

Institut Mines-Telecom SysML-Sec Attack Graphs: Compact Representations for Complex Attacks

Ludovic Apvrille Iudovic.apvrille@telecom-paristech.fr

Yves Roudier yves.roudier@eurecom.fr

GraMSec'2015

Context: Security for Embedded Systems $_{\odot \odot \odot}$

Attack trees

Contribution

Conclusion

Context: Security for Embedded Systems Embedded systems SysML-Sec

Attack trees

Contribution

Conclusion

Context: Security for Embedded Systems ${\scriptstyle \bullet \circ \circ}$

Attack trees

Contribution

Conclusion

Examples of Threats

Transport systems

Use of exploits in Flight Management System (FMS) to control ADS-B/ACARS [Teso 2013]

Internet of Things

Proof of concept of attack on IZON camera [Stanislav 2013]

Medical appliances

Infusion pump vulnerability, April 2015. http://www.scip.ch/en/?vuldb.75158

(C) aviationweek.com

(C) Hospira

Conclusion

Designing Safe and Secure Embedded Systems: SysML-Sec

Main idea

 Holistic approach: bring together experts in embedded system architects, system designers and security experts

Common issues (addressed by SysML-Sec):

- Adverse effects of security over safety/real-time/performance properties
 - Commonly: only the design of security mechanisms
- Hardware/Software partitioning
 - Commonly: no support for this in tools/approaches in MDE and security approaches

Attack trees

Contribution

Conclusion

SysML-Sec: Methodology

Context: Security for Embedded Systems $_{\odot\odot\odot}$

Outline

Contribution

Conclusion

Attack trees Attack trees

Contribution

Conclusion

Context: Security for Embedded Systems $_{\bigcirc \bigcirc \bigcirc }$

Attack trees

Contribution

Conclusion

Google-izing Attack Trees

Contribution

Conclusion

Attack Trees

Definition and purpose

- Originate from fault trees, introduced by Bruce Schneier (1999)
- Depict how a system element can be attacked
 - Helps finding attack countermeasures
- Root attack, children, leaves
- OR and AND relations between children

Context: Security for Embedded Systems $\circ \circ \circ$

Conclusion

Attack Trees: Related Work

- Generation of ATs from other formalisms [Vigo 2014]
- Semantics extensions
 - [Khand 2009]
 - ▶ PAND, k-out-of-n, CSUB, SEQ, ...
 - [Zhao 2014]
 - Permissions and capabilities on nodes
 - Applied to malware analysis
- Security assessment
 - Privilege graphs [Dacier 1996]
 - Petri nets [Dalton 2006] [Pudar 2009]
 - Markov processes [Piètre-Cambacédès 2010]

Attack trees

Contribution

Conclusion

Attack Trees: A Few Issues

Semantics

- Semantics of AND and OR is limited to express complex attack scenarios
 - No ordering between attacks
 - No temporal operators

Relation with other development stages

- No relation with (security) requirements
 - More generally, not integrated into methodologies
- No relation between attacks and the HW/SW components of the system
 - Difficult to figure out the where and which of countermeasures

Context: Security for Embedded Systems $_{\odot\odot\odot}$

Attack trees

Contribution

Conclusion

Context: Security for Embedded Systems

Attack trees

Contribution New operators

Conclusion

Attack trees

Contribution

Conclusion

Overview (with an Example)

- SysML Parametric diagram
- Asset = Block
- Attacks = Attributes of blocks
- Relation between attacks = Constraints
- Formal semantics
 - Timed automata

Attack trees

Contribution

Conclusion

- Attacks
- Intermediate attacks
- Root attack
- Constraints
 - ► AND, OR, XOR, SEQUENCE, BEFORE, AFTER

Attack trees

Contribution

Conclusion

Semantics of Attacks

Attack

Intermediate Attack

Context: Security for Embedded Systems $\circ \circ \circ$

Attack trees

Contribution

Conclusion

Semantics of Constraints

Context: Security for Embedded Systems $\circ \circ \circ$

Attack trees

Contribution

Conclusion

Semantics of Constraints (Cont.)

Attack trees

Contribution

Conclusion

Formal Verification

- Reachability of an attack a
- Liveness of an attack a
- a_1 Leads to a_2 $(a_1 \rightsquigarrow a_2)$

00	Formal verification	n with UPPAAL	
Verify with UPPAAL: o	ptions		
Search for absence	of deadock situations		
Reachability of sel	ected states		
Liveness of select	ed states		
Leads to			
Custom verificatio	n		
Custom formulae =			
🔲 Generate simulatio	on trace		
Show verification	letails		
Select options and then, click on 'start' to start generation of RG Session id on launcher=1 Sending UPPAL specification data Reachability of Selects_IIIlegalBankAccountTransactionBasedOnToken.TGComponent: -> property is satisfied Liveness of: Blocks_IIIegalBankAccountTransactionBasedOnToken.TGComponent: Ille -> property is satisfied			
•	1		•
st.	stop	Close T Del	

Attack trees

Contribution

Conclusion

Disabling Attacks

 Right click to disable/enable an attack

Context: Security for Embedded Systems $\circ \circ \circ$

Attack trees

Contribution

Conclusion

Temporal Compatibility

Temporal constraints may impact attacks reachability/liveness

Context: Security for Embedded Systems $_{\odot\odot\odot}$

Outline

Contribution

Conclusion

00

Context: Security for Embedded Systems

Attack trees

Contribution

Conclusion Conclusion, future work and references

Attack trees

Contribution

Conclusion ●○

Conclusion and Future Work

Achievements

- Extended and formally defined attack trees
- Integrated into SysML-Sec
- Fully supported by TTool
- Applied to different domains, e.g., malware, automotive systems

Future work

- Handling new situations
 - Cycles, nb of iterations, priorities
- Quantitative assessments of threats

Attack trees

Contribution

Conclusion ○●

To Go Further ...

Web sites

- https://sysml-sec.telecom-paristech.fr
- https://ttool.telecom-paristech.fr

References (SysML-Sec)

Ludovic Apvrille, Yves Roudier, "SysML-Sec: A SysML Environment for the Design and Development of Secure Embedded Systems", Proceedings of the INCOSE/APCOSEC 2013 Conference on system engineering, Yokohama, Japan, September 8-11, 2013.

