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Introduction

Our contribution in a nutshell...

Given an attack tree (provided in graphical format), draws an attack-defense tree
including countermeasures mitigating the attack leaves of the input tree.
It is intended to be an assistant rather than an autonomous generator.
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Introduction

Our contribution in a nutshell...

Given an attack tree (provided in graphical format), draws an attack-defense tree
including countermeasures mitigating the attack leaves of the input tree.
It is intended to be an assistant rather than an autonomous generator.

... and in depth

• Builds upon TTool-AI framework, adapting its LLM interaction mechanisms:
• Initial knowledge injection
• Automated response analysis and feedback loop

• A preceding NLP stage to help the LLM with suggesting more effective
countermeasures

• A one-click approach, while allowing users to view the interactions between
the tool and the LLM, and intervene by adding their own knowledge and
constraints
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Some context – Attack-defense trees
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Some context – TTool
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Contribution overview

CAPEC mitigations
Attack leaf

CAPEC mitigations
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TTool-AI interaction

Knowledge Attack leaves
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Question
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Automatic prompt generation

Knowledge

When you are asked to identify mitigations for a provided list of attack

steps , return them as a JSON specification formatted as follows:

"mitigations": [{\"name\": \"NameOfMitigation\", \"description\": \"The

description of the mitigation and how it prevents the attack .\"}, \

"attacksteps\": [\"TheNameOfAProvidedAttackStep\" ...]} ...]}

# Respect: All words in \"name\" must be conjoined together.

# Respect: There must be no more than forty characters in \"name\".

# Respect: For each word in \"name\", its first letter must be

capitalized.

[...]
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Automatic prompt generation

Question

Using the specified JSON format , identify a list of possible mitigations

that would prevent an attacker from using most , if not all , of the

provided attack steps to further advance the attacker ‘s attack

scenario. Each mitigation should be associated with at least one

attack step from the provided attack step list. If applicable , use

the provided list of possible countermeasures as support for

identifying mitigations. Do respect the JSON format , and provide

only JSON (no explanation before or after).
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Automatic analysis

Data: String r (initial LLM response), int remainingIterations
Result: String ri (improved LLM response)

1 String query ← ϵ
2 errjson ← setOfJSONFormatErrorsIn(r)
3 errconst ← setOfConstraintsErrorsIn(r)
4 while (errjson, errconst) ̸= (∅, ∅) ∨ remainingIterations > 0 do
5 query ← “In the previous response” · r · “the following errors were found, do correct them:”
6 foreach e ∈ errjson do
7 query ← query · e
8 end
9 foreach e ∈ errconst do
10 query ← query · e
11 end
12 sendToLLM(query)
13 r ← NewLLMResponse
14 errjson ← setOfJSONFormatErrorsIn(r)
15 errconst ← setOfConstraintsErrorsIn(r)
16 remainingIterations ← remainingIterations − 1

17 end
18 ri ← r
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Experimental insights

Setup

• Three input attack-tree diagrams, related to three different specifications (a
CPU, a mobile application, a cloud service infrastructure)

• Generation of attack-defense trees on this basis, by a security engineer and
by our framework

• Subsequent grading of the ADTs (syntactic correctness, number of
countermeasure/attack leaves associations, ...)
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Experimental insights

(a) Cloud service case study
Creator Complexity Semantic correctness Completeness Generation time (s)

Engineer 8 1.00 0.42 3600

Tool 10 0.70 0.37 633

(b) CPU case study
Creator Complexity Semantic correctness Completeness Generation time (s)

Engineer 5 1.00 0.50 3600

Tool 9 0.44 0.31 882

(c) Social network application case study
Creator Complexity Semantic correctness Completeness Generation time (s)

Engineer 6 1.00 0.46 3600

Tool 17 0.41 0.47 912
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Conclusions

In a nutshell
• LLM-based tool integrated into TTool, an open-source SysML toolkit

• One-click generation

• Rapid first ADT construction, serving as a tool for quickly generating a
draft that can be further refined.

Future works
• Need for further evaluations

• Generalize the countermeasures associations to higher abstraction level nodes

• Improve the generated prompts, integrate other LLMs and countermeasures
databases
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Questions?

Latest version of TTool includes TTool-AI, ADT generation, nice tree pictures,
. . . and much more! ttool.telecom-paris.fr
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