
Automated Attack Tree Generation Using
Artificial Intelligence & Natural Language

Processing

Alan Birchler De Allende1, Bastien Sultan1[0000−0002−5031−5794], and Ludovic
Apvrille1[0000−0002−1167−4639]

LTCI, Télécom Paris, Institut Polytechnique de Paris, Sophia-Antipolis, France
alan.birchler-de-allende@eurecom.fr, {bastien.sultan,

ludovic.apvrille}@telecom-paris.fr

Abstract. Attack trees are widely used by engineers to analyze and
document threats during system design. They are also particularly valu-
able for supporting the risk analysis of systems. Despite advancements
in automation, the construction of these trees is often manual, leading to
errors and the potential to overlook unconventional attack vectors. This
paper introduces a novel method and tool that addresses a gap in existing
literature: generating attack trees early in the design stage from a textual
specification of the system, written in natural language. By leveraging
natural language processing and large language models, this approach
helps engineers identify threats concurrently with the initial design of the
system, thus avoiding time-consuming re-engineering later on. Addition-
ally, the paper introduces metrics to evaluate the syntactic and semantic
correctness of the generated attack trees. Our contributions are assessed
using attack trees generated from three different system specifications,
with a comparative analysis based on the defined metrics between trees
generated by the tool and those created by engineers. From these assess-
ments, we have discovered that our methodology produces attack trees
at a quality not that far off from that of an individual engineer.

Keywords: Artificial Intelligence, Attack Trees, Natural Language Pro-
cessing

1 Introduction

Given the expanding attack surface of both information technology (IT) and
embedded systems, the imperative to accurately identify potential threats and
appropriate defensive measures has become increasingly critical. Attack trees,
a prevalent methodology for modeling threats and vulnerabilities in security
systems, offer security analysts a structured perspective for systematically iden-
tifying and mitigating cybersecurity risks [27]. Traditionally, the construction of
attack trees, including attack-defense trees, has been a largely manual and labor-
intensive process. It often requires substantial expertise and domain-specific
knowledge to anticipate sophisticated or unconventional attack vectors.



2 Birchler De Allende et al.

Generative artificial intelligence (AI) is a promising avenue to address these
challenges. With its capacity to work from large datasets, generative AI could
potentially enhance domain-specific knowledge and improve coverage of possible
attack scenarios.

This paper investigates the application of generative AI technologies, specif-
ically large language models (LLMs), in the generation of attack trees. The root
attack in an attack tree typically represents the primary objective of cyber-
criminals, such as stealing money or information, using a system as an attack
relay, or causing catastrophic failure. Furthermore, sub-attacks that have a di-
rect path to the root attack are supposed to demonstrate the steps that an
attacker needs to achieve the root attack. A straightforward application might
involve using these generative AI models to produce attack trees with a root
attack and a set of connected sub-attacks from system specifications. However,
our initial attempts at exploring this method often produced disappointing re-
sults. The LLMs we performed initial tests with, using just custom prompts,
frequently suggested elementary attacks that did not align with strategic crim-
inal objectives. In addition, these LLMs oftentimes suggested sub-attacks that
were irrelevant to the provided system specification. Our approach, therefore,
combines the use of LLMs, MITRE’s Common Attack Pattern Enumeration
and Classification (CAPEC) database that contains common attack patterns,
and other natural language processing (NLP) models and techniques to identify
relevant root attacks and sub-attacks for a provided system specification and
diagram them in an attack tree.

The paper begins with a review of related work that examines traditional
methodologies for attack tree generation and highlights the limitations inher-
ent in these approaches (section 2). Subsequent sections detail our contribu-
tions, focusing on how CAPECs, LLMs, and different kinds of NLP models and
techniques such as sentence embedding can be tailored to model complex secu-
rity scenarios effectively. We present a framework, implemented within TTool,
that leverages generative AI with a set of pertinent CAPECs to automate and
augment the creation of attack trees from a system specification. CAPECs are
deemed pertinent to the provided system specifications using a combination of
different NLP models and techniques further described in section 3.4. We then
follow this up with an evaluation of the relevance and efficacy of our proposal.
We discuss potential enhancements in efficiency, scalability, and thoroughness
that this integration offers. Finally, section 5 concludes the paper.

2 Related Works

2.1 Context on Attack Trees

Attack trees [23] are a formalism extensively utilized in cybersecurity risk anal-
ysis. They offer a comprehensible structure consisting of nodes that succinctly
describe attack steps along with logical operators. This structure allows engineers
from diverse backgrounds to readily analyze them and contribute to their exten-
sive application in various contexts ranging from safety-critical systems such as
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Supervisory Control and Data Acquisition (SCADA) systems [8,25] and health-
care systems [24,12], to IT systems such as banking systems [10]. Attack trees
are utilized across different stages of a system’s lifecycle, ranging from system
design [22,18] to its operational phase, including facilitating the dynamic recon-
figuration of networks [20]. The contribution we present in this paper specifically
aims to facilitate attack tree-based security analysis conducted early in the sys-
tem design cycle, which is crucial for avoiding costly re-engineering during the
design and development process [11].

2.2 Attack Tree Generation

Due to the widespread use of attack trees and the potential flaws induced by
manual generation by security experts (which is expertise-dependent, tedious,
and error-prone) [27], automatic generation of attack trees is not a new research
issue. Several literature reviews, including one published this year, are dedicated
to this topic [27,13]. Among the attack tree generation approaches reviewed by
[27], a common feature is that they all require as input a description of the
system provided in a specified formalism (e.g., labeled transition systems or
value-passing quality calculus [26]). This is an advantage because the system is
described more rigorously, with a high level of detail about its behavior, com-
munications, and architecture. However, this approach also has drawbacks, as
it is advantageous to start the risk analysis in parallel with the system design,
i.e., before the first models of the system are constructed. In this context, attack
trees document plausible attack scenarios based on the provided specifications,
aiding the initial system modeling by incorporating these threat scenarios. As
the design process progresses, the attack trees are incrementally refined alongside
the model, becoming more detailed as the system design takes shape.

Overall, approaches to vulnerability and attack scenario detection often rely
on constrained input formalisms. For example, in [15], the authors propose mod-
eling industrial control systems using SysML, which is then converted into the
IDP [9] formal framework. This converted model forms the basis for the auto-
matic detection of vulnerabilities and attacks. The detection process is conducted
by an analyzer that leverages a dataset of vulnerabilities from ICS-CERT, along
with guidelines from NIST and other relevant sources. In [3], the authors propose
a methodology that involves consecutively modeling a Cyber-Physical System
(CPS) in SysML, converting it into a graph, and then identifying vulnerabilities
and attack scenarios using Common Vulnerabilities and Exposures (CVE), Com-
mon Weakness Enumeration (CWE), and CAPEC databases. Closer to the goal
of incorporating threat analysis early in the development cycle, Kammüller et
al. (2019) propose an approach that incrementally refines specifications through
the use of attack trees to identify risks and vulnerabilities. These attack trees are
constructed from SysML models that are derived from the initial specifications.

The survey by Konsta et al. [13] reviews 22 approaches for generating at-
tack trees/graphs. Most of these approaches also rely on system descriptions
provided in a formalism that is either constrained or requires details about the
actual system architecture (such as network topology). However, one paper [14]
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does not impose any constraint on the input description of the system. This
paper proposes an attack tree template and method to assist security experts in
designing their attack trees. We believe that our contribution, which proposes a
fully automated method for attack tree generation from a system specification,
usefully complements this approach. In addition, as highlighted in [13], a key is-
sue in generating attack trees or graphs is ensuring the production of meaningful
results. Some of the approaches surveyed in this study achieve this by design.
However, to the best of our knowledge, our approach is the first to incorporate
a set of objective metrics to assess the quality of the generated attack trees.

2.3 The CAPEC Effort

Our contribution relies on the analysis of attack patterns. Attack patterns are
defined by Moore et al. [17] as “deliberate, malicious attack[s] that commonly
occurs in specific contexts.” As to what these contexts are is open to interpre-
tation and can be in a technical environment such as the data that resides in
a network flow of an application framework1 or a general environment such as
sensitive information being kept within physical storage.2 The article also goes
on to state that an attack pattern consists in the following elements:

1. The overall goal of the attack specified by the pattern.
2. A list of preconditions necessary for the attack to be executed.
3. The steps for carrying out the attack.
4. A list of postconditions that are true if the attack is successful.

The CAPEC database [4], currently maintained by The MITRE Corporation,
maintained by The MITRE Corporation, provides a continuously updated list of
attack patterns based on this definition. These patterns are organized into four
abstraction levels: Category, Meta, Standard, and Detailed. For our research,
we focused on attack patterns at the Standard level, which is defined as “a
specific methodology or technique used in an attack.”3 In addition, we only focus
on elements 1 and 3 for determining pertinent CAPECs to a provided system
specification.

2.4 TTool-AI

TTool4 is an open-source model-based software and systems engineering (MBSE)
toolkit. It supports the modeling of systems with formally defined SysML pro-
files and extends SysML to incorporate security aspects among other modeling
facets [19]. TTool includes algorithms for simulating and formally verifying these
models through direct model-checking [7] or with the use of ProVerif [16], and
for generating source code from these models. Additionally, TTool supports the
1 https://capec.mitre.org/data/definitions/384.html
2 https://capec.mitre.org/data/definitions/406.html
3 https://capec.mitre.org/about/glossary.html#Standard_Attack_Pattern
4 https://ttool.telecom-paris.fr

https://capec.mitre.org/data/definitions/384.html
https://capec.mitre.org/data/definitions/406.html
https://capec.mitre.org/about/glossary.html#Standard_Attack_Pattern
https://ttool.telecom-paris.fr
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modeling of attack trees [1] to guide MBSE methods that integrate security, such
as SysML-Sec [22].

Recently, TTool has been enhanced with an AI-based extension called TTool-
AI [2]. TTool-AI is a LLM-based modeling assistant that enables users to au-
tomatically generate models from textual specifications, modify them based on
natural language queries, or classify requirements from specifications. The ac-
curacy of the LLM’s responses is ensured through an automated feedback loop
that detects errors and inconsistencies and iteratively asks the LLM to refine the
generated models.

Given these features, we have chosen to utilize TTool to implement our con-
tribution as a new feature of TTool-AI.

3 Contributions

3.1 Preliminary Definitions

Definition 1 (Alphabet, Words and Sentences)

– A = {a,A, b, B, . . . , z, Z} ∪ {_} is the alphabet.
– A∗ is the set of all finite words generated by A5.
– ϵ ∈ A∗ is the empty word.
– S is the set of all finite sentences on words of A∗, a sentence being a sequence

of words separated by blank spaces or punctuation marks.

In this paper, we rely on the attack trees introduced in [1]. Below, we provide
a formal definition for these trees.

Definition 2 (Attack Trees)
An attack tree is a 4-uple ⟨(v0, V, E), name, desc, rank⟩ where:

– (v0, V, E) is a non-empty, finite, directed rooted tree.
– V = VA ⊔ VO

6 is a set of vertices, VA being a set of attack vertices and
VO a set of operator vertices. Elements of VO are typed by typeV : VO →
{AND,OR, SEQ}.

– v0 ∈ VA is the root of (v0, V, E).
– E ⊂ V 2 \ (V 2

A ∪ V 2
O) is a set of edges, directed towards the root. It is such

that ∀va ∈ VA, card({v|(v, va) ∈ E}) ≤ 1
– name : VA → A∗ is a function that assigns a name to each attack vertex.
– desc : VA → S is a function that assigns a description to each attack vertex.
– rank : VA × (E ∩ VA × {v ∈ VO|typeV(v) = SEQ}) → N is a function that

assigns a rank to each child of a SEQ node. For va1, va2 ∈ VA and vo ∈ VO

such that (va1, vo) ∈ E and (va2, vo) ∈ E, rank(va1) < rank(va2) means that
the attack modeled by va1 is executed prior to the one modeled by va2.

– a leaf of (v0, V, E) is necessarily an element of VA.
5 ∗ is the Kleene star operator.
6 "⊔" denotes the disjoint union operator.
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Definition 3 (Attack Patterns)
Let P ⊂ A ∗ ×S∗ be the set of attack patterns. An attack pattern is an or-
dered pair composed of a name and a description. Its name is unique: ∀(n, d1) ∈
P,∄(n, d2) ∈ P.

Definition 4 (System Specification)
A system specification is a text in natural language that provides a description
of the functional and architectural aspects of a system.

3.2 Metrics

Konsta et al. highlights in [13] that a key issue in diagramming attack graphs is
ensuring that a graph produces meaningful results. Thus, to capture and assess
the quality of produced attack trees in a format that can be quantitatively
analyzed, our contribution also includes a set of specially crafted metrics.

TTool, due to the limited number of operators available for constructing at-
tack trees [1], ensures that both human users and LLMs integrated in TTool-AI
generate at least a directed graph when creating attack trees. This graph, we call
a generated attack graph in the rest of the paper, is of the form ⟨(V,E), name, desc, rank⟩
be 4-uple where (V,E) is a directed graph, V = VA ⊔ VO, VA (resp. VO) is a set
of attack (resp. operator) nodes, elements of VO are typed by typeV : VO →
{AND,OR, SEQ,XOR,BEFORE,AFTER}, E ⊂ V 2, and name, desc and
rank are the functions defined in Definition 2. In order to ensure that the gener-
ated attack graph is an attack tree as defined per Definition 2, we propose a set
of rules to check.

Definition 5 Complexity
The complexity of an attack tree ⟨(V,E), name, desc, rank⟩ is given by the value
C = card(V ).

Definition 6 Syntax Rules for Attack Vertices

1. name : VA → A ∗ \{ϵ} (an attack vertex shall have a non-empty name)
2. desc : VA → S \ {ϵ} (an attack vertex shall have a non-empty description)

∃v0 ∈ VA such that:
3. ∀va ∈ VA \ {v0}, card({v|(va, v) ∈ E}) = 1 ∧ E ∩ V 2

A = ∅ (an attack vertex
shall be connected to a unique parent operator vertex, except if this is the
root attack)

4. ∀v ∈ V, {(v0, v)} ∩ E = ∅ (a root attack shall not be connected to a parent
operator)

5. ∀v ∈ V \ {v0}, (v, v0) ∈ E+ where E+ is the transitive closure of E and the
path between v and v0 is unique (each attack vertex shall be connected by
exactly one path to the root attack).

Definition 7 Syntax Rules for Operator Vertices
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1. ∀vo ∈ VO, card({v|(v, vo) ∈ E}) ≥ 2 ∧ E ∩ V 2
O = ∅ (an operator vertex must

have at least two children attack vertices)
2. ∀vo ∈ VO, card({v|(vo, v) ∈ E}) = 1 ∧ E ∩ V 2

O = ∅ (an operator vertex must
have only one parent attack vertex)

3. Elements of VO are typed by typeV : VO → {AND,OR, SEQ} (an operator
vertex must have only one of the following types: SEQUENTIAL, AND, or
OR)

Based on these rules, we can define a syntactic correctness score:

Definition 8 Syntactic Correctness Score
Let erra : VA → N be a function that represents, for each attack vertex, the
number of syntax rules that are not respected, and let erro : VO → N be its
corollary for the operator vertices. The syntactic correctness score of a generated
attack graph is the value∑

va∈VA
erra(va)

nb. of att. node rules+

∑
vo∈VO

erro(vo)

nb. of op. node rules

C .

We propose two additional scores to evaluate the semantic correctness and
completeness of an attack tree. Please note that unlike the previous score, these
two rely on elements that depend on the evaluator’s judgment.

Definition 9 Semantic Correctness Score
We denote with ra (resp. ro) the number of relevant attack (resp. operator)
vertices. The semantic correctness score of a generated attack graph is the value

ra+ro
C .

Definition 10 Completeness Score
Let n represent the number of missing (attack and operator) vertices in an attack
tree that are required to cover all possible scenarios leading to its root attack. The
completeness score of a generated attack graph is then defined as

ra+ro
ra+ro+n .

3.3 The Attack Tree Generation Process

Our contribution extends the LLM-based block and state-machine diagram gen-
eration process introduced in [2] to attack trees. This process leverages two same
key mechanisms: prior knowledge embedding and an automated feedback loop.
Figure 1 presents an overview of the attack tree generation process, which pro-
ceed as follows:

1. The user provides a system specification to the graphical user interface,
which can be in any format, including natural language.

2. (Optional) The system specification is processed by a CAPEC tracer, which
analyzes it and extracts a list of relevant attack patterns from MITRE’s
CAPEC database. Our CAPEC tracer relies on comparing sentence embed-
dings from the system specification with each Standard CAPEC to determine
which CAPECs are most relevant to the specification.
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System specification
CAPEC list

CAPEC list

System specification (± CAPEC list)
Root attack

Root attack

System specification, Root attack, (± CAPEC list)
Attack scenarios

Attack scenarios

Root attack, attack scenarios
Logical operators

Logical operators

Attack scenario
Attack steps

Attack steps

draw()
Attack tree

System specification
User TTool CAPEC Tracer LLM
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feedback loop

feedback loop

feedback looploop

RA

RA

Sc1 Sc2

RA

OR

Sc1 Sc2

RA

OR

Sc1 Sc2

AND

Step1 Step2

. . .

Fig. 1. Sequence diagram of the generation process – CAPEC option enabled

3. Generating v0. The system specification, along with the optional attack pat-
terns list, is sent to the LLM along with a set of constraints that define the
expected format for the root attack, including rules 1 and 2 in definition
6. The LLM identifies a root attack, which is an attack vertex modeling a
high-level attack goal targeting the system. The LLM response is then algo-
rithmically checked to determine whether it suits the format constraints: if
it is not the case, a new request including the detected errors is sent back
to the LLM. This process continues until the LLM produces a correct root
attack node.
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4. Completing VA. The tool then provides the LLM with the system specifica-
tion, root attack, and output format constraints, and tasks it with generating
a set of attack scenarios—attack vertices at the immediate lower abstraction
level relative to the root attack. A feedback loop ensures the correctness of
the attack scenarios’ format.

5. Adding the first operators to VO. The tool tasks the LLM with identifying
logical operators that connect the root attack to the attack scenarios. The
LLM is provided with the root attack, attack scenarios, and constraints on
the expected format, including rules 4 in definition 6 and 1 in definition 7,
with here again a feedback loop to ensure format correctness.

6. Completing VA and VO. For each attack scenario, the tool sends the scenario
and format constraints to the LLM, asking it to generate a set of attack steps,
which are attack vertices of lower abstraction. For each attack scenario, the
LLM answers also undergo a feedback loop for ensuring attack steps format
correctness.

7. The user can choose to ask the LLM to refine the identified steps or to draw
the attack tree. If the user opts to draw the attack tree, the tool automatically
generates it from the successive responses provided by the LLM.

3.4 Implementation

For this paper we implemented two versions of the attack tree generation frame-
work, one of which integrates selected CAPECs into the process. The version
that integrates CAPECs is denoted as ATGC and the version that does not is
denoted as ATG. In addition, we use OpenAI’s GPT-4 Turbo model as the LLM
to generate each portion of the attack tree.

For ATGC, the process can be thought of as two different sub-processes as
shown in Figure 2. The first sub-process is the CAPEC Tracer that generates
a ranked list of most relevant CAPECs to a provided system specification. To
develop the list of pertinent CAPECs for a provided system specification, the
first step involves obtaining all Standard CAPECs from the MITRE7 catalog and
decomposing the metadata of each CAPEC. Only Standard CAPECs that are
not listed as Obsolete nor Deprecated are parsed. We denote this set of Standard
CAPECs as SC.

For each CAPEC in SC, a list of sentences is generated by combining the
description and execution flows of the CAPEC and then sentence tokenizing
them using the Natural Language Toolkit (NLTK) Python library [6]. Each
sentence is also preprocessed to ensure that only alphanumeric characters and
spaces are preserved. The sentences of the system specification are also tokenized
using NLTK and preprocessed in the same way as the CAPECs.

Each system specification sentence and CAPEC sentence, respectively, are
then converted into a sentence embedding. The list of sentence embeddings as-
sociated with a system specification is denoted as SES and the list of sentence

7 https://capec.mitre.org/data/downloads.html

https://capec.mitre.org/data/downloads.html
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Attack Tree GeneratorCAPEC Tracer

Obtain CAPEC Catalog

Decompose Standard CAPECs

Create Lists of CAPEC and System Spec Sentences

Create Sentence Embeddings 

Develop Cosine Similarity Score Matrix

Calculate Avg Score

Sort and Filter Avg Scores

Normalize and Index Avg Scores

for each CAPEC

Obtain Top-Twenty CAPECs

Create Root Attack

Create Attack Scenarios

Create Operators

Create Attack Steps

feedback loop

feedback loop

feedback loop

feedback loop

Fig. 2. Activity diagram of the ATGC process

embeddings associated with a CAPEC are denoted as SEC. Sentence embed-
dings are generated using a pretrained Sentence Transformer model [21] known
as ATT&CK BERT [5]. To compare how relevant a specific CAPEC is to the
system specification, a two-dimensional matrix of cosine similarity scores is con-
structed, denoted as CM, where each element in CM is a cosine similarity score
between a sentence embedding in SES and a sentence embedding in SEC. Thus,
CM represents the cosine similarity scores of all possible pairs of sentence em-
beddings between SES and SEC. The arithmetic mean is then calculated among
all of the cosine scores in CM to produce an averaged cosine similarity score that
represents how relevant a CAPEC is to the system specification. This process is
repeated for each CAPEC in SC that results in a sorted list of indexed scores.
The list is filtered out for scores less than or equal to zero. In addition, each score
is normalized using min-max normalization, where the min is set to zero and the
max is set to the highest score in the list rounded up to the nearest hundredths
place, and then multiplied by one hundred. We denote this new converted score
in our implementation as a confidence score.

The second sub-process of ATGC is the Attack Tree Generator that takes the
top twenty CAPECs with the highest confidence scores provided by the CAPEC
Tracer and then generates the amount of attack trees needed for the provided
system specification as specified by the user. The generation process for each
attack tree is essentially performed as described in steps 3 through 7 in section
3.3.

ATG works fundamentally the same as ATGC. The main difference with this
version is that it solely includes the Attack Tree Generator sub-process and that
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the custom LLM prompts used in this sub-process do not include any CAPEC
information in them. They are simply designed to ask the LLM for specific parts
of the attack tree and apply corrections as needed.

4 Evaluation

This section details the evaluation of our attack tree generation process. It begins
with a description of our experimental setup, followed by a summary of the
results obtained.

4.1 Experimental Setup

We have evaluated our attack tree generation approach by comparing the attack
trees produced by three security engineers of varying experience levels, alongside
those generated by our TTool-AI extension (both with and without the CAPEC
tracer enabled). The input consisted of three specifications generated by GPT-4
Turbo: one detailing a cloud service infrastructure, another describing a social
network mobile application, and the third describing a CPU.

In detail, each engineer was tasked with creating as many attack trees as
possible for one of the specifications within a 1.5-hour time limit. For each spec-
ification, we also tasked our TTool-AI extension to generate the same number
of attack trees, with and without the CAPEC tracer enabled. For the cloud ser-
vice, five attack trees were generated by the engineer and ten by TTool-AI. For
the social network application, one tree was created by the engineer and two by
TTool-AI. Similarly, for the CPU system, one tree was generated by the engineer
and two by TTool-AI.

The attack trees were then graded using the metrics defined in Section 3.2.
For the assessment of the handmade attack trees, each engineer graded the trees
created by one of their colleagues. The grading process was organized in such
a way that no engineer graded the work of the engineer who evaluated their
attack tree. Furthermore, to limit the number of missing nodes identified during
the evaluation of a tree’s completeness (see Definition 10), the grading time for
each case study was restricted to 30 minutes.

Reproducibility : all the attack trees, detailed gradings, and input specifications
are publicly available in an anonymous GitHub repository.8

4.2 Results

Table 1 provides a synthesis of the attack trees grading and Figures 3 and 4
show example branches of a manual and an ATGC attack tree respectively.9 10

8 https://github.com/zebradile/ttool-ai/tree/main/attacktrees
9 For Figures 3 and 4, due to space constraints these screenshots only show a sample

of attack scenarios and their children attack steps while in the actual diagrams there
are additional attack scenario branches.

10 The children of a SEQUENCE operator node are meant to be read from left to right
in terms of execution order.

https://github.com/zebradile/ttool-ai/tree/main/attacktrees
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Table 1. Evaluation results

(a) Cloud service case study
Creator Complexity Semantic correctness Completeness Syntactic correctness Generation time (s)

Engineer

26 1 1 0.99

5400
19 1 0.83 1
19 1 1 1
15 1 1 1
8 1 0.8 0.93

ATG

31 0.74 0.88 1

400
28 0.89 0.86 1
19 0.63 0.86 1
23 0.48 0.79 1
23 0 0 1

ATGC

12 0.92 0.85 1

549
15 1 1 1
19 0.53 0.77 1
14 0.93 0.93 1
28 0.93 0.81 1

(b) CPU case study
Creator Complexity Semantic correctness Completeness Syntactic correctness Generation time (s)
Engineer 15 1 0.83 0.99 5400

ATG 26 0.5 0.87 1 103
ATGC 15 1 0.79 1 140

(c) Social network application case study
Creator Complexity Semantic correctness Completeness Syntactic correctness Generation time (s)
Engineer 20 1 0.77 0.88 5400

ATG 30 0.77 0.88 1 91
ATGC 18 1 0.9 1 127

(d) Statistics
Creator Complexity Semantic correctness Completeness Syntactic correctness Generation time (s)

Engineer Average 17.4 1 0.89 0.97 2314.29
Std. Dev. 5.2 0 0.1 0.04 —

ATG Average 25.7 0.57 0.73 1 84.86
Std. Dev. 4.31 0.27 0.33 0 —

ATGC Average 17.29 0.9 0.86 1 116.57
Std. Dev. 4.9 0.16 0.08 0 11.26

We also want to highlight that the descriptions generated for the attack nodes
from each attack tree could not be shown in these figures also due to space
constraints. However as mentioned in section 4.1, all of our results, including
these descriptions, can be viewed in the anonymous GitHub repository.

From these results, we have deduced the following observations:

– ATGC and ATG will always be syntactically correct and will always guar-
antee to follow the logical structure of a defined attack tree schema, due to
the feedback loops put in place. On the other side, we see that oftentimes
manual attack trees have either syntactic and/or structural errors in them.

– ATGC and ATG took much less time to generate attack trees compared to
the manual attack trees.

– Manual attack trees on average are more robust compared to the attack trees
generated by ATGC and ATG, particularly with generating more relevant
attack steps that describe the full process of their parent attack scenarios.
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<<root attack>>
useCloudServicesAsBotnet

<<SEQUENCE>>

<<attack>>
startABotnetWithinVM

<<OR>>

<<attack>>
usePaidAccount

<<attack>>
useStolenAccount

<<attack>>
UseBotnet

<<SEQUENCE>>

<<attack>>
sendCommandToBotnet

<<attack>>
attackExecution

<<root attack>>
useCloudServicesAsBotnet

<<SEQUENCE>>

<<attack>>
startABotnetWithinVM

<<OR>>

<<attack>>
usePaidAccount

<<attack>>
useStolenAccount

<<attack>>
UseBotnet

<<SEQUENCE>>

<<attack>>
sendCommandToBotnet

<<attack>>
attackExecution

Fig. 3. Screenshot showing two example branches of a manual attack tree produced
for the cloud service

<<attack>>
MonitorEffectiveness<<attack>>

ExecuteFloodAttack
<<attack>>

GenerateSSLRequests

<<attack>>
IdentifyTargetServers

<<SEQUENCE>>

<<attack>>
SSLFloodOnAuthenticationServers

<<OR>>

<<root attack>>
DisruptCriticalCloudServices

<<attack>>
MonitorEffectiveness<<attack>>

ExecuteFloodAttack
<<attack>>

GenerateSSLRequests

<<attack>>
IdentifyTargetServers

<<SEQUENCE>>

<<attack>>
SSLFloodOnAuthenticationServers

<<OR>>

<<root attack>>
DisruptCriticalCloudServices

Fig. 4. Screenshot showing one example branch of an ATGC attack tree produced for
the cloud service

– ATG generates too general attack trees that oftentimes have attack/operator
nodes that are not relevant to the root attack as seen with their semantic
correctness and completeness scores.

– ATGC generates attack trees with relevant attack scenarios most of the
time, which are often on par with manual attack trees in terms of semantic
correctness. However, it needs improvement in terms of creating sets of at-
tack steps that fully describe what an attacker needs to achieve the attack
scenario.
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– ATG on average generates attack trees that have higher complexity scores
compared to ATGC, but this also coincides with the former having much
less semantic correctness scores than the latter.

– In one of the attack trees that ATG generated for the cloud system, none of
the attack nodes, including the root node, was relevant to the system. Thus,
this tree was given a zero for semantic correctness and completeness.

– ATG is on average faster at creating attack trees compared to ATGC. When
creating five attack trees for the cloud system however, ATG took longer
to finish all five trees compared to ATGC since it produced errors that
the feedback loops needed to correct. ATGC when creating each of the five
attack trees for the cloud system produced each part of the tree correctly
the first time.

– Analysis of the metrics (see Table 1 (d)) allows for several conclusions. We see
that the performance of ATG is good, but the standard deviations indicate
a fairly variable quality from one attack tree to another. In addition, ATGC
achieves excellent scores with low standard deviations, indicating consistent
high quality across all generated trees. This reliability allows engineers to
use these trees with a high degree of confidence. Generally speaking, we can
observe that the quality of trees generated by engineers is close to that of
trees from ATGC. In addition, ATGC has an average time that is 20 times
lower than that of an engineer. Finally, we can note that syntax correction
is ensured in all cases by ATG(C).

5 Discussion and Conclusions

For our research, we explored the capability of LLMs to produce complete, se-
mantically correct, and sytaxically correct attack trees given a textual system
specification. We have observed this potential increase when supplied with addi-
tional cyber security data such as CAPECs. Although our framework does not
produce attack trees that are as robust as those created by security experts, it
delivers fair results in a much shorter time compared to attack trees initially
diagrammed by an expert. Thus, we have confidence that this new feature of
TTool-AI produces attack trees that are solid foundations for experts to further
refine and enhance.

We also consider that there are lots of areas to further explore with this
research to improve on the completeness, semantic, and sytaxic correctness of
LLM generated attack trees. One such area is producing attack trees with dif-
ferent LLMs as we have only tested attack trees with GPT-4 for our research. In
addition, there could be further improvements made for the CAPEC tracer and
Attack Tree Generator sub-processes. For the CAPEC tracer, we would need to
explore additional NLP models and techniques to improve the CAPEC ranking
process. Also, there could be other cyber security catalogs such as MITRE’s
ATT&CK matrix whose data would either help improve the Attack Tree Gen-
erator in addition to CAPECs or even perhaps instead of CAPECs. For the
Attack Tree Generator sub-processes, additional work could be done to improve
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the clarity of the prompts and the way that attack trees are constructed such
that it would be more straightforward for an LLM to produce more robust attack
trees that better model the motivation of an attack and the steps to achieve said
attack given a system specification.
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