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ABSTRACT
Attack-defense trees, an extension of attack trees, are extensively
used by security engineers to document potential countermeasures
for security threats present in a system’s design. These trees help
integrate initial system models with countermeasures, allowing
for early testing of their efficiency and impact in the design cycle.
Despite advancements in automating attack tree construction, se-
lecting the initial set of countermeasures for conversion into an
attack-defense tree remains largely manual. This paper proposes
an approach and a tool that extends the TTool-AI attack tree gen-
eration feature by leveraging large language models and natural
language processing to create a set of countermeasures and gener-
ate attack-defense trees based on an input attack tree. To evaluate
our contribution, our approach is tested using attack-defense trees
generated from attack trees, each representing possible threats to an
associated system specification. In addition, we introduce metrics
to assess the semantic correctness and completeness of the gen-
erated attack-defense trees. We compared, using our metrics, the
attack-defense trees created from our methodology to those created
by an engineer and found that attack-defense trees created using
AI and secondary mitigation data provided better trees than solely
using AI. We also discovered that this approach generated trees that
were comparable to the quality of attack-defense trees generated
from a security engineer at the associate level. From these results,
we believe that our contribution could aid engineers in identifying
not only appropriate countermeasures for attack trees but also the
optimal number of countermeasures, avoiding the complexity of re-
dundant mitigations. Furthermore, our approach complements stan-
dard modeling practices, particularly during the initial design phase,
reducing the need for time-consuming re-engineering throughout
the system’s lifecycle.

CCS CONCEPTS
• Security and privacy → Software security engineering; •
Computing methodologies → Model development and anal-
ysis; Artificial intelligence.
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1 INTRODUCTION
In the evolving landscape of cybersecurity, whether it concerns
information technology (IT) systems or embedded systems, the
dynamic and sophisticated nature of threats requires an accurate
selection of the necessary countermeasures. Traditionally, security
analysts have employed attack trees to visualize potential attack
scenarios: these scenarios are expected to support the identification
of the corresponding vulnerabilities. However, this identification
approach, while comprehensive, often remains labor-intensive and
prone to human error, particularly when dealing with complex
systems and attack vectors. The advent of generative artificial in-
telligence (AI) and natural language processing (NLP) presents an
opportunity to enhance this traditional manual approach mostly
based on expertise. This paper explores the integration of large
language models (LLM), which is an application of generative AI
technologies, and NLP techniques into the construction of attack-
defense trees (ADTs) from pre-existing attack tree diagrams. This
contribution complements the attack tree generation method from
textual specifications that we previously introduced [1]. It applies
similar tree generation and evaluation methodologies, with the
following differences:

(1) The graphical output is now an ADT instead of a mere attack
tree.

(2) The generation process thus identifies countermeasure leaves
and pairs them with attack leaves, rather than producing a
complete attack tree structure.

(3) The input includes an attack tree, as opposed to a textual
system specification.

(4) The evaluation metrics (see Section 4) have been adapted
specifically to ADTs.

Specifically, our contributions focus on the automated identifi-
cation and inclusion of security mitigations into attack tree dia-
grams. To achieve this, we explore various automation strategies
that leverage both LLMs and existing security countermeasures
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databases. Generative AI has proven effective in supporting Model-
Based Systems Engineering (MBSE) [3]. However, traditional se-
curity architectures often incorporate a semi-automated approach
by utilizing regularly updated databases containing information on
attacks and their corresponding countermeasures, such as Common
Vulnerabilities and Exposures (CVEs) and Common Attack Pattern
Enumeration and Classification (CAPECs). These databases provide
a continually refreshed resource, contrasting with AI models that
require extensive and computationally intensive retraining cycles.
Thus, this paper also shows another example of how LLMs and
NLP techniques can be combined to better support cybersecurity
aspects in MBSE approaches by providing LLMs with additional
data pruned with NLP.

The paper is organized as follows. Section 2 introduces the notion
of ADTs and CAPECs and provides a short description of our toolkit
which we have implemented our work in. Section 3 relates our
contribution to similar work and Section 4 presents the heart of
our contribution based on CAPECs, AI/LLMs, and NLP techniques.
Section 5 evaluates our proposition with regards to, e.g., a manual
creation of ADTs. Finally, Section 6 concludes the paper.

2 CONTEXT
2.1 Attack-Defense Trees
Attack trees are conceptual diagrams used often in cybersecurity
risk analysis of systems and “provide a formal, methodical way of
describing the security of systems, based on varying attacks” [22].
They are formatted as a tree structure such that the attack steps that
an attacker needs to complete to achieve a possible attack scenario
against a system are outlined as a set of parent/child nodes (also
known as attack nodes) connected to one another via edges. This
formatting offers a straightforward and comprehensible structure
and succinctly describes the steps needed for an attacker to achieve
amalicious goal against a system. It also ensures that engineers from
diverse backgrounds can readily understand and utilize them for
various types of systems such as maritime systems [12], healthcare
systems [14, 23], railway systems [9, 16], banking systems [11], etc.

Attack-defense trees are an extension of the attack-tree schema
such that they diagram possible defensive action nodes, also known
as countermeasures, and connect these nodes to relevant attack
nodes on the tree [15]. The connections represent the defenses
that can be employed to block an attacker from completing the
associated attack steps, thus preventing the overarching attack
scenario from being utilized against the system.

2.2 TTool & TTool-AI
TTool1 is an open-source model-driven engineering toolkit de-
signed for modeling, simulation, formal verification, and code gen-
eration. Two such models that users can manually diagram in the
toolkit are attack and ADTs. Furthermore, these diagrams are in-
tegrated in TTool as part of the model-driven design processes
for security-critical systems. TTool supports two model-driven
engineering (MDE) methods aimed at secure system design: SysML-
Sec [19] and W-Sec [25]. Specifically, W-Sec focuses on selecting
the best countermeasures to address a set of attack scenarios, by

1https://ttool.telecom-paris.fr

enabling a comprehensive evaluation of their impact on safety, secu-
rity, and performance thanks to simulation and formal verification
of SysML models.

These methodologies, which rely on incremental modeling and
verification of multi-view and often complex system models, have
certain limitations. They can be time-consuming for engineers,
prone to errors in incremental modifications, and require substan-
tial time for successive model-checking stages. Over the past two
years, we have proposed several contributions to address these chal-
lenges. These include a mutation language for scripting incremental
modifications of SysML models [26], reducing time and error rates
for engineers, and a new incremental model-checking algorithm
that reduces the complexity of successive proofs by building on pre-
vious ones [10]. The contribution presented in this paper continues
this effort by addressing the selection of input countermeasures
required for executing W-Sec. This is done through the use of an
in-house, LLM-based assistant named TTool-AI [2, 3] that already
offers multiple functions to aid engineers for the following MDE
processes:

• Generating SysML use-case, block, and state-machine dia-
grams from textual specifications.

• Modifying SysML models from a query written in natural
language.

• Detecting and correcting internal and cross-view inconsis-
tencies between different SysML views modeling the same
system, a topic we discuss further at this MODELS’24 con-
ference [2].

• Generating attack trees from textual specifications [1].

Thus, the contribution presented in this paper extends the func-
tions of TTool-AI such that this assistant is now also able to aid
engineers with the creation of ADTs in the following two ways:

• Identification of relevant countermeasures for given attack
trees during the threat analysis of a system.

• Converting said attack trees into ADTs by modeling the
identified countermeasures into the tree structure.

2.3 Attack Patterns & CAPECs
Moore et al. [17] delineates an attack pattern as a "deliberate, mali-
cious attack that commonly occurs in specific contexts." Such an
attack pattern contains the following elements:

(1) The overall goal of the attack specified by the pattern.
(2) A list of preconditions for its use.
(3) The steps for carrying out the attack.
(4) A list of postconditions that are true if the attack is successful.

The CAPEC database is an inventory of common attack patterns
that was originally conceived for the United States Department of
Homeland Security in 2007 [5]. It is currently maintained by the
MITRE Corporation and has been used for several areas of cyber
security research and development such the methodology proposed
by Bakirtzis et al. [4] and that involves consecutively modeling a
Cyber-Physical System (CPS) in SysML, converting it into a graph,
and then identifying vulnerabilities and attack scenarios using the
Common Vulnerabilities and Exposures (CVE), Common Weakness
Enumeration (CWE), and CAPEC databases. Attack patterns are

https://ttool.telecom-paris.fr
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abstracted in the CAPEC database into four levels: Category, Meta,
Standard, and Detailed.2

Several attack patterns in the database also include mitigation
information for how to prevent an attacker from using them. To
convert a provided attack tree into an ADT in TTool, we use CAPEC
mitigations relevant to the attack nodes in the attack tree as a
secondary source of data to inject into an LLM for the creation of
countermeasures. This process is further explained in Sections 4.1
and 4.3. Only attack patterns at the Standard level were used for
our contribution, which is defined as “a specific methodology or
technique used in an attack.”3

3 RELATEDWORKS
A significant body of research addresses the challenge of select-
ing an optimal set of countermeasures in ADTs. This optimization
problem primarily arises from the need to reduce the cost of mitiga-
tions [20]. However, it is equally crucial for preventing unnecessary
complexity in the system and avoiding the introduction of a wide
variety of new components that could themselves increase the
system’s attack surface [7] or introduce dependability and perfor-
mance issues [25]. Overall, existing approaches rely on either a
pre-constructed ADT to optimize, or an attack tree along with a
set of countermeasures or a pool of known defenses. Thus, the
aim with an ADT is to identify a Goldilocks subset of countermea-
sures that efficiently addresses the attack scenarios depicted by its
counterpart attack tree.

For instance, in their paper introducing a threat analysis method
based on ADTs, Wang et al. [27] propose an algorithm that con-
structs a minimal set of countermeasures to cover all attack sce-
narios depicted in an attack tree. This algorithm takes an ADT as
input, which includes a set of possible safeguards.

Addressing this countermeasures optimization problem, Fila et
Widel [13] propose a comprehensive (and fully tool-supported)
method for optimal countermeasure selection from an ADT, build-
ing upon game theory and relying on integer linear programming
to solve the optimization problems.

In another effort focused on countermeasure set optimization,
Roy et al. [21] propose a process for selecting an optimal set of coun-
termeasures based on attack-countermeasure trees. This process
aims to minimize both the number and cost of countermeasures
already present in the tree, while ensuring that all attack scenarios
are still efficiently covered.

In the context of TTool, Berro et al. [7] propose an optimiza-
tion approach to identify the optimal subset of countermeasures
already present in an ADT. Their approach considers parameters
such as the increase in minimal resources required to support the
countermeasures and the increase in level of expertise needed from
engineers responsible for deploying these security measures.

Stan et al. [24] propose an interesting approach to identify an
optimal set of countermeasures from an attack tree. Their method
focuses on selecting a subset of countermeasures derived from a
predefined set of defense mechanisms that covers most possibilities
such as firewalls, software patches, anti-malware software, etc.
Our contribution complements Stan et al.’s method by creating

2https://capec.mitre.org/about/glossary.html
3https://capec.mitre.org/about/glossary.html#Standard_Attack_Pattern

countermeasures on potentially more fine-grained models that can
be evaluated later on in the development cycle usingW-Sec without
limiting potential defense mechanisms.

Overall, our approach operates upstream of existing contribu-
tions by automatically generating the initial set of countermeasures
on the basis of an input attack tree and the system specification.
This set can then be optimized using the methods surveyed in this
section, as well as MDE approaches like W-Sec [25] or SysML-
Sec [19]. This is a topic that, to the best of our knowledge, has not
been previously addressed.

4 CONTRIBUTIONS
4.1 Definitions
In this paper, ADTs adheres to the schema defined by Berro et
al. [7]. Below, we provide formal definitions that adhere to these
ADTs. Note that since the ADT schema is an extension of the attack
tree schema, they derive from the attack-tree definitions we have
previously introduced [1].

Definition 1 (Alphabet, Words and Sentences).
• A = {𝑎,𝐴,𝑏, 𝐵, . . . , 𝑧, 𝑍 } is the alphabet.
• A∗ is the set of all finite words generated by A4.
• 𝜖 ∈ A∗ is the empty word.
• S ⊂ (A ∗ ∪{ } ∪ {., , })∗ is the set of all finite sentences.

Definition 2 (Attack-Defense Trees).
An Attack-defense tree is a 3-tuple ⟨(𝑣0,𝑉 , 𝐸), 𝑑𝑒𝑠𝑐, 𝑟𝑎𝑛𝑘⟩ where:

• (𝑉 , 𝑟𝑎, 𝐸) is a non-empty, finite, directed rooted tree.
• 𝑉 = 𝑉𝐴 ⊔ 𝑉𝑂 ⊔ 𝑉𝐶

5 is a set of vertices, 𝑉𝐴 being a set of
attack vertices, 𝑉𝑂 a set of operator vertices and 𝑉𝐶 a set of
countermeasure vertices.

• 𝑟𝑎 ∈ 𝑉𝐴 is the root of (𝑉 , 𝑟𝑎, 𝐸). In the rest of the paper, 𝑟𝑎 is
called the root attack.

• 𝐸 ⊂ 𝑉𝐴 ×𝑉𝑂 ⊔𝑉𝑂 ×𝑉𝐴 ⊔𝑉𝐶 ×𝑉𝐴 is a set of edges. It is such
that ∀𝑣𝑎 ∈ 𝑉𝐴, 𝑐𝑎𝑟𝑑 ({𝑣𝑜 | (𝑣𝑜 , 𝑣𝑎) ∈ 𝐸 ∩ 𝑉𝑂 × 𝑉𝐴}) ≤ 1 and
∀𝑣𝑜 ∈ 𝑉𝑂 , 𝑐𝑎𝑟𝑑 ({𝑣 | (𝑣, 𝑣𝑜 )}) ≥ 0.

• 𝑑𝑒𝑠𝑐 :

{
𝑉𝑂 → {𝑎𝑛𝑑, 𝑜𝑟, 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒}
𝑉𝐴 ⊔𝑉𝐶 → A ∗ \{𝜖} × S \ {𝜖}

is a function that

provides a description for each vertex. It associates attack and
countermeasure vertices with a name and a textual description,
and operator vertices with a type.

• 𝑟𝑎𝑛𝑘 : 𝑉𝐴 × (𝐸 ∩𝑉𝐴 × {𝑣 ∈ 𝑉𝑂 |𝑑𝑒𝑠𝑐 (𝑣) = 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒}) → N
is a function that assigns a rank to each child of a 𝑆𝐸𝑄 node.
For 𝑣𝑎1, 𝑣𝑎2 ∈ 𝑉𝐴 and 𝑣𝑜 ∈ 𝑉𝑂 such that (𝑣𝑎1, 𝑣𝑜 ) ∈ 𝐸 and
(𝑣𝑎2, 𝑣𝑜 ) ∈ 𝐸, 𝑟𝑎𝑛𝑘 (𝑣𝑎1) < 𝑟𝑎𝑛𝑘 (𝑣𝑎2) means that the attack
modeled by 𝑣𝑎1 is executed prior to the one modeled by 𝑣𝑎2.

We define below a set of metrics to assess the quality of such
ADTs. These metrics will provide a basis for the evaluation of our
contributions in Section 5.

Definition 3 (ADTs Metrics).
Let ⟨(𝑣0,𝑉 , 𝐸), 𝑑𝑒𝑠𝑐, 𝑟𝑎𝑛𝑘⟩ be an ADT. We define its:

• Complexity as 𝑐𝑎𝑟𝑑 (𝐸 ∩𝑉𝐶 ×𝑉𝐴).

4∗ denotes the Kleene star operator.
5"⊔" denotes the disjoint union operator.

https://capec.mitre.org/about/glossary.html
https://capec.mitre.org/about/glossary.html#Standard_Attack_Pattern
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User TTool CAPEC Tracer LLM

for each leaf

feedback loop

Figure 1: Sequence diagram illustrating our contribution

• Number of relevant mitigations 𝑅𝑀 as the number of edges in
𝐸 ∩𝑉𝐶 ×𝑉𝐴 that are relevant.

• Number of missing mitigations 𝑀𝑀 as the number of edges
missing in 𝐸 ∩𝑉𝐶 ×𝑉𝐴 to associate an effective set of counter-
measure vertices to the attack vertices.

• Semantic correctness as 𝑅𝑀
𝑐𝑎𝑟𝑑 (𝐸∩𝑉𝐶×𝑉𝐴 ) .

• Completeness as 𝑅𝑀
𝑀𝑀+𝑅𝑀 .

Below, we provide an example of how these metrics are calcu-
lated.

Example 1 (ADTs Metrics Example).
We consider the ADT displayed in Figure 3:

• The ADT includes four edges connecting countermeasures to
attack vertices, resulting in a complexity of 4.

• The proposed countermeasures appear relevant, so we assign a
relevant mitigations score 𝑅𝑀 = 4.

• A potential mitigation “Use obfuscated code” could be added to
address the first attack step, indicating that there is 1 missing
mitigation.

• Consequently, the semantic correctness is calculated 4
4 = 1.

• And the completeness as 4
4+1 = 4

5 .

As pointed out in Section 3, a meaningful ADT is one that has a
Goldilocks set of countermeasure to attack node pairings (edges).
This is why we established RM and MM as part of our metrics
to denote how far off generated ADTs are from their golden set.
Furthermore, semantic correctness and completeness were also es-
tablished essentially as transformed ratios of RM andMM to ensure
that the quality of generated ADTs could be compared with one

another in an unbiased manner since RM and MM are influenced
by the size of the attack tree that an ADT is created from.

4.2 Framework Overview
As mentioned in Section 2.2, our contribution extends TTool-AI
using a generation methodology similar to the one we introduced
for the creation of ADTs [1]. The input attack trees adhere to the
standard structure that Kordy et al. defines [15] where the root
of each attack tree corresponds to an attacker’s goal, the children
of a node in the tree are abstractions of the root node into attack
scenarios, and the leaves of the tree are the actions to be executed
by an attacker. Since leaf nodes represent the technical steps that
an attacker would need to perform to achieve the root goal under
this composition, our methodology focuses on using the data of an
attack tree’s leaf nodes and provides countermeasures only for said
leaf nodes. Note that, as stated in Definition 2, all attack nodes in
the attack trees used in this paper are associated with a description
including a title and a textual description explaining what the node
represents.

To see if injecting additional CAPEC mitigation data into the
ADT generation methodology would provide better scores for the
metrics defined in Section 4.1 and thus overall better ADTs, we con-
ducted implementation tests diverging our methodology into two
separate versions, as done for our attack tree generation methodol-
ogy [1]. In the rest of the paper, the version that includes CAPEC
mitigations—ultimately the one we retained—is labeled as ADTGC,
while the version without these mitigations is labeled as ADTG.
We used OpenAI’s GPT-4 Turbo model as the underlying LLM for
countermeasure generation.
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Attack-Defence Tree GeneratorCAPEC Tracer

Obtain CAPEC Catalog

Decompose Standard CAPECs
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Develop Cosine Similarity Score Matrix
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Sort and Filter Avg Scores

Index Avg Scores
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Obtain CAPEC Mitigations

Create Countermeasures

feedback loop

Figure 2: Activity diagram of the ADTGC process. The CAPEC tracer behavior comes from [1].

Figure 1 as well as the following enumerated stages present an
overview of the ADT generation methodology:

(1) The user selects, in the TTool GUI, an attack tree diagram
that has been modeled with TTool. This attack tree provides
either from a system architect, or from an automated gener-
ation based on CAPEC or LLMs.

(2) (ADTGC) The description of each leaf node in the attack tree
diagram is extracted and processed by an in-house CAPEC
tracer program. For each provided description, the tracer is
responsible for analyzing and relating it to a list of relevant
mitigations from MITRE’s CAPEC database. The lists of rel-
evant mitigations generated from each leaf node description
are then aggregated and de-duplicated, which results in a
unique, final list of suggested CAPEC mitigations. This list
is displayed in the TTool-AI GUI for user reference. No ac-
tion is required from the user, as the tool will automatically
integrate the list into the request in the next step.

(3) A request is then built and sent to the LLM that includes all
leaf node titles and descriptions from the attack tree diagram,
where a title and its associated description represent one
leaf node. The request also includes a set of constraints,
the list of CAPEC mitigations and a question tasking the
LLM with the generation of a list of countermeasures and
countermeasures-attack edges. The question additionally
includes asking the LLM to provide titles and descriptions for
each countermeasure. The set of constraints is responsible for
ensuring that the LLM formats its response to a standardized
and parsable JSON schema.

(4) From there, the LLM identifies a list of countermeasures
and associates each of them with at least one leaf node. An
automated feedback loop ensures that the proposed coun-
termeasures adhere to the format constraints, iteratively
refining the response until it converges to a list of counter-
measures that satisfy the constraints or till a maximum of
ten retries have occurred.

(5) TTool-AI presents the final list of countermeasure and attack
vertex pairings identified by the LLM. If the user is satisfied

with the proposed pairings, they can validate the response
by clicking a button in the GUI. Upon validation, TTool
generates a new ADT. This new diagram is essentially a copy
of the original attack tree diagram but includes additional
countermeasure nodes connected to the leaf attack nodes.

Note that the folder of the CAPEC tracer program is located in
the root directory of the public TTool GitLab repository6 under the
name ’capectracer’.

4.3 Further Implementation Details
The ADTGC version, we retained for the final implementation in
TTool, consists in two successive sub-mechanisms as shown in
Figure 2.

4.3.1 CAPEC Tracer. The first sub-mechanism is the in-house
CAPEC Tracer program, mentioned in Section 4.1. We introduced
this CAPEC Tracer program for attack tree generation [1], and
adapted it to mitigation identification for the needs of the present
paper. However, for the sake of self-containment, we provide below
the full description of its functionality we previously introduced [1].
The CAPEC Tracer generates a list of relevant CAPEC mitigations
for a given leaf node, as detailed in stage 2. This process begins
by retrieving all Standard CAPECs from the MITRE database7 and
fragmenting the metadata of each CAPEC. Then, a set of Standard
CAPECs, referred to as SC, is built by selecting Standard CAPECs
that are not marked as obsolete or deprecated.

After fragmenting the CAPEC data, a list of sentences is con-
structed by combining the description (element 1 in Moore et al.’s
definition of an attack pattern) and execution flows (element 3 in
Moore et al.’s definition of an attack pattern) for each CAPEC in SC.
This combination is then converted into sentence tokens using the
Natural Language Toolkit (NLTK) Python library [8] and prepro-
cessed to retain only alphanumeric characters and spaces. Similarly,

6https://gitlab.telecom-paris.fr/mbe-tools/TTool/-/tree/master/capectracer?ref_
type=heads
7https://capec.mitre.org/data/downloads.html

https://gitlab.telecom-paris.fr/mbe-tools/TTool/-/tree/master/capectracer?ref_type=heads
https://gitlab.telecom-paris.fr/mbe-tools/TTool/-/tree/master/capectracer?ref_type=heads
https://capec.mitre.org/data/downloads.html
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Figure 3: Screenshot showing example branches of an ADTGC CPU ADT

the sentences in the leaf node description are tokenized with NLTK
and undergo the same preprocessing as the CAPEC sentences.

Each leaf node description and CAPEC sentence is converted
into sentence embeddings, using a pretrained Sentence Transformer
model called ATT&CK BERT [6, 18], which was initially devel-
oped to map CVEs to MITRE ATT&CK techniques8. We denote as
SELN (resp. SEC) the set of sentence embeddings for a leaf node
description (resp. the set of sentence embeddings corresponding to
a CAPEC sentence).

The CAPEC Tracer subsequently assesses the relevance of each
CAPEC in SC to every leaf node description. This is achieved by
constructing a two-dimensional matrix of cosine similarity scores,
referred to as CM. Each element in CM corresponds to a cosine
similarity score between a sentence embedding from SELN and a
sentence embedding from SEC. Thus, CM gathers the cosine simi-
larity scores for all possible pairs of sentence embeddings between
SELN and SEC. Afterwards, the arithmetic mean is calculated for
all the cosine scores in CM to produce an average cosine similarity
score. This process is repeated for each CAPEC in SC, resulting in
a sorted list of indexed scores. The list is then filtered to remove
scores below 0.4 and those associated with CAPECs lacking miti-
gation data. Finally, the indexes from this filtered list are used to
extract and return the mitigation data from their corresponding
CAPECs.

4.3.2 ADT Generator. The second sub-mechanism ofADTGC is the
ADT Generator, that is responsible for interacting with the LLM
to produce a list of pertinent countermeasures. This generation
process is carried out as described in stages 3 and 4.

It relies on the interaction mechanism between TTool and Ope-
nAI’s API provided by TTool-AI [3], and the automatic generation
and parsing of successive prompts, adapting the TTool-AI core

8https://attack.mitre.org/

mechanisms (contextual knowledge injection, JSON format, auto-
mated feedback loop) to meet the requirements for ADT generation.
More in detail, our tool sends first a prompt “learning” to the LLM
the expected response format:

When you are asked to identify mitigations for a

provided list of attack steps, return them as a

JSON specification formatted as follows:

"mitigations": [{\"name\": \"NameOfMitigation\", \"

description\": \"The description of the

mitigation and how it prevents the attack.\"}, \"

attacksteps\": [\"TheNameOfAProvidedAttackStep\"

...]} ...]}

# Respect: All words in \"name\" must be conjoined

together.

# Respect: There must be no more than forty

characters in \"name\".

# Respect: For each word in \"name\", its first

letter must be capitalized.

[...]

Following this, the tool sends another prompt with descriptions
of the attack steps and potential countermeasures identified by
the CAPEC tracer. It then injects a prompt tasking the LLM with
countermeasure identification and pairing:

https://attack.mitre.org/
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Using the specified JSON format, identify a list of

possible mitigations that would prevent an

attacker from using most, if not all, of the

provided attack steps to further advance the

attacker's attack scenario. Each mitigation

should be associated with at least one attack

step from the provided attack step list. If

applicable, use the provided list of possible

countermeasures as support for identifying

mitigations. Do respect the JSON format, and

provide only JSON (no explanation before or after

).

The LLM’s response is then parsed. If there is a syntax error in
the JSON structure, or if the JSON is empty, the following prompt
is generated, containing the detected errors:

Your answer was as follows: [LLM Response]

Yet, it was not correct because of the following

errors:

[Errors description]

This prompt is then sent to the LLM, and the next response is
parsed. This process is repeated until no errors are detected or after
ten consecutive reworked responses are received. Once the final
response from the LLM is received and the user is satisfied with it,
they click the “Apply Response” button in the TTool-AI GUI. This
action updates the attack tree, converting it into an ADT.

5 EVALUATION
5.1 Evaluation Methodology
To evaluate our contribution, we first selected three input attack
tree diagrams. The attack trees were created using TTool-AI at-
tack tree generator [1], based on three input system specifications.
These specifications described three distinct systems: a cloud ser-
vice infrastructure, a social network mobile application, and a CPU.
From there, a security engineer with two years of professional ex-
perience was selected to manually create ADT diagrams from the
aforementioned attack tree diagrams. This included identifying as
many relevant countermeasures as possible and mapping this iden-
tified set with appropriate attack leaf nodes. Part of this task also
included providing titles and descriptions for each countermeasure.
The engineer was given an hour maximum to complete this task
and diagram the results as a separate tree.

For each attack tree, we also tasked both versions of our method-
ology (ADTGC and ADTG) to generate an ADT. Thus, a total of nine
ADT diagrams were created among ADTGC, ADTG, and the engi-
neer. Figure 3 shows example branches of an ADTGC-generated
ADT.9

The ADTs were then evaluated using the metrics outlined in
Section 4.1, those created by hand being evaluated by two others
security experts. For determining the MM score in each ADT, the
evaluators had a time limit of thirty minutes to identify additional

9Note that due to space constraints, this screenshot only shows a sample of identified
countermeasures while in the actual generated diagram there are additional connected
countermeasures.

countermeasures and pair them with attack leaf nodes. All other
metrics were assessed without any time constraints.

5.2 Results
The grading of the ADT is summarized in Table 1. We can make
from these results the following observations:

• Both ADTGC and ADTG generate countermeasures signif-
icantly faster than the manual methodology, with ADTG
being particularly efficient.

• The manual methodology produced better detailed counter-
measures and more relevant countermeasure pairings com-
pared to ADTGC and ADTG when comparing their average
semantic correctness scores. However, ADTGC produced
much better results from this perspective than ADTG, espe-
cially when it came to the CPU ADT that contained low-level
and complex attack nodes.

• The manual and ADTGC methodologies produced sets of
countermeasure pairings with less omissions from these sets
compared to ADTG as seen with their average completeness
scores. In addition, ADTGC was not that far off from the
manual methodology when it came to this perspective as
ADTGC was able to identify at least commonly recognized
countermeasures for each attack tree.

From these observations, it can be inferred that the only advan-
tage of creating ADTs with ADTG is the speed at which it does so.
Otherwise, ADTGC on average produces better ADTs than ADTG
and also produces these trees at a quality not that far off from a
professional security engineer at the associate level, especially in
regards to their average completeness scores only having a ∼19%
difference. This is also evidenced by ADTGC having fairly low stan-
dard deviations for its averaged scores — 0.08 for example in regards
to the standard deviation of its average completeness score. There-
fore, we have decided to retain ADTGC for inclusion in TTool’s
release.

5.3 Threats to Validity
Even though this experimentation lays a foundation for evaluating
our approach, it has several limitations that may affect its validity.
Firstly, the number of input attack trees is limited, with only three
attack trees serving as the basis for the experimentation. Addition-
ally, regarding the evaluation: the manual ADTs were evaluated
by two security experts, whereas the AI-generated ADTs were
evaluated by the same security expert who designed the manual
ADTs. This introduces unavoidable evaluator variability, although
we used well-defined metrics. Nonetheless, this variability is some-
what constrained by the fact that several scores in the metrics are
objective.

6 CONCLUSIONS
Complementing TTool-AI’s attack tree generation feature [1], this
paper presents an extension to this prior approach by incorporating
mitigations into existing attack trees. Our contribution relies on
LLMs enrichedwith additional cybersecurity context extracted from
the CAPEC database. This is achieved using a CAPEC Tracer, which
employs NLP techniques to identify and select relevant CAPECs
based on the attack leaves in the input trees. Evaluation results
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Table 1: Evaluation results

(a) Cloud service case study
Creator Complexity Semantic correctness Completeness Generation time (s)
Engineer 8 1.00 0.42 3600
ADTG 9 0.67 0.35 34
ADTGC 10 0.70 0.37 633

(b) CPU case study
Creator Complexity Semantic correctness Completeness Generation time (s)
Engineer 5 1.00 0.50 3600
ADTG 11 0.09 0.09 23
ADTGC 9 0.44 0.31 882

(c) Social network application case study
Creator Complexity Semantic correctness Completeness Generation time (s)
Engineer 6 1.00 0.46 3600
ADTG 15 0.40 0.40 23
ADTGC 17 0.41 0.47 912

(d) Statistics
Creator Complexity Semantic correctness Completeness Generation time (s)

Engineer Average 6.33 1.00 0.46 3600
Std. Dev. 1.53 — 0.04 —

ADTG Average 11.67 0.39 0.28 26.67
Std. Dev. 3.06 0.29 0.17 6.35

ADTGC Average 12 0.52 0.38 809
Std. Dev. 4.36 0.16 0.08 153.16

demonstrate that while our method does not yet produce ADTs as
complete and semantically accurate as those created by security ex-
perts, it serves as a valuable basis for security analysis by delivering
high-quality results efficiently.

To enhance the completeness and semantic accuracy of the gen-
erated attack/countermeasure pairings, future work will focus on
several key areas: integrating other LLMs into our implementa-
tion, refining our CAPEC Tracer to improve the computation of
similarity scores for more precise mitigation selection, incorporat-
ing databases beyond CAPEC to broaden the mitigation basis, and
conducting further prompt engineering to optimize the prompts
automatically sent to the LLM by our tool.

In addition, currently our methodology is only capable of cre-
ating ADTs from attack-trees structured under Kordy et al.’s stan-
dard format [15]. However, attack trees are oftentimes structured
differently such as the attack trees used by Wang and Liu [27]
which contain node representations of ’Actions’, ’Detections’, and
’Deceptions’ in addition to traditional attack nodes. As such, our
methodology could be expanded to additionally convert attack trees
with different formats from Kordy et al.’s and also to account for all
attack nodes, not just leaf attack nodes, without providing excess
countermeasures and countermeasure pairings.

Finally, our evaluation approach has several limitations, and our
contribution requires complementary assessments for a more com-
prehensive evaluation. A comparative study with other available
generation methods would be highly beneficial to determine its
relative impact with respect to the existing literature.
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