 : 𝐸 ∩𝑉 2
𝑈

→ TypesE \ {𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒 } Derives from [13]

should however be noted that TTool, the framework we rely on,
incorporates a syntax checker for SysML diagrams. This feature en-
forces numerous consistency rules established in existing literature
directly through syntax verification, eliminating the necessity for
these rules to be replicated in our LLM-specific rule set. Our focus,
therefore, is on developing tailored rules that mitigate LLM-related
inaccuracies during diagram generation. This rule list was devel-
oped through (i) a literature review on SysML consistency rules, (ii)
a literature review on the use of LLMs in UML/SysML modeling,
and (iii) intensive testing of BDs and UCDs LLM-based generation.
These processes enabled us to identify the inconsistencies most
frequently introduced by LLMs, incorporating feedback from the
community as well as our own observations. Despite our rule list
addresses all the inconsistencies detected—and that can be tackled
with formal rules with respect to the definitions introduced in Sub-
section 3.1—, it is possible that some inconsistencies have not been
captured in the rule definition process. Therefore this list is set to
evolve.

3.2.1 UCD Internal Consistency Rules. The LLM on which our
contribution relies generates UCDs that may not comply with the
constraints defined in Definition 3. Our implementation ensures
that generated diagrams will feature actors, use cases, and their in-
terconnections; however, these connections may have typing errors
or incorporate actors and use cases not present in the diagram.More
formally, the LLM generates a 4-uple ⟨(𝑉 , 𝐸), 𝑡𝑦𝑝𝑒𝑉 , 𝑛𝑎𝑚𝑒𝑉 , 𝑡𝑦𝑝𝑒𝐸⟩
where𝑉 = 𝑉𝐴 ⊔𝑉𝑈 ⊂ Vertices is a finite set of vertices, Vertices be-
ing the universe set containing all vertices, 𝐸 ⊂ Vertices2 is a finite

set, 𝑡𝑦𝑝𝑒𝑉 is defined as per Definition 3, 𝑛𝑎𝑚𝑒𝑉 : Vertices → A∗
is a function that name vertices, and 𝑡𝑦𝑝𝑒𝐸 : 𝐸 → TypesE types
elements of 𝐸. To ensure that the output is a valid UCD as per
Definition 3, the generated 4-uple must be checked for the set of
contraints introduced in Table 1.

3.2.2 BD Internal Consistency Rules. Similarly to UCD generation,
BDs may not comply with all constraints introduced in Definition 6.
Indeed, it may include attributes with types different than boolean
or integer (the default ones supported by TTool), and similarly, it can
produce methods whose signatures are not restricted to integer and
boolean types. It may also generate signals that are not categorized
as input or output, fail to type the communication semantics of
links between blocks, and generate connections between blocks
and signals that do not yet exist in the BD. More formally, the LLM
generates a 6-uple ⟨B, 𝑑, 𝑛𝑎𝑚𝑒𝐵,L, 𝜎, C⟩ that differs on Definition 6
on the following points:

• L ⊂ Blocks2.
• C ⊂ Blocks2 × Sign2𝑔𝑒𝑛 , where where Sign𝑔𝑒𝑛 is a set of
signals.

∀𝐵 ∈ B, if we denote 𝑑 (𝐵) with ⟨𝐴,𝑀, 𝑃, 𝑆, 𝑛𝑎𝑚𝑒𝐴, 𝑛𝑎𝑚𝑒𝑀 , 𝑛𝑎𝑚𝑒𝑆𝑖 ,

𝑛𝑎𝑚𝑒𝑆𝑜 , 𝑡𝑦𝑝𝑒⟩,

• 𝐴 ⊂ Attr𝑔𝑒𝑛 where Attr𝑔𝑒𝑛 is a set of attributes.
• 𝑀 ⊂ Meth𝑔𝑒𝑛 whereMeth𝑔𝑒𝑛 is a set of methods.
• 𝑆 ⊂ Sign𝑔𝑒𝑛 .
• For 𝑋 ∈ {𝐵,𝐴,𝑀, 𝑆𝑖 , 𝑆𝑜 }, 𝑛𝑎𝑚𝑒𝑋 is not injective.

AI-Driven Consistency of SysML Diagrams MODELS’24, September 22–27, 2024, Linz, Austria

Table 2: BD internal consistency rules

Rule Formal expression

RB1. There is at least one block in a BD B ≠ ∅

RB2. Each block shall have a unique name ∀(𝐵1, 𝐵2) ∈ B2, 𝐵1 ≠ 𝐵2 =⇒ 𝑛𝑎𝑚𝑒𝐵 (𝐵1) ≠ 𝑛𝑎𝑚𝑒𝐵 (𝐵2)

RB3. Each attribute shall have a unique name ∀𝐵 ∈ B, ∀(𝑎1, 𝑎2) ∈ 𝐴2
𝐵
, 𝑎1 ≠ 𝑎2 =⇒ 𝑛𝑎𝑚𝑒𝐴𝐵

(𝑎1) ≠ 𝑛𝑎𝑚𝑒𝐴𝐵
(𝑎2)

RB4. Each method shall have a unique name ∀𝐵 ∈ B, ∀(𝑚1,𝑚2) ∈ 𝑀2
𝐵
,𝑚1 ≠𝑚2 =⇒ 𝑛𝑎𝑚𝑒𝑀𝐵

(𝑚1) ≠ 𝑛𝑎𝑚𝑒𝑀𝐵
(𝑚2)

RB5. Each signal shall have a unique name ∀𝐵 ∈ B, ∀(𝑠1, 𝑠2) ∈ (𝑆𝑖𝐵 ⊔ 𝑆𝑜𝐵)2, 𝑠1 ≠ 𝑠2 =⇒ 𝑛𝑎𝑚𝑒𝑆𝐵 (𝑠1) ≠ 𝑛𝑎𝑚𝑒𝑆𝐵 (𝑠2)
where 𝑛𝑎𝑚𝑒𝑆𝐵 : 𝑆𝑖𝐵 ⊔ 𝑆𝑜𝐵 → A∗

𝑠 ↦→
{
𝑛𝑎𝑚𝑒𝑆𝑖𝐵 (𝑠) if 𝑠 ∈ 𝑆𝑖

𝑛𝑎𝑚𝑒𝑆𝑜𝐵 (𝑠) if 𝑠 ∈ 𝑆𝑜

RB6. Attribute types shall be limited to either boolean or integer ∀𝐵 ∈ B, typeA : 𝐴𝐵 → {Bool,Z,N}

RB7. In a method signature, parameters types shall be limited to either
boolean or integer

∀𝐵 ∈ B,methods are typed by a function𝑀𝐵 → {(𝑡1, · · · , 𝑡𝑛) | 𝑛 ∈ N∧∀1 ≤
𝑖 ≤ 𝑛, 𝑡𝑖 ∈ TypesA}

RB8. In a signal signature, parameters types shall be limited to either
boolean or integer

∀𝐵 ∈ B, signals are typed by a function 𝑆𝐵 → {(𝑡1, · · · , 𝑡𝑛) | 𝑛 ∈ N ∧ ∀1 ≤
𝑖 ≤ 𝑛, 𝑡𝑖 ∈ TypesA}

RB9. Signals shall be either input or output ∀𝐵 ∈ B, 𝑆𝐵 ⊂ InSign ⊔OutSign

RB10. Any link shall involve two blocks existing in the diagram L ⊂ B2. Algorithmically, TTool-AI [3] enforces this condition: ∀(𝐵1, 𝐵2) ∈
L, ∃(𝐵3, 𝐵4) ∈ B2 such that (𝑛𝑎𝑚𝑒𝐵 (𝐵3) = 𝑛𝑎𝑚𝑒𝐵 (𝐵1) ∧ 𝑛𝑎𝑚𝑒𝐵 (𝐵4) =

𝑛𝑎𝑚𝑒𝐵 (𝐵2))

RB11. Any link shall have a valid communication semantics 𝜎 : L → CommSemantics

RB12. Any connection shall involve two signals existing in the blocks
involved in the connection

C ⊆ L × S𝑜 × S𝑖 s.t. ∀⟨⟨𝑝𝑜 , 𝑝𝑖 ⟩, 𝑠𝑜 , 𝑠𝑖 ⟩ ∈ C, ∃(𝐵1, 𝐵2) ∈ B2 s.t. 𝑝𝑜 ∈
𝑃𝐵1 ∧ 𝑠𝑜 ∈ 𝑆𝑜𝐵1 ∧ 𝑝𝑖 ∈ 𝑃𝐵2 ∧ 𝑠𝑖 ∈ 𝑆𝑖𝐵2

Table 3: UCD/BD crossed consistency rules

Rule Formal expression

RC1. No link shall exist between two environment blocks �⟨𝐵1, 𝐵2 ⟩ ∈ L s.t. 𝑡𝑦𝑝𝑒𝐵1 = 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 ∧ 𝑡𝑦𝑝𝑒𝐵2 = 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡

RC2. Any environment block shall have at least one link with a system
block

∀𝐵 ∈ B s.t. 𝑡𝑦𝑝𝑒𝐵 = 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡, ∃⟨𝐵, 𝛽 ⟩ ∈ L s.t. 𝑡𝑦𝑝𝑒𝛽 = 𝑠𝑦𝑠𝑡𝑒𝑚

RC3. Any environment block shall correspond to an actor defined in the
UCD

Given a UCD ⟨ (𝑉 , 𝐸), 𝑡𝑦𝑝𝑒𝑉 , 𝑛𝑎𝑚𝑒𝑉 , 𝑡𝑦𝑝𝑒𝐸 ⟩, ∀𝐵 ∈ B s.t. 𝑡𝑦𝑝𝑒𝐵 =

𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡, ∃𝑣 ∈ 𝑉𝐴 s.t. 𝑛𝑎𝑚𝑒𝑉 (𝑣) = 𝑛𝑎𝑚𝑒𝐵 (𝐵)

Therefore, in order to ensure that the generation output is a valid
BD as per Definition 3, the set of contraints introduced in Table 2
shall be enforced on the generated 6-uple. Please note that this
not encompass all internal consistency constraints applicable to
BDs: it only lists the constraints that the LLM on which TTool-AI
relies usually fails to respect. However, constraints not covered in
this table and ensuring the correctness of the generated diagram as
per Definition 6 are addressed through the syntactic verification
built into TTool. Therefore, in the worst-case scenario, if a rule not
listed in Table 2 is violated by TTool-AI, users will be notified: they
can either decide to ask the AI to resolve the errors, or they can
manually make the necessary corrections.

3.2.3 UCD/BD Crossed Consistency Rules. Lastly, we have defined
a set of consistency rules between UCDs and BDs. To the best of
our knowledge, such rules do not exist in the literature. These rules

target the environment blocks of BDs4, ensuring that they match
actors previously defined in the correspondent UCD, that these
actors do not communicate between them5 but they communicate
with at least a system block. These rules are detailed in Table 3.

4 METHODOLOGICAL CONTRIBUTIONS AND
TOOLS

Our framework is an extension of TTool-AI [3], using OpenAI’s
GPT-4-turbo, and GPT-4o as underlying LLMs—their integration to
TTool is achieved through the implementation of a mechanism that

4An environment block is designed to encapsulate the environment rather than the
system itself. It plays a crucial role in bridging system signals with those from the
environment, enabling the simulation or verification of the system through an envi-
ronmental model. It’s important to note that this rule can be system-specific or based
on custom recommandations.
5We assume that the system is already complex, so we usually assume that model-
ing exchanges between environmental elements would lead to capture unnecessary
relations

MODELS’24, September 22–27, 2024, Linz, Austria Sultan et Apvrille

Speci�cation

UCD Syntax
+ Consis-

tency Rules

Request
Forging AI Request AI Response

Syntax/
Consistency
Analysis

KO

Detected
Errors

OK

User AnalysisKOUser Feedback OK

UC Diagram
Generation
(+ Rules

Enforcement)

Use-Case
Diagram

LLM

BD Syntax
+ Consis-

tency Rules

Request
Forging AI Request AI Response

Syntax/
Consistency
Analysis

Block Diagram
Generation
(+ Rules

Enforcement)

Block Diagram

Detected
Errors

User AnalysisUser Feedback

KO

OK

KO OK

Speci�cation +
Inconsistencies
List Syntax +
Crossed Con-
sistency Rules

Request
Forging AI Request Detected

Inconsistencies

LLM

U1
U2

U3

U4

U5

B1
B2

B3

B4

B5

C1

C2

C3

Diagram creation with internal consistency handling LLM-based consistency handling

Figure 1: Functional architecture of our TTool-AI extension. Grey blocks represent data, white blocks represent actions.

allows querying the OpenAI API via a network interface. Among
the upgrades performed for the present contribution, we have intro-
duced a new feature enabling the generation of UCDs through
AI from a system specification written in natural language. In addi-
tion, we have implemented a new LLM-based consistency loop
to ensure consistency between several modeling views as well as
internal consistency. Figure 1 gives an overview of this extension,
demonstrating its application to the creation of UCDs and BDs.
However, it’s important to acknowledge that the same procedural
framework can be applied to consistently generate any other pair
of diagram types supported by TTool-AI.

This procedural framework is organized into three main stages:
Initially, stages U1-5 and B1-5 run concurrently, focusing on generat-
ing preliminary UCDs and BDs using an LLM-based approach, while
maintaining internal consistency within each diagram. Following
this, stages C1-3 are dedicated to verifying the cross-consistency
between the two diagrams and identifying any internal inconsis-
tencies that were not previously addressed. The diagrams are then
updated to rectify identified inconsistencies. A more detailed expla-
nation of the framework’s architecture is given just below.

U1 The process requires only one input from the user: a system
specification, written in natural language. A textual request6
is then formatted and integrates (1) the input specification,
(2) a set of syntactic constraints “explaining” the expected
response format to the LLM and (3) a set of internal UCD
consistency rules (RU4, RU5, a stronger implementation of
RU77, RU8 and a stronger version of RU108).

6The detailed request structure is available in https://gitlab.telecom-paris.fr/mbe-
tools/TTool/-/blob/master/src/main/java/ai/AIUseCaseDiagram.java.
7Our implementation does not support the links between two actors. We therefore
inject this rule to the LLM for RU7: 𝐸 ⊂ 𝑉𝑈 × (𝑉𝑈 ⊔𝑉𝐴) .
8Our implementation only supports include links between two use cases. We therefore
inject the following rule to the LLM for RU10: 𝑡𝑦𝑝𝑒𝐸 : 𝐸 ∩𝑉 2

𝑈
→ {𝑖𝑛𝑐𝑙𝑢𝑑𝑒 }.

U2 The request is then sent to the LLM we rely on. Once it has
processed the request, the LLM answers with a structured
response containing a UCD (described in json format).

U3 The response then undergoes a syntax and consistency anal-
ysis (RU1, RU2, RU3, RU8 and RU9 are checked at this stage).
If this analysis fails, then a new request is forged from the
results of the syntax analysis, then the process goes back to
stage (U1).

U4 If the analysis is successful, the user can now analyze the
suggested UCD. Based on their evaluation of the diagram, the
user can choose to either compose a new question requesting
the LLM to enhance the diagram or generate a new one (and
the process then goes back to step (U2)), or decide to accept
the UCD.

U5 If the user decides to accept the diagram, the framework
generates a graphical UCD in TTool GUI. Consistency rules
are enforced by construction at this stage, including RU1,
RU2, RU3, RU6, and the stronger versions of RU7 and RU10
defined above.

B1 As in stage U1, the BD generation relies on a textual request
including the system specification9. It may also include anal-
ysis diagrams, such as UCDs if they already exist. The request
also includes a set of syntactic and consistency constraints
related to BDs.

B2-5 Equivalent operations to those conducted in stages U2 through
U5 are carried out in these stages, leading to a BD generation.
Rules RB6 and RB8 are incorporated into the initial request.
Rules RB1, RB6, RB7, and RB9 are checked at the syntax/-
consistency analysis stage. At the diagram generation stage,

9The detailed request structure is available in https://gitlab.telecom-paris.fr/mbe-
tools/TTool/-/blob/master/src/main/java/ai/AIBlockConnAttribWithSlicing.java

https://gitlab.telecom-paris.fr/mbe-tools/TTool/-/blob/master/src/main/java/ai/AIUseCaseDiagram.java
https://gitlab.telecom-paris.fr/mbe-tools/TTool/-/blob/master/src/main/java/ai/AIUseCaseDiagram.java
https://gitlab.telecom-paris.fr/mbe-tools/TTool/-/blob/master/src/main/java/ai/AIBlockConnAttribWithSlicing.java
https://gitlab.telecom-paris.fr/mbe-tools/TTool/-/blob/master/src/main/java/ai/AIBlockConnAttribWithSlicing.java

AI-Driven Consistency of SysML Diagrams MODELS’24, September 22–27, 2024, Linz, Austria

rules RB3, RB5, RB6, RB7, RB10, a stronger version of RB1110,
and RB12 are enforced by construction. Stages B1 to B5 were
already implemented in TTool-AI [3].

C1 After the generation of both diagrams, a new request is for-
mulated on the basis of the two diagrams selected by the user.
This request encapsulates the diagrams in a textual format
along with constraints on cross-diagram consistency, which
encompasses both the consistency rules and the expected
syntax for responses11.

C2 This request is sent to the LLM, which analyzes it and pro-
duces a structured list (in json) of identified inconsistencies.
This can also include internal inconsistencies not detected
in stages U3 and B3.

C3 With this list of inconsistencies, the process reverts to stages
U1 and B1. Here, the list of inconsistencies is (partially or
totally) incorporated by the user into the newly crafted re-
quests.

This iterative process concludes either when all inconsistencies
are resolved or when it reaches a predefined time limit or maxi-
mum number of iterations. Users play an integral role in this loop,
choosing which inconsistencies to tackle or guiding the diagram
generation by imposing additional constraints, such as ’include at
least 5 actors and 10 use cases’.

5 EVALUATION
This section provides an evaluation of our framework through three
distinct case studies. We begin with a step-by-step illustration of
one case study, featuring generated diagrams and illustrating the
interactions between our framework and the LLM. This illustration
gives insights into themechanisms of diagram generation, as well as
the verification and enforcement of consistency. Subsequently, we
presentmetrics for all three case studies to evaluate the effectiveness
and relevance of our approach.
Results replicability: the experimental setup, including all input
data, the models produced, and detailed guidance for using our
framework and replicating our results, is documented and available
on a public Zenodo archive12.

5.1 A Step-by-Step Illustration
5.1.1 Specification Submitted to our Framework. A dynamic po-
sitioning system (DPS) is a system designed to enable a vessel
to maintain a specific position and orientation, counteracting en-
vironmental forces through its propulsion and steering systems.
Our specification applies to a vessel outfitted with a set of sensors
including: a propeller anemometer (to measure wind force and di-
rection), an inertial measurement unit, and a GNSS sensor. The
propulsion system of the ship is equipped with actuators compris-
ing two azimuth thrusters (which can rotate 360 degrees) and two
bow thrusters (propellers located at the ship’s bow on both sides
of the hull). As azimuth thrusters enables the vessel to control its

10We enforce the following rule: 𝜎 : L → {(𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑜𝑢𝑠,𝑢𝑛𝑖𝑐𝑎𝑠𝑡, 𝑝𝑟𝑖𝑣𝑎𝑡𝑒) }
11The detailed requests are defined in https://gitlab.telecom-paris.fr/mbe-
tools/TTool/-/blob/master/src/main/java/ai/AIDiagramCoherency.java and in
https://gitlab.telecom-paris.fr/mbe-tools/TTool/-/blob/master/src/main/java/ai/
AIDiagramCoherencyWithFormalRules.java
12https://zenodo.org/doi/10.5281/zenodo.11936921

orientation and speed simultaneously, the propulsion and steering
systems are combined.

The request is to design both the console and the controller of
the DPS.

5.1.2 Diagram Generation. Following the process outlined in Fig-
ure 1, we task TTool-AI with generating both UCDs and BDs based
on the given specification. The resulting UCD, produced after com-
pleting stages U1 through U5, is depicted in Figure 2. The generation
logs show that the diagram initially produced by the LLM did not
comply with rule RU8 (each actor shall be linked to a use case):

− Actor " Az imuth_Thrus te r s " must be connec ted to a t l e a s t
one use c a s e

− Actor " Bow_Thrusters " must be connec ted to a t l e a s t one
use c a s e .

These two internal inconsistencies were then addressed through
the automated feedback mechanism. As a result, the final version
of the UCD adheres fully to the guidelines listed in Table 1. Fur-
thermore, TTool’s syntax checker found no errors in the generated
diagram, validating the efficiency of the use-case diagram genera-
tion process. However, it should be noted that there is a misspelling
in the actor representing the anemometer, incorrectly labeled as
Propeller_Anerometer.

In parallel, a BD was generated using stages B1 to B5 of our
framework, as illustrated in Figure 2. The generation logs do not
show any rule violations, and TTool’s syntax checker confirmed
the absence of errors in the diagram. However, observations from
our review include:

• The presence of a potentially superfluous DPS block (this
block is unrelated to any other block)

• The absence of a User block, interacting with the Console,
which would enhance verification and simulation coverage
by enabling user-driven scenarios.

5.1.3 LLM-Based Inconsistency Detection. The two diagrams sub-
sequently undergo a consistency analysis (stages C1 to C3). Our
strategy involves supplying the LLM with the system specifica-
tion and textual representations of the UCD and the BD. TTool is
equipped to generate textual specifications of these diagrams in
SysML v2 format. However, this format’s verbosity leads to exten-
sive contexts, affecting both the cost and the quality of results. To
mitigate this, we have developed a more concise textual format,
based on element lists. For example, the textual representation of
the UCD is structured as follows:
a c t o r s : User P rope l l e r _Ane rome t e r . . .
Use c a s e s : De f ine_Pos i t i onAndCour se . . .
Connec t ions : i n c l u d e (Ac t i va t e_BowThrus t e r s ,

Ma in t a in_Se tPo s i t i onAndCour s e) . . .

In addition, specific constraints are automatically included in the
request (Inconsistencies List Syntax in Figure 1). These constraints
contain mostly the specification of the output format:

"When you a re asked to i d e n t i f y a l l the r e l e v a n t
i n c o h e r e n c i e s between two diagrams , r e t u r n them as a
JSON s p e c i f i c a t i o n f o rma t t e d as f o l l ow s : {
i n c o h e r e n c i e s : [{ \ " d iagram \ " : \ " d iagram1 or
diagram2 \ " , \ " d e s c r i p t i o n \ " : " d e s c r i p t i o n o f the
incohe rency \ " } . . . "] } " ;

https://gitlab.telecom-paris.fr/mbe-tools/TTool/-/blob/master/src/main/java/ai/AIDiagramCoherency.java
https://gitlab.telecom-paris.fr/mbe-tools/TTool/-/blob/master/src/main/java/ai/AIDiagramCoherency.java
https://gitlab.telecom-paris.fr/mbe-tools/TTool/-/blob/master/src/main/java/ai/AIDiagramCoherencyWithFormalRules.java
https://gitlab.telecom-paris.fr/mbe-tools/TTool/-/blob/master/src/main/java/ai/AIDiagramCoherencyWithFormalRules.java
https://zenodo.org/doi/10.5281/zenodo.11936921

MODELS’24, September 22–27, 2024, Linz, Austria Sultan et Apvrille

block

DPS

- is_active = false : bool;

- desired_course = 0 : int;

- desired_position_latitude = 0 : int;

- desired_position_longitude = 0 : int;

block

Control_Console

- set_course = 0 : int;

- set_position_latitude = 0 : int;

- set_position_longitude = 0 : int;

- system_status = false : bool;

~ out setPoint(int position, int course)

block

Controller

- current_course_error = 0 : int;

- current_position_error_latitude = 0 : int;

- current_position_error_longitude = 0 : int;

- control_signal_strength = 0 : int;

- system_operational = false : bool;

~ in setPoint(int position, int course)

~ in windData(int force, int direction)

~ in driftData(int speed, int direction)

~ in positionData(int latitude, int longitude)

~ out azimuthControl(int speed, int direction)

~ out bowControl(int speed, bool side)

environmentBlock

Propeller_Anemometer

- wind_force = 0 : int;

- wind_direction = 0 : int;

~ out windData(int force, int direction)

environmentBlock

Inertial_Measurement_Unit

- angular_velocity = 0 : int;

- linear_acceleration = 0 : int;

~ out driftData(int speed, int direction)

environmentBlock

GNSS_Sensor

- current_latitude = 0 : int;

- current_longitude = 0 : int;

- gps_fix_quality = false : bool;

~ out positionData(int latitude, int longitude)

environmentBlock

Azimuth_Thrusters

- left_thruster_force = 0 : int;

- right_thruster_force = 0 : int;

- rotation_angle = 0 : int;

~ in azimuthControl(int speed, int direction)

environmentBlock

Bow_Thrusters

- left_bow_thruster_force = 0 : int;

- right_bow_thruster_force = 0 : int;

- operational_status = false : bool;

~ in bowControl(int speed, bool side)

block

DPS

- is_active = false : bool;

- desired_course = 0 : int;

- desired_position_latitude = 0 : int;

- desired_position_longitude = 0 : int;

block

Control_Console

- set_course = 0 : int;

- set_position_latitude = 0 : int;

- set_position_longitude = 0 : int;

- system_status = false : bool;

~ out setPoint(int position, int course)

block

Controller

- current_course_error = 0 : int;

- current_position_error_latitude = 0 : int;

- current_position_error_longitude = 0 : int;

- control_signal_strength = 0 : int;

- system_operational = false : bool;

~ in setPoint(int position, int course)

~ in windData(int force, int direction)

~ in driftData(int speed, int direction)

~ in positionData(int latitude, int longitude)

~ out azimuthControl(int speed, int direction)

~ out bowControl(int speed, bool side)

environmentBlock

Propeller_Anemometer

- wind_force = 0 : int;

- wind_direction = 0 : int;

~ out windData(int force, int direction)

environmentBlock

Inertial_Measurement_Unit

- angular_velocity = 0 : int;

- linear_acceleration = 0 : int;

~ out driftData(int speed, int direction)

environmentBlock

GNSS_Sensor

- current_latitude = 0 : int;

- current_longitude = 0 : int;

- gps_fix_quality = false : bool;

~ out positionData(int latitude, int longitude)

environmentBlock

Azimuth_Thrusters

- left_thruster_force = 0 : int;

- right_thruster_force = 0 : int;

- rotation_angle = 0 : int;

~ in azimuthControl(int speed, int direction)

environmentBlock

Bow_Thrusters

- left_bow_thruster_force = 0 : int;

- right_bow_thruster_force = 0 : int;

- operational_status = false : bool;

~ in bowControl(int speed, bool side)

My system

Maintain_SetPositionAndCourse

Activate_BowThrusters

Adjust_AzimuthThrusters

Monitor_ShipPosition

Monitor_ShipVelocityAndOrientation

Monitor_EnvironmentalConditions

Define_PositionAndCourse

Bow_Thrusters

Azimuth_Thrusters

GNSS_Sensor

Inertial_Measurement_Unit

Propeller_Anerometer

User

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

My system

Maintain_SetPositionAndCourse

Activate_BowThrusters

Adjust_AzimuthThrusters

Monitor_ShipPosition

Monitor_ShipVelocityAndOrientation

Monitor_EnvironmentalConditions

Define_PositionAndCourse

Bow_Thrusters

Azimuth_Thrusters

GNSS_Sensor

Inertial_Measurement_Unit

Propeller_Anerometer

User

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

Figure 2: The generated UCD and BD

Formal rules defined in Section 3 may also be part of these con-
straints. They are given in natural language, for instance:
Re spec t : In a b l o ck diagram , the b l o c k s r e p r e s e n t i n g

a c t o r s as d e f i n e d in the use c a s e diagram must bea r
i d e n t i c a l names to t h e i r c o r r e spond ing use c a s e s .

Finally, the request sent to the AI engine contains the constraints,
the question, the system specification and the UCD and BD in
textual format added by the user. A typical answer is structured as
follows:
AI : j s on
{ " i n c o h e r e n c i e s " : [

. . .
{

" d iagram " : " Diagram2 " ,
" d e s c r i p t i o n " : " The User a c t o r has no d i r e c t r e l a t i o n

to any b l o ck in Diagram 2 . "
} ,
. . .

}

Using this approach wih the UCD and BD depicted in Figure 2,
the framework identified a list of seven inconsistencies, some of
which corroborated our observations:

• Misspelling of Propeller_Anemometer in the UCD (The Pro-
peller_Anemometer block is misspelled as ’Propeller_ Anerome-
ter’ in [the use case] diagram, The use case ’Monitor_ Environ-
mentalConditions’ is associated with ’Propeller_Anerometer’,
which does not have a corresponding block in [the block] dia-
gram. The correct block name should be ’Propeller_ Anemome-
ter’).

• Absence of the User block in the BD (The User actor has no
direct relation to any block in [the block] diagram, There is
no explicit block for the ’User’ actor in [the block] diagram,
making the connection to ’Define_PositionAndCourse’ unclear,
The use case ’Define_PositionAndCourse’ does not have a cor-
responding signal or method in the blocks of Diagram 2).

• Presence of the DPS block in the BD (The ’DPS’ block does not
appear in [the use case] diagram, nor is it connected to any
use case or actor explicitly).

Additionally, the list included another “inconsistency” that seems
irrelevant (The block ’Controller’ does not have a direct association
with the ’User’ or specific use cases as in [the use case] diagram).

5.1.4 Inconsistencies Correction. Thereafter, we task our frame-
work to correct the detected inconsistencies. This correction relies
on the TTool-AI BD generation feature [3] and on the UCD gen-
eration feature (a contribution of the paper). The request sent to
the LLM includes the constraints related UCD or BD (expected
syntax, internal consistency rules) and a message provided by the
user including the DPS specification, a textual representation of
the diagrams to correct (Figure 2), and the relevant identified in-
consistencies. These inconsistencies are included as follows:
Do c o r r e c t the b l o ck diagram con s i d e r i n g the f o l l ow i n g

i n c o h e r e n c i e s :
1
2 . The User a c t o r has no d i r e c t r e l a t i o n to any b l o ck in

Diagram 2 .
3
Do c o r r e c t i n c o h e r e n c i e s 1−3 and propose a new b lo ck

diagram .

The framework responded by producing two revised diagrams,
as shown in Figure 3. We can observe that not all inconsistencies
were corrected. For example, DPS block is still unrelated to other
blocks. Nevertheless, the two primary categories of inconsistencies
were addressed: the actor Propeller_Anemometer is now correctly
spelled in the UCD, and a User block has been added to the BD.
Another iteration on inconsistencies (stages C1 to C3) could resolve
these remaining issues.

5.2 Evaluation
We have considered three different systems: an automotive braking
system, a space-based system, and the dynamic positioning system.
The two first systems are use cases taken from two distinct Euro-
pean projects. The specifications for these systems are available
in the Zenodo archive that accompanies the paper. The archive
includes, for each of the three systems, a md file detailing the sys-
tem specifications and an xml file containing the TTool model. The

AI-Driven Consistency of SysML Diagrams MODELS’24, September 22–27, 2024, Linz, Austria

My system

Maintain_SetPositionAndCourse

Activate_BowThrusters

Adjust_AzimuthThrusters

Monitor_ShipPosition

Monitor_ShipVelocityAndOrientation

Monitor_EnvironmentalConditions

Define_PositionAndCourse

Bow_Thrusters

Azimuth_Thrusters

GNSS_Sensor

Inertial_Measurement_Unit

Propeller_Anemometer

User

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

My system

Maintain_SetPositionAndCourse

Activate_BowThrusters

Adjust_AzimuthThrusters

Monitor_ShipPosition

Monitor_ShipVelocityAndOrientation

Monitor_EnvironmentalConditions

Define_PositionAndCourse

Bow_Thrusters

Azimuth_Thrusters

GNSS_Sensor

Inertial_Measurement_Unit

Propeller_Anemometer

User

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

environmentBlock

Bow_Thrusters

- left_bow_thruster_force = 0 : int;

- right_bow_thruster_force = 0 : int;

- operational_status = false : bool;

~ in bowControl(int speed, bool side)

environmentBlock

Azimuth_Thrusters

- left_thruster_force = 0 : int;

- right_thruster_force = 0 : int;

- rotation_angle = 0 : int;

~ in azimuthControl(int speed, int direction)

environmentBlock

GNSS_Sensor

- current_latitude = 0 : int;

- current_longitude = 0 : int;

- gps_fix_quality = false : bool;

~ out positionData(int latitude, int longitude)

environmentBlock

Inertial_Measurement_Unit

- angular_velocity = 0 : int;

- linear_acceleration = 0 : int;

~ out driftData(int speed, int direction)
environmentBlock

Propeller_Anemometer

- wind_force = 0 : int;

- wind_direction = 0 : int;

~ out windData(int force, int direction)

block

Controller

- current_course_error = 0 : int;

- current_position_error_latitude = 0 : int;

- current_position_error_longitude = 0 : int;

- control_signal_strength = 0 : int;

- system_operational = false : bool;

~ out bowControl(int speed, bool side)

~ out azimuthControl(int speed, int direction)

~ in positionData(int latitude, int longitude)

~ in driftData(int speed, int direction)

~ in windData(int force, int direction)

~ in setPoint(int position, int course)

block

Control_Console

- set_course = 0 : int;

- set_position_latitude = 0 : int;

- set_position_longitude = 0 : int;

- system_status = false : bool;

~ out setPoint(int position, int course)

~ in setPoint_3160(int position, int course)

block

DPS

- is_active = false : bool;

- desired_course = 0 : int;

- desired_position_latitude = 0 : int;

- desired_position_longitude = 0 : int;

environmentBlock

User

- user_input_active = false : bool;

- desired_course_input = 0 : int;

- desired_position_latitude_input = 0 : int;

- desired_position_longitude_input = 0 : int;

~ out setPoint(int position, int course)

environmentBlock

Bow_Thrusters

- left_bow_thruster_force = 0 : int;

- right_bow_thruster_force = 0 : int;

- operational_status = false : bool;

~ in bowControl(int speed, bool side)

environmentBlock

Azimuth_Thrusters

- left_thruster_force = 0 : int;

- right_thruster_force = 0 : int;

- rotation_angle = 0 : int;

~ in azimuthControl(int speed, int direction)

environmentBlock

GNSS_Sensor

- current_latitude = 0 : int;

- current_longitude = 0 : int;

- gps_fix_quality = false : bool;

~ out positionData(int latitude, int longitude)

environmentBlock

Inertial_Measurement_Unit

- angular_velocity = 0 : int;

- linear_acceleration = 0 : int;

~ out driftData(int speed, int direction)
environmentBlock

Propeller_Anemometer

- wind_force = 0 : int;

- wind_direction = 0 : int;

~ out windData(int force, int direction)

block

Controller

- current_course_error = 0 : int;

- current_position_error_latitude = 0 : int;

- current_position_error_longitude = 0 : int;

- control_signal_strength = 0 : int;

- system_operational = false : bool;

~ out bowControl(int speed, bool side)

~ out azimuthControl(int speed, int direction)

~ in positionData(int latitude, int longitude)

~ in driftData(int speed, int direction)

~ in windData(int force, int direction)

~ in setPoint(int position, int course)

block

Control_Console

- set_course = 0 : int;

- set_position_latitude = 0 : int;

- set_position_longitude = 0 : int;

- system_status = false : bool;

~ out setPoint(int position, int course)

~ in setPoint_3160(int position, int course)

block

DPS

- is_active = false : bool;

- desired_course = 0 : int;

- desired_position_latitude = 0 : int;

- desired_position_longitude = 0 : int;

environmentBlock

User

- user_input_active = false : bool;

- desired_course_input = 0 : int;

- desired_position_latitude_input = 0 : int;

- desired_position_longitude_input = 0 : int;

~ out setPoint(int position, int course)

Figure 3: The updated UCD and BD after LLM-based consistency loop

model file presents diagrams and detected inconsitencies generated
from the following stages:

(1) Model generation: stages U1 to U5 and B1 to B5 of our
framework, applied to generate two BDs and two UCDs per
case study. All diagrams of the automotive system and of the
space-based system were generated using GPT 3.5, and the
diagrams of DPS were generated with GPT 4.

(2) Inconsistency detection: stages C1 to C3 of our approach.
GPT 4 was used to identify inconsistencies.

(3) Inconsistency correction: updated diagrams (BD, UCD)
generated using the system specifications, the previously
modeled diagrams, as well as the list of identified inconsis-
tencies (apart from the erroneous inconsistencies that are
dropped, see below). GPT 4 was used to perform these dia-
gram updates.

For these evaluations, TTool version 3.0 beta, build: 14731, was
used.

5.3 Results
We evaluated the outlined processes of diagram generation, incon-
sistency identification, and inconsistency resolution on the three
systems. The outcomes are summarized in Table 4. We differenti-
ate between internal inconsistencies (within a single diagram) and
external inconsistencies (between a block diagram and a use case
diagram). Inconsistencies incorrectly identified are cataloged in
the “Error” column; they are excluded from the total inconsistency
count and are not addressed during the correction phase.

Our methodology successfully detected multiple inconsistencies
per pair (UCD, BD), averaging 4 inconsistencies for BDs and 1.7 for
UCDs. Across all evaluations, 6 inconsistencies were erroneously
identified—these are invalid incoherences, such as the erroneous
assertion that two already connected blocks should be connected.
This represents 8% of the detected inconsistencies, meaning that 92%
of detected inconsistencies were relevant. In terms of inconsistency
correction, our approach enabled for an automatic resolution of 87%
of the inconsistencies on average, demonstrating a slightly higher
correction rate for external (cross-diagram) inconsistencies.

6 DISCUSSION
The evaluation of our approach, as detailed above, shows encour-
aging outcomes in both the initial generation of syntactically con-
sistent diagrams and the subsequent detection and correction of
inconsistencies within and across those diagrams. Our analysis
highlights the significant benefits derived from the integration of
internal consistency mechanisms and LLM-based approaches. De-
spite these advancements, there are several avenues for further
improvement, as now discussed.

The management of rules outlined in Table 3 within the LLM-
based consistency handling loopwas challenging. Specifically, when
these rules are incorporated into the knowledge database injected
in the consistency request (see Stage C1 of Figure 1), the LLM tends
to exclusively focus on these rules, thus ignoring other consistency
aspects. To address this issue, we have introduced two separate
features in TToolAI: one enabling users to evaluate consistency con-
sidering the embedded rules in the request, and the other allowing
for consistency checks to be performed without these rules. As a re-
sult, to achieve a comprehensive cross-view consistency evaluation,
users are currently required to engage TToolAI sequentially in two
different operations. This may also be seen as an advantage since
users of TTool can somehow customize the consistency rules they
intend to address. In a related manner, the detection of inconsisten-
cies related to these rules (concerning environment blocks) could
be improved: currently, the block type as defined in Definition 5 is
not exported to the textual format generated by TTool from BDs.
Therefore, the classification of system/environment blocks relies on
the LLM’s analysis, based on the provided UCD and specification.
Exporting it to the textual format would reduce the possible LLM’s
interpretation errors here. Likewise, it would be advantageous to
enforce these rules by construction, during the diagram generation
phase, as it is done in stages U5 and B5 for internal consistency rules.
This textual format provided by TTool condenses the description
of the exported diagram, offering a succinct way to communicate
the diagram’s details. This efficiency is particularly beneficial for
minimizing the use of tokens when submitting requests to the LLM.
However, given that this format is not a standard format, exporting

MODELS’24, September 22–27, 2024, Linz, Austria Sultan et Apvrille

Table 4: Key metrics on cross-view consistency handling.

Inconsistencies detected Inconsistencies corrected
System Test Diagram Internal External Errors Total Internal External Total

Automated braking

BD1 vs UCD1 BD1 1 2 0 3 1 2 3/3
UCD1 0 0 0 0 0 0 —

BD1 vs UCD2 BD1 0 1 0 1 0 1 1/1
UCD2 0 3 0 3 0 2 2/3

BD2 vs UCD1 BD2 5 1 1 6 4 1 5/6
UCD1 0 1 1 1 0 1 1/1

BD2 vs UCD2 BD2 4 2 0 6 3 1 4/6
UCD2 2 2 0 4 2 2 4/4

Space-based system

BD1 vs UCD1 BD1 3 6 0 9 3 5 8/9
UCD1 0 0 0 0 0 0 —

BD1 vs UCD2 BD1 4 1 0 5 3.5 1 4.5/5
UCD2 3 1 0 4 2.5 1 3.5/4

BD2 vs UCD1 BD2 2 2 0 4 1 2 3/4
UCD1 1 1 1 2 1 1 2/2

BD2 vs UCD2 BD2 1 4 0 5 1 4 5/5
UCD2 0 2 0 2 0 2 2/2

Dynamic positioning system

BD1 vs UCD1 BD1 1 1 0 2 1 0 1/2
UCD1 0 0 1 0 0 0 —

BD1 vs UCD2 BD1 2 2 0 4 2 1.5 3.5/4
UCD2 2 0 0 2 0 2 2/2

BD2 vs UCD1 BD2 1 0 0 1 1 0 1/1
UCD1 1 1 0 2 1 1 2/2

BD2 vs UCD2 BD2 3 0 1 3 3 0 3/3
UCD2 0 0 1 0 0 0 —

Total 36 33 6 69 30 30.5 60.5/69

diagrams in SysML v2 format may enhance the LLM’s understand-
ing of the diagrams—even though this understanding is already
excellent with the current export format. This may decrease the
rate of “false positives” among the identified inconsistencies (7% in
our evaluation).

The process of correcting these detected inconsistencies could
also be improved. In our experiments, we integrated the entire
list of detected inconsistencies (excluding those categorized as er-
rors) into the message input in TToolAI for generating revised
diagrams. Adopting a strategy of addressing each inconsistency
individually could potentially elevate the correction rate (which
varies between 50% and 100% per diagram, averaging at 87%). LLMs
tend indeed to produce more accurate results when their input is
more concise: therefore, providing the LLM with one inconsistency
at a time would probably help it focus better and improve its per-
formance. Note also that there is subjectivity in the classification
of the detected inconsistencies (determining their relevance to spe-
cific diagrams, identifying them as errors). However, until recently,
crossed-view consistency was mostly performed manually until
now in TToolAI (as in most UML/SysML toolkits). Moreover, the
presence of an error in the list of detected inconsistencies does not
necessarily means that this error will be introduced into the updated
diagrams. Indeed, the automated feedback loop of our framework,
and the enforcement by design of several internal consistency rules,
help eliminate errors introduced in the LLM generation process.

However, we have not yet quantified this phenomenon, but it would
surely be interesting to evaluate it in the future.

Moreover, our evaluation relied on three case studies involving
relatively simple diagrams and it would be interesting to assess
our framework using more complex diagrams. Given the graphi-
cal nature of our approach and the limited input context sizes of
the LLMs we utilize, we think that the most effective method to
manage scalability is by decomposing complex models into several
sub-models (e.g., by using model decomposition and hierarchical
representations). Methods such as [19] exist for this, and a compre-
hensive strategy could integrate these methods with our proposed
approach to manage complexity. Additionally, one of the goals of
our approach is to ensure the consistency of model segments de-
signed in different silos, thereby maintaining overall consistency
during the reconstruction of the entire model. Therefore, this de-
composition/recomposition approach is a possible way to scale our
framework.

Finally, our evaluation evaluates the cross-consistency of only
two classes of diagrams: BDs and UCDs. It would be interesting
to evaluate it on other views, particularly on cross-consistency
between UCDs and SMDs: indeed, when generated by TTool-AI,
SMDs often contain errors detected by TTool-AI’s syntax checker.

AI-Driven Consistency of SysML Diagrams MODELS’24, September 22–27, 2024, Linz, Austria

7 CONCLUSIONS
The paper presents a new LLM-based framework designed to en-
hance the cross-consistency of SysML diagrams, along with in-
troducing an automated UCD generation feature. Additionally, it
introduces adapted consistency rules aimed at ensuring the internal
consistency of LLM-generated UCDs and BDs. This framework has
been implemented as an extension of TTool-AI. Through evalua-
tions conducted on three case studies, it has demonstrated effective-
ness in generating internally consistent diagrams and in detecting
and rectifying inconsistencies between UCDs and BDs.

However, there is potential for further enhancements. Future
work will focus on refining and fully automating the correction pro-
cess to enhance accessibility for the potential users, enabling them
to easily insert their own rules, ensuring by construction cross-
consistency rules, minimizing the LLM’s interpretive scope by de-
tailing the block types, and assessing—and, if necessary, adapting—
our framework for additional diagram types such as requirement
and state-machine diagrams. Currently, our implementation sup-
ports UCDs, BDs, and SMDs and to add support for other diagram
types, we need to implement the textual format export for these
additional diagrams. Integrating our implementation with other
LLMs would also be beneficial for comparing performance and
diversifying responses. Additionally, interfacing our framework
with other modeling tools using TTool’s command-line interface
could be interesting. This interfacing should include automated
export, consistency-checks/improvements, and reimportation of
the models into the other tools.

REFERENCES
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-

cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. 2023. GPT-4 technical report. arXiv preprint arXiv:2303.08774
(2023).

[2] Aakash Ahmad, Muhammad Waseem, Peng Liang, Mahdi Fahmideh,
Mst Shamima Aktar, and Tommi Mikkonen. 2023. Towards Human-Bot
Collaborative Software Architecting with ChatGPT. In Proceedings of the 27th
International Conference on Evaluation and Assessment in Software Engineering.
279–285.

[3] Ludovic Apvrille. and Bastien Sultan. 2024. System Architects are not Alone Any-
more: Automatic SystemModeling with AI. In Proceedings of the 12th International
Conference on Model-Based Software and Systems Engineering - MODELSWARD’24.
INSTICC, SciTePress, 27–38. https://doi.org/10.5220/0012320100003645

[4] Oskar Berglund. 2024. Assessing Strategies for Behaviour Consistency Checking
Using LLMs. B.Sc. Thesis.

[5] Alessandro Tempia Calvino and Ludovic Apvrille. 2021. Direct Model-Checking
of SysML Models. In 9th International Conference on Model-Driven Engineering
and Software Development. SCITEPRESS-Science and Technology Publications,
216–223.

[6] Javier Cámara, Javier Troya, Lola Burgueño, and Antonio Vallecillo. 2023. On
the Assessment of Generative AI in Modeling Tasks: an Experience Report with
ChatGPT and UML. Software and Systems Modeling 22, 3 (2023), 781–793.

[7] Boqi Chen, Kua Chen, Shabnam Hassani, Yujing Yang, Daniel Amyot, Lysanne
Lessard, Gunter Mussbacher, Mehrdad Sabetzadeh, and Dániel Varró. 2023. On
the Use of GPT-4 for Creating Goal Models: An Exploratory Study. In 2023 IEEE
31st International Requirements Engineering Conference Workshops (REW). IEEE,
262–271.

[8] K. Chen, Y. Yang, B. Chen, J. Hernandez Lopez, G. Mussbacher, and D. Varro. 2023.
AutomatedDomainModelingwith Large LanguageModels: AComparative Study.
In 2023 ACM/IEEE 26th International Conference on Model Driven Engineering
Languages and Systems (MODELS). IEEE Computer Society, 162–172. https:
//doi.org/10.1109/MODELS58315.2023.00037

[9] Musheng Chen, Guowei He, and Junhua Wu. 2024. ZDDR: A Zero-Shot Defender
for Adversarial Samples Detection and Restoration. IEEE Access (2024).

[10] Sylvain Guérin, Joel Champeau, Jean-Christophe Bach, Antoine Beugnard, Fabien
Dagnat, and Salvador Martínez. 2022. Multi-Level Modeling with Openflexo/FML:
a contribution to the multi-level process challenge. Enterprise Modelling and

Information Systems Architectures (EMISAJ) 17 (2022), 9–1.
[11] Leon Görgen., Eric Müller., Marcus Triller., Benjamin Nast., and Kurt Sand-

kuhl. 2024. Large Language Models in Enterprise Modeling: Case Study and
Experiences. In Proceedings of the 12th International Conference on Model-Based
Software and Systems Engineering - MODELSWARD. INSTICC, SciTePress, 74–85.
https://doi.org/10.5220/0012387000003645

[12] David Harel., Guy Katz., Assaf Marron., and Smadar Szekely. 2024. On Aug-
menting Scenario-Based Modeling with Generative AI. In Proceedings of the
12th International Conference on Model-Based Software and Systems Engineer-
ing - MODELSWARD. INSTICC, SciTePress, 235–246. https://doi.org/10.5220/
0012427100003645

[13] Noraini Ibrahim, Rosziati Ibrahim, Mohd Zainuri Saringat, Dzahar Mansor, and
Tutut Herawan. 2010. On well-formedness rules for UML use case diagram. In
Web Information Systems and Mining: International Conference, WISM 2010, Sanya,
China, October 23-24, 2010. Proceedings. Springer, 432–439.

[14] Noraini Ibrahim, Rosziati Ibrahim, Mohd Zainuri Saringat, Dzahar Mansor, and
Tutut Herawan. 2011. Consistency Rules Between UML Use Case and Activity
Diagrams using Logical Approach. International Journal of Software Engineering
and its Applications 5, 3 (2011), 119–134.

[15] Diana Kalibatiene, Olegas Vasilecas, and Ruta Dubauskaite. 2013. Rule Based
Approach for Ensuring Consistency in Different UML Models. In Information
Systems: Development, Learning, Security: 6th SIGSAND/PLAIS EuroSymposium
2013, Gdańsk, Poland, September 26, 2013. Proceedings 6. Springer, 1–16.

[16] Daniel Knorreck, Ludovic Apvrille, and Renaud Pacalet. 2013. Formal
System-Level Design Space Exploration. Concurrency and Computation: Prac-
tice and Experience 25, 2 (2013), 250–264. https://doi.org/10.1002/cpe.2802
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.2802

[17] Ziyu Li and Donghwan Shin. 2024. Mutation-Based Consistency Testing for
Evaluating the Code Understanding Capability of LLMs. In Proceedings of the
IEEE/ACM 3rd International Conference on AI Engineering-Software Engineering
for AI. 150–159.

[18] Shan Lu, Alexey Tazin, Yanji Chen, Mieczyslaw M Kokar, and Jeff Smith. 2023.
Detection of inconsistencies in SysML/OCL models using OWL reasoning. SN
Computer Science 4, 2 (2023), 175.

[19] Qin Ma, Pierre Kelsen, and Christian Glodt. 2015. A generic model decomposition
technique and its application to the Eclipse modeling framework. Software &
Systems Modeling 14 (2015), 921–952.

[20] TomMens, Ragnhild VanDer Straeten, and Jocelyn Simmonds. 2005. A framework
for managing consistency of evolving UML models. In Software Evolution with
UML and XML. IGI Global, 1–30.

[21] Hiroyuki Nakagawa and Shinichi Honiden. 2023. MAPE-K Loop-Based Goal
Model Generation Using Generative AI. In 2023 IEEE 31st International Require-
ments Engineering Conference Workshops (REW). IEEE, 247–251.

[22] Gabriel Pedroza, Ludovic Apvrille, and Daniel Knorreck. 2011. AVATAR: A SysML
Environment for the Formal Verification of Safety and Security Properties. In
2011 11th Annual International Conference on New Technologies of Distributed
Systems. 1–10. https://doi.org/10.1109/NOTERE.2011.5957992

[23] Iris Reinhartz-Berger. 2005. Conceptual Modeling of Structure and Behavior
with UML–The Top Level Object-Oriented Framework (TLOOF) Approach. In
International Conference on Conceptual Modeling. Springer, 1–15.

[24] Bastien Sultan, Ludovic Apvrille, Philippe Jaillon, and Sophie Coudert. 2023. W-
Sec: A Model-Based Formal Method for Assessing the Impacts of Security Coun-
termeasures. InModel-Driven Engineering and Software Development, Luís Ferreira
Pires, Slimane Hammoudi, and Edwin Seidewitz (Eds.). Springer Nature Switzer-
land, Cham, 203–229.

[25] Bastien Sultan, Léon Frénot, Ludovic Apvrille, Philippe Jaillon, and Sophie
Coudert. 2023. AMULET: a Mutation Language Enabling Automatic Enrich-
ment of SysML Models. ACM Trans. Embed. Comput. Syst. (sep 2023). https:
//doi.org/10.1145/3624583

[26] Damiano Torre, Yvan Labiche, andMarcela Genero. 2014. UML Consistency Rules:
a Systematic Mapping Study. In Proceedings of the 18th International Conference
on Evaluation and Assessment in Software Engineering. 1–10.

[27] Damiano Torre, Yvan Labiche, Marcela Genero, and Maged Elaasar. 2018. A
Systematic Identification of Consistency Rules for UML Diagrams. Journal of
Systems and Software 144 (2018), 121–142.

[28] Carlos Mario Zapata, Guillermo González, and Alexander Gelbukh. 2007. A
Rule-Based System for Assessing Consistency Between UML Models. In MICAI
2007: Advances in Artificial Intelligence: 6th Mexican International Conference on
Artificial Intelligence, Aguascalientes, Mexico, November 4-10, 2007. Proceedings 6.
Springer, 215–224.

https://doi.org/10.5220/0012320100003645
https://doi.org/10.1109/MODELS58315.2023.00037
https://doi.org/10.1109/MODELS58315.2023.00037
https://doi.org/10.5220/0012387000003645
https://doi.org/10.5220/0012427100003645
https://doi.org/10.5220/0012427100003645
https://doi.org/10.1002/cpe.2802
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.2802
https://doi.org/10.1109/NOTERE.2011.5957992
https://doi.org/10.1145/3624583
https://doi.org/10.1145/3624583

	Abstract
	1 Introduction
	2 Related Works
	2.1 Enforcing UML/SysML Models Consistency
	2.2 Integrating LLMs into MDE
	2.3 TTool
	2.4 AI-Driven UML/SysML Models Consistency

	3 Theoretical Contributions
	3.1 Formal Semantics of SysML Use Case and Block Diagrams
	3.2 Consistency Rules

	4 Methodological Contributions and Tools
	5 Evaluation
	5.1 A Step-by-Step Illustration
	5.2 Evaluation
	5.3 Results

	6 Discussion
	7 Conclusions
	References

