
From Attack Trees to Attack-Defense Trees with TTool-AI

Alan Birchler De Allende, Bastien Sultan, Ludovic Apvrille
birchler@eurecom.fr, {bastien.sultan, ludovic.apvrille}@telecom-paris.fr

MDE Intelligence 2024, Linz

Introduction Some context Contributions Experimental insights Conclusions

Outline

Introduction

Some context

Contributions

Experimental insights

Conclusions

2/202/20

Introduction Some context Contributions Experimental insights Conclusions

Introduction

Our contribution in a nutshell...

Given an attack tree (provided in graphical format), draws an attack-defense tree
including countermeasures mitigating the attack leaves of the input tree.
It is intended to be an assistant rather than an autonomous generator.

3/203/20

Introduction Some context Contributions Experimental insights Conclusions

Introduction

4/20

@Bastien: Please, draw an attack tree.

@GPT:
@Bastien: And an attack-defense tree?
@GPT:

4/20

Introduction Some context Contributions Experimental insights Conclusions

Introduction

@Bastien: Please, draw an attack tree.
@GPT:

@Bastien: And an attack-defense tree?
@GPT:

4/20

Introduction Some context Contributions Experimental insights Conclusions

Introduction

@Bastien: Please, draw an attack tree.
@GPT:

@Bastien: And an attack-defense tree?

@GPT:

4/20

Introduction Some context Contributions Experimental insights Conclusions

Introduction

@Bastien: Please, draw an attack tree.
@GPT:

@Bastien: And an attack-defense tree?
@GPT:

4/20

Introduction Some context Contributions Experimental insights Conclusions

Introduction

Our contribution in a nutshell...

Given an attack tree (provided in graphical format), draws an attack-defense tree
including countermeasures mitigating the attack leaves of the input tree.
It is intended to be an assistant rather than an autonomous generator.

... and in depth

• Builds upon TTool-AI framework, adapting its LLM interaction mechanisms:
• Initial knowledge injection
• Automated response analysis and feedback loop

• A preceding NLP stage to help the LLM with suggesting more effective
countermeasures

• A one-click approach, while allowing users to view the interactions between
the tool and the LLM, and intervene by adding their own knowledge and
constraints

5/205/20

Introduction Some context Contributions Experimental insights Conclusions

Introduction

Our contribution in a nutshell...

Given an attack tree (provided in graphical format), draws an attack-defense tree
including countermeasures mitigating the attack leaves of the input tree.
It is intended to be an assistant rather than an autonomous generator.

... and in depth

• Builds upon TTool-AI framework, adapting its LLM interaction mechanisms:
• Initial knowledge injection
• Automated response analysis and feedback loop

• A preceding NLP stage to help the LLM with suggesting more effective
countermeasures

• A one-click approach, while allowing users to view the interactions between
the tool and the LLM, and intervene by adding their own knowledge and
constraints

5/20

Introduction Some context Contributions Experimental insights Conclusions

Introduction

Our contribution in a nutshell...

Given an attack tree (provided in graphical format), draws an attack-defense tree
including countermeasures mitigating the attack leaves of the input tree.
It is intended to be an assistant rather than an autonomous generator.

... and in depth

• Builds upon TTool-AI framework, adapting its LLM interaction mechanisms:
• Initial knowledge injection
• Automated response analysis and feedback loop

• A preceding NLP stage to help the LLM with suggesting more effective
countermeasures

• A one-click approach, while allowing users to view the interactions between
the tool and the LLM, and intervene by adding their own knowledge and
constraints

5/20

Introduction Some context Contributions Experimental insights Conclusions

Outline

Introduction

Some context

Contributions

Experimental insights

Conclusions

6/206/20

Introduction Some context Contributions Experimental insights Conclusions

Some context – Attack-defense trees

<<attack>>

Go_to_MODELS_dinner_for_free

<<attack>>

Steal_participant_badge
<<attack>>

Hide_in_the_cake

<<attack>>

Hack_registration_system

<<OR>>

<<countermeasure>>

Pass_cake_through_XRays

<<countermeasure>>

Ask_for_ID

<<countermeasure>>

Apply_MDE_for_developping_a_secure_system

<<attack>>

Go_to_MODELS_dinner_for_free

<<attack>>

Steal_participant_badge
<<attack>>

Hide_in_the_cake

<<attack>>

Hack_registration_system

<<OR>>

<<countermeasure>>

Pass_cake_through_XRays

<<countermeasure>>

Ask_for_ID

<<countermeasure>>

Apply_MDE_for_developping_a_secure_system

7/207/20

Introduction Some context Contributions Experimental insights Conclusions

Some context – TTool

8/208/20

Introduction Some context Contributions Experimental insights Conclusions

Outline

Introduction

Some context

Contributions

Experimental insights

Conclusions

9/209/20

Introduction Some context Contributions Experimental insights Conclusions

Contribution overview

CAPEC mitigations
Attack leaf

CAPEC mitigations

Defense vertices + associations
Attack leaves + CAPEC mitigations

Defense vertices + associations

Attack-defense tree

draw()

Attack tree
User TTool CAPEC Tracer LLM

for each leaf

feedback loop

10/2010/20

Introduction Some context Contributions Experimental insights Conclusions

TTool-AI interaction

Knowledge Attack leaves
+ CAPECs

Question

Automatic prompt
generation

Prompts

LLM

Responses

Automatic analysis

Errors

Validated textual ADT

11/2011/20

Introduction Some context Contributions Experimental insights Conclusions

Automatic prompt generation

Knowledge

When you are asked to identify mitigations for a provided list of attack

steps , return them as a JSON specification formatted as follows:

"mitigations": [{\"name\": \"NameOfMitigation\", \"description\": \"The

description of the mitigation and how it prevents the attack .\"}, \

"attacksteps\": [\"TheNameOfAProvidedAttackStep\" ...]} ...]}

Respect: All words in \"name\" must be conjoined together.

Respect: There must be no more than forty characters in \"name\".

Respect: For each word in \"name\", its first letter must be

capitalized.

[...]

12/2012/20

Introduction Some context Contributions Experimental insights Conclusions

Automatic prompt generation

Question

Using the specified JSON format , identify a list of possible mitigations

that would prevent an attacker from using most , if not all , of the

provided attack steps to further advance the attacker ‘s attack

scenario. Each mitigation should be associated with at least one

attack step from the provided attack step list. If applicable , use

the provided list of possible countermeasures as support for

identifying mitigations. Do respect the JSON format , and provide

only JSON (no explanation before or after).

13/2013/20

Introduction Some context Contributions Experimental insights Conclusions

Automatic analysis

Data: String r (initial LLM response), int remainingIterations
Result: String ri (improved LLM response)

1 String query ← ϵ
2 errjson ← setOfJSONFormatErrorsIn(r)
3 errconst ← setOfConstraintsErrorsIn(r)
4 while (errjson, errconst) ̸= (∅, ∅) ∨ remainingIterations > 0 do
5 query ← “In the previous response” · r · “the following errors were found, do correct them:”
6 foreach e ∈ errjson do
7 query ← query · e
8 end
9 foreach e ∈ errconst do
10 query ← query · e
11 end
12 sendToLLM(query)
13 r ← NewLLMResponse
14 errjson ← setOfJSONFormatErrorsIn(r)
15 errconst ← setOfConstraintsErrorsIn(r)
16 remainingIterations ← remainingIterations − 1

17 end
18 ri ← r

14/2014/20

Introduction Some context Contributions Experimental insights Conclusions

Outline

Introduction

Some context

Contributions

Experimental insights

Conclusions

15/2015/20

Introduction Some context Contributions Experimental insights Conclusions

Experimental insights

Setup

• Three input attack-tree diagrams, related to three different specifications (a
CPU, a mobile application, a cloud service infrastructure)

• Generation of attack-defense trees on this basis, by a security engineer and
by our framework

• Subsequent grading of the ADTs (syntactic correctness, number of
countermeasure/attack leaves associations, ...)

16/2016/20

Introduction Some context Contributions Experimental insights Conclusions

Experimental insights

(a) Cloud service case study
Creator Complexity Semantic correctness Completeness Generation time (s)

Engineer 8 1.00 0.42 3600

Tool 10 0.70 0.37 633

(b) CPU case study
Creator Complexity Semantic correctness Completeness Generation time (s)

Engineer 5 1.00 0.50 3600

Tool 9 0.44 0.31 882

(c) Social network application case study
Creator Complexity Semantic correctness Completeness Generation time (s)

Engineer 6 1.00 0.46 3600

Tool 17 0.41 0.47 912

17/2017/20

Introduction Some context Contributions Experimental insights Conclusions

Outline

Introduction

Some context

Contributions

Experimental insights

Conclusions

18/2018/20

Introduction Some context Contributions Experimental insights Conclusions

Conclusions

In a nutshell
• LLM-based tool integrated into TTool, an open-source SysML toolkit

• One-click generation

• Rapid first ADT construction, serving as a tool for quickly generating a
draft that can be further refined.

Future works
• Need for further evaluations

• Generalize the countermeasures associations to higher abstraction level nodes

• Improve the generated prompts, integrate other LLMs and countermeasures
databases

19/2019/20

Introduction Some context Contributions Experimental insights Conclusions

Questions?

Latest version of TTool includes TTool-AI, ADT generation, nice tree pictures,
. . . and much more! ttool.telecom-paris.fr

20/2020/20

ttool.telecom-paris.fr

	Introduction
	Some context
	Contributions
	Experimental insights
	Conclusions

