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Abstract
Throughout the history of engineering, successive innovations have been implemented to assist engineers in their
tasks, allowing them to concentrate on high-value activities while minimizing time-consuming and error-prone
tasks. Large Language Models (LLMs) represent one of these innovations, with significant potential for develop-
ing new kinds of engineering assistants, as demonstrated by a rich body of recent literature. The paper introduces
TTool-AI, a model-driven engineering assistant based on LLMs and integrated within the SysML modeling and
formal verification toolkit, TTool. TTool-AI enables system architects to generate and incrementally refine var-
ious types of SysML diagrams directly from textual specifications with a single click. The core mechanisms
of TTool-AI—contextual knowledge injection, automated prompt generation, and iterative feedback—enable it
to produce good quality models that can serve as a sound foundation for system architects in MDE processes.
Building on our previous work presented at MODELSWARD 2024, this paper provides a comprehensive descrip-
tion of TTool-AI’s MDE assistance features. It introduces new functionalities, including requirement engineering
and automated model mutation generation. An evaluation of these features, comparing their performance against
Master-level students, demonstrates the tool’s efficacy and suggests a strong potential to significantly enhance
engineering productivity by enabling engineers to focus on high-value tasks.
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1 Introduction
Throughout history, system engineering, architecture,
design and development has benefited from succes-
sive innovations, transforming the profession of engi-
neers by providing increasingly sophisticated assis-
tance, allowing them to focus on tasks with higher
added value. Naval architects, once performing com-
plex hydrodynamic and stability calculations by hand,
have benefited from successive introductions of cal-
culation aid—logarithm tables, then computers—, and
then CAD software to draw their plans, relieving them

of time-consuming tasks and enabling them to refo-
cus their time on tasks more oriented towards more
conceptual thinking. Similarly, a goal towards which
much research in systems engineering, and particu-
larly in Model-Driven Engineering (MDE), is directed
is the automatic generation of (drafts of) models from
a textual specification. While several proposals have
been made, notably relying on natural language pro-
cessing [19], the recent introduction of large language
models (LLMs) opens up very promising perspectives
for MDE assistance [12]. We are therefore once again
on the threshold of a new transformation in system
engineering, architecture, design and development,
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thanks to a new technological innovation enabling the
emergence of a new assistance tool for engineers.

However, the use of LLMs as engineering assis-
tants requires prior adaptation of these tools, as
their “raw” use produces (sometimes very) imperfect
results [9]. This article contributes to this adaptation
by presenting TTool-AI, an MDE assistant based on
the SysML modeling and formal verification toolkit
TTool1, integrated with OpenAI’s GPT [22]. TTool-AI
offers a variety of MDE features, including the ability
to generate different types of SysML diagrams with
a single click, based on system specifications writ-
ten in natural language by the user. Additionally, it
can automatically incrementally modify these models
according to user-described desired evolutions. This
tool is primarily intended to help system architects
save time by producing good quality initial models,
providing a solid basis for further refinement. As a
result, engineers can further focus their efforts on
high-value engineering tasks. This article extends a
conference paper [4] which introduced a subset of the
TTool-AI features. The enhancements include a com-
prehensive description of the MDE assistance features
of TTool-AI—where [4] focused only on the gener-
ation of Block Diagrams (BDs) and State Machine
Diagrams (SMDs) from textual specifications. In par-
ticular, it introduces new features such as requirement
engineering assistance and assistance in incremental
refinement of models through automated generation of
model mutations. In addition, it features an evaluation
that uses a broader basis and includes new diagrams
and engineering tasks.

The rest of the paper is organized as follows:
Section 2 provides an overview of the literature on
the automated generation of models from textual
specifications, with a focus on the introduction of
LLMs as assistants in MDE. Sections 3 and 4 present
our contributions. Section 3 provides an overview of
TTool-AI, detailing its current assistance capabilities
and the three key mechanisms—contextual knowledge
injection, automatic prompt generation and automated
feedback loop—underlying its functionality and com-
mon to all TTool-AI features. Afterwards, Section 4
presents in more concrete terms a subset of five
TTool-AI features illustrating how software and sys-
tem engineers can utilize our framework during the
(incremental) design of a system. Section 5 evaluates
several TTool-AI features by comparing their perfor-
mance with that of Master-level students on various
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engineering tasks, and discusses the relevance of our
contributions. Section 6 finally concludes the paper.

2 Related Works

2.1 Generation of Models from
Specifications

The automatic generation of (formal) models from
system specifications has long been a significant
research challenge. As highlighted in the compre-
hensive literature review by Landhäusser [19], this
area of study has been active since the late 1990s.
However, model generation often requires imposing
constraints on the syntax of input requirements or
necessitates manual preprocessing, as demonstrated
by Gelhausen et al. [17]. Recent advancements, such
as the ARSENAL framework [18], have introduced
model generation approaches that minimize restric-
tions on the input language. Nonetheless, even with
these advanced tools, certain natural language expres-
sions can still pose challenges, preventing their auto-
mated transformation into formal models. We believe
that recent advancements in generative AI models,
such as GPT, offer an opportunity to handle system
specifications written in natural language. Relying on
these AI models, as the following sections will illus-
trate, helps reduce the research effort on language
processing and redirects it toward tailoring LLMs to
suit the requirements of the modeling process.

More broadly, the topic of modeling assistants is
not new in research and engineering. In a comprehen-
sive survey conducted by Savary-Leblanc et al. [27],
which reviewed papers published between 2010 and
2022, the authors identified 11 notable papers intro-
ducing tools aimed at aiding engineers in the model
design process. Among these papers, four specifi-
cally focused on UML models, with one addressing
SysML models by introducing a tool that supports the
design of use-case diagrams [5]. Furthermore, recent
research has explored the development of AI-based
Model-Based Systems Engineering (MBSE) assistants
within the growing trend of AI-based methods and
tools. In this context, Chami et al. [10] introduced
a framework based on natural language processing
that autonomously generates SysML use-case and
block diagrams from textual requirements. Addition-
ally, Schräder et al. [28] introduced three distinct
AI-based MBSE assistants, each tailored to a specific
task. The first is a workshop assistant that transforms
hand-drawn sketches into formal SysML models. The
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second is a knowledge-based assistant that generates
design suggestions using training data derived from a
set of existing models. The third is a chatbot capa-
ble of interpreting natural language queries related to
modeling and responding in natural language.

2.2 Integrating LLMs into MDE
The introduction of GPT-3.5 in 2022 opened the
way to a new kind of assistants. LLMs have shown
capabilities far beyond basic question-and-response
tasks and they soon have been adapted to tackle var-
ious challenges, including MDE support. Notably,
they can generate responses tailored to the needs of
model designers, such as producing UML diagrams
with minimal syntax errors [9]. In this study, Camara
et al. evaluated ChatGPT’s ability to create UML
class diagrams from natural language specifications.
By examining the responses to 40 distinct model-
ing tasks, they found that ChatGPT often produced
syntactically correct models. However, the semantic
accuracy, especially regarding class relationships, was
inconsistently achieved. Thus, generating an accurate
model with ChatGPT often requires iterative refine-
ment. The authors concluded that significant user
effort is still necessary. Our contribution addresses
this issue through an automated response analysis
and feedback loop, resulting in substantial time sav-
ings. Netz et al. [21] propose an approach that shares
some commonalities with our strategy for improving
LLM responses. Specifically, they prompt the LLM
with a description of the target modeling language’s
syntax. The LLM then generates responses accord-
ing to this syntax. These responses are subsequently
parsed using a grammar-based parser, ensuring that
only syntactically correct segments of the models are
constructed.

In a more architecture process-oriented study,
Ahmad et al. [1] used ChatGPT for software architec-
ture tasks, including requirements generation, UML
modeling, and architectural evaluation. Their findings
underscore ChatGPT’s utility as an assistant for soft-
ware architects but also raises concerns about response
variability and ethical/intellectual property issues. In
both studies, human analysis and iterative question-
ing remain crucial for arriving at a correct system
architecture.

Petrovic et al. [24] introduce an LLM-based MDE
assistant designed to generate code from natural lan-
guage software system specifications. This assistant
operates in two stages: model generation and code

generation, with the former being particularly rel-
evant to our discussion. During the model genera-
tion stage, the tool produces an Ecore model of the
system by iteratively sending prompts to the LLM.
These prompts are automatically generated and incor-
porate the specification along with additional con-
textual knowledge, which varies depending on the
stage of model generation. This contextual knowl-
edge may include the Ecore metamodel, a description
of the hardware on which the software system will
be executed, a set of reference requirements, ... The
responses from the LLM are then validated for con-
sistency using OCL rules. This assistant relies on
two of the mechanisms—contextual knowledge injec-
tion and response verification—that are central to our
contribution.

Additionally, at earlier design stages, LLMs have
been assessed for generating goal models [11, 20],
showing promising results when used judiciously,
such as incorporating feedback or using multiple
prompts. Alarcia et al. [2] introduced a GPT-4-based
assistant designed to generate a detailed list of techni-
cal specifications from a natural language description
provided by the user. Their study highlights the sig-
nificance of prior knowledge injected into the LLM:
the results showed that the assistant produced supe-
rior technical specifications when an Object-Process
Methodology [15] model of the system was included
as part of the input to the modeling assistant.

3 TTool-AI: an Overview

3.1 TTool: Context
TTool is a comprehensive MDE open-source toolkit
supporting formal modeling, model verification (sim-
ulation and model-checking) and code generation
from models. It supports a wide variety of SysML dia-
grams [23], from requirements and analysis diagrams
(such as use case (UCDs), activity and sequence dia-
grams) to design diagrams (such as BDs and SMDs).
Additionally, TTool extends these models with attack-
defense graphs [3]. TTool diagrams are underlined by
formal semantics: among others, this enables for direct
model checking of SysML models without the need of
translating them in intermediate formalisms [8]. This
is also highly useful when it comes to use LLMs to
generate these diagrams, since it provides a basis for
defining, verifying and enforcing formal consistency
rules [29]. This is also a foundation for AMULET, the
TTool integrated mutation language [30] that enables
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Fig. 1: Overview of TTool-AI. The central section illustrates the generic workflow of our framework. Tasks and
data that vary based on the selected TTool-AI feature are depicted in light red boxes. These features are listed on
the left side of the figure, while the corresponding models generated by TTool-AI for each feature are shown on
the right side, aligned with their respective feature heights.

for scripting the modifications a user can bring to
BDs and UCDs. TTool-AI, the contribution we present
in this paper, extends TTool with an AI-based assis-
tant that is intended to assist the TTool’s users in
producing various kinds of diagrams supported by
the tool, including most of the SysML diagrams and
attack-defense graphs, or AMULET mutation scripts
for supporting incremental MDE processes.

3.2 A Polymorphic Assistant
TTool-AI is designed as a versatile system engineer-
ing assistant that can support system architects in a
wide range of model-based tasks, including system
analysis (e.g., deriving use cases from a textual spec-
ification) and system design (e.g., creating SysML

block diagrams). Its main goal is to automatically gen-
erate initial models that users can subsequently refine,
offering two main benefits:

• Efficiency: by handling time consuming and some-
times low-value modeling tasks, TTool-AI enables
engineers focusing their time and expertise on refin-
ing the more complex aspects of the models.

• Variability: TTool-AI can propose radically differ-
ent architectures for the same specification. Indeed,
creating radically new designs from scratch after
having designed an initial architecture can be chal-
lenging for engineers. The stochastic nature of
LLMs’ responses facilitates this variability, aiding
in the exploration of diverse architectural solutions.
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Currently, TTool-AI offers the following features
(see Figure 1):

• UCD generation [29]: generates use case diagrams
from a system specification written in natural lan-
guage.

• BD generation [4]: generates block diagrams from
a system specification written in natural language.

• SMDs generation [4]: generates state-machine
diagrams—one per block—from a block diagram
and a system specification written in natural lan-
guage.

• Inconsistencies identification [29]: identifies
semantic inconsistencies between different SysML
views modeling the same system (e.g., determining
whether a concept defined in one view and expected
in another is missing from that second view). Cur-
rently, our implementation supports inconsistencies
between UCD, BD, and SMD.

• Model mutation: updates BD and SMDs based on
an initial BD+SMDs set and a textual query describ-
ing the desired modification (e.g., “add an integer
attribute to every block and delete all the links
between block B0 and block B1”).

• Requirements identification: generates a list of
requirements from a system specification written in
natural language.

• Attack Tree generation [6]: generates attack trees
given a system specification written in natural lan-
guage.

• Countermeasures identification [7]: enriches an
attack tree with mitigation leaves, given an attack
tree.

These different generations are performed thanks to
a standardized automated workflow. The base princi-
ple of this workflow involves: (i) automatically forging
queries (prompts) based on the feature selected by the
user, (ii) analyzing the LLM’s responses for syntactic
and semantic accuracy, and automatically reiterating
the questions to the LLM, including the detected
errors, until they converge to correct responses, and
(iii) when applicable, parsing the correct responses
to automatically generate new graphical models. This
workflow relies on three key mechanisms, which are
detailed below.

3.3 Three Key Mechanisms
3.3.1 Preliminary considerations:

TTool/OpenAI interfacing

TTool-AI fundamentally relies on automated interac-
tions between TTool and a LLM. To comprehend the
framework’s functionality, it is essential to first under-
stand this interaction mechanism. Therefore, we will
initially explain how TTool interacts with the LLM.
Following this, we will be able to introduce the three
core mechanisms central to our contribution. Although
the details provided here are specific to OpenAI’s GPT
API, the overall interaction mechanism is applicable
to any other LLM that can be queried through such an
API.

GPT can be easily accessed via simple HTTP
requests using its API. This involves sending a struc-
tured request that includes the API key, the desired
GPT model, and a JSON message with the question.
For instance, the LLM can be queried using curl in
this way:

#1: Querying GPT through the API

curl https://api.openai.com/v1/chat/
completions -H "content-type:
application/json" -H "
Authorization: Bearer OPENAI-API
-KEY" -d ’{ "model": "gpt-4o", "
messages": [{"role": "user", "
content": "Hello! Do you like
reading SN Computer Science?"}]
}’

We then receive the following response in JSON
format, which includes the answer provided by the
LLM:

Getting an answer

{"id": "chatcmpl-9
ofN0oXU81393MUj5UisOv9il8DSy",

"object": "chat.completion",
"created": 1721862454,
"model": "gpt-4o-2024-05-13",
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
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"content": "Hello! As an AI,
I don’t have personal
likes or dislikes, but I
can certainly help you
with information about SN
Computer Science. Are

you looking for specific
articles, topics, or
general information about
this journal?"

},
"logprobs": null,
"finish_reason": "stop"

}
],
"usage": {
"prompt_tokens": 17,
"completion_tokens": 43,
"total_tokens": 60

}
}

We can see from this example that automating
the querying of the LLM and parsing its responses to
extract the answer is very simple. Our integration of
TTool with GPT functions similarly; instead of using
curl, we directly connect with OpenAI servers and
utilize the API to query the LLM via HTTP requests.
To enhance transparency and support user understand-
ing of the automated exchanges between TTool and
the LLM, the full sequence of queries and responses
is accessible within the TTool GUI. These interactions
are displayed in real time and remain available for
review afterwards.

3.3.2 Mechanism 1: knowledge injection

The interfacing between TTool and GPT opens the
way for the three mechanisms we need for building
TTool-AI. The first mechanism, we call “knowledge
injection” and that is closely related to retrieval-
augmentation techniques [14], consists in sending
contextual knowledge to the LLM. This knowledge
forms a part of the query forged by TTool-AI (see
Figure 1), and is based on the feature selected by the
user. For instance, if the user selects the UCD gen-
eration feature, contextual knowledge about use case
diagrams is automatically included in the query sent
to the LLM. This contextual knowledge is necessary
for providing the LLM with the information it needs

to produce an initial exploitable response. TTool relies
indeed on concepts that are likely not included in
the LLM’s training data, such as, for instance, details
related to the syntax and semantics of the SysML pro-
files used in TTool or the syntax and semantics of
its SysML mutation language. Below is an example
demonstrating the importance of this knowledge injec-
tion. First, we start a chat and ask GPT to generate a
command in AMULET, the SysML mutation language
used in TTool [30]:

#2: Generating a mutation command

Please write an AMULET command that
deletes block B0.

GPT then answers by inventing a syntax and refer-
encing an AMULET tool which is not relevant to our
context:

Response to #2

Certainly! AMULET is a tool commonly
used in computer systems for

configuration and management
purposes. To delete block B0
using an AMULET command, you
need to refer to the specific
syntax and procedures of the
platform you’re working on.
However, a generic command
structure might look something
like this:

‘‘‘shell
amulet delete block B0
‘‘‘
[...]

We then initiate a new chat and start by sending
some prior knowledge on AMULET:

#3: Adding some context on AMULET

AMULET is a SysML mutation language.
To delete a block myBlock from

a model, the AMULET syntax is:
rm block myBlock.
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When you are asked to provide an
AMULET command, please provide
only the command, without any
comments nor explainations.

Afterwards, we reiterate question #2:

Response to #3 then #2

rm block B0

However, providing the LLM with knowledge
about fundamental aspects alone is not sufficient to
obtain exploitable responses. We also aim for the
LLM to deliver structured responses to ease their pars-
ing and presentation to the TTool user in textual or
graphical model formats. Therefore, it is also neces-
sary to inject constraints regarding the form of the
responses through this knowledge injection mecha-
nism. Therefore, depending on the feature selected by
the user, specific form constraints are included in the
knowledge sent to the LLM. Concretely, for most fea-
tures, we have defined specific JSON formats that the
LLM is asked to follow when providing its answers.
For instance, for a use case diagram, we inject the
following knowledge about form:

#4: Knowledge about use case diagrams
form

1. When you are asked to identify
actors, return them as a JSON
specification formatted as
follows: {actors: [{ \"name\":
\"Name of actor\"...]}

[...]
2. When you are asked to identify

the use cases from a
specification, return them as a
JSON specification formatted as
follows: {usecases: [{ \"name\":
\"Name of use case\" ...]}

[...]

3. When you are asked to identify
connections between use cases
and actors, return them as a
JSON specification formatted as
follows:{connections: [{ \"
element1\": \"usecase or actor
name\", \"element2\": \"usecase
or actor name\" ...]}

3.3.3 Mechanism 2: automatic query
generation

As previously mentioned, the injected knowledge is
part of a query sent to the LLM. As depicted in
Figure 1, this query also includes two other elements:
a user input and a question.

The user input refers to the information provided
by the user, which varies depending on the selected
feature. For instance, for the UCD generation feature,
the user input consists of the textual specification of
the system for which the diagram is being created.

The question is a standard sentence included by
TTool-AI in the query. It also depends on the feature
selected by the user. For example, in the case of UCD
generation, the question is:

#5: Questions related to use case dia-
grams generation

1. From the provided system
specification, using the
specified JSON format, identify
the typical actors, that is
elements not part of the system
but directly interacting with it
. Do respect the JSON format,
and provide only JSON (no
explanation before or after)

2. From the provided system
specification, using the
specified JSON format, identify
the typical use cases of the
system. Do respect the JSON
format, and provide only JSON (
no explanation before or after).
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3. From the previous JSON and system
specification, find the typical
connections between actors and
use case, and between use cases.
Do give them respecting the
specified JSON format.

At the end, the query includes: (i) contextual
knowledge, (ii) the question, and (iii) the user input.
It is important to note that, to prevent overloading
the LLM with a large amount of information at once
(which could (1) exceed its input context limit in
number of tokens and (2) cause it to “lose focus”
or ignore parts of the input), for most TTool-AI fea-
tures, the query is sliced and sent in several successive
parts. For instance, for the UCD generation feature,
knowledge #4 and question #5 are divided and sent
in three successive queries, which mirror the logi-
cal progression of the UCD generation process (first
identifying the actors, then the use cases, and finally
the relationships between them). This slicing strat-
egy is similar to the one employed in least-to-most
prompting techniques [31].

3.3.4 Mechanism 3: automated feedback loop

The last core mechanism of TTool-AI is its automated
feedback loop. This feedback loop is based on the
fact that LLMs rarely produce a perfect response to
an initial query on the first attempt. Typically, query-
ing LLMs involves a series of successive questions to
refine the initial response. The feedback loop mimics
this iterative process by algorithmically analyzing the
responses provided by the LLM and iteratively refor-
mulating the query to address the potential detected
errors. The algorithmic analysis identifies two cate-
gories of errors in the responses:

• Response structure errors: for features that
require a JSON-structured response (i.e., all fea-
tures except the model mutation feature), the
response is checked for syntactic errors in the struc-
ture of the JSON array.

• Constraints errors: the response is also checked
for violations of a set of constraints depending on
the selected feature [29]. These rules cover syn-
tactic aspects (e.g., for model mutation, does the
AMULET script comply with AMULET syntax?)
or semantic aspects (e.g., in the AMULET script

line rm block B0, does B0 exist in the targeted
diagram?).

This analysis/re-querying loop continues until the
responses converge to a point where either (i) the algo-
rithmic analysis detects no errors or (ii) a maximum
number of loop iterations is reached, to prevent infi-
nite loops. If the loop terminates due to reaching this
iteration limit, users can examine the interaction his-
tory (including all intermediate queries and responses)
provided in the TTool-AI interface to determine how
best to proceed.

Algorithm 1: Automated feedback loop
Data: String r (initial LLM response), int

maxIterations
Result: String ri (improved LLM response)

1 String query← ε

2 errjson← listOfJSONFormatErrorsIn(r)
3 errconst← listOfConstraintsErrorsIn(r)
4 while card(errjson)+ card(errconst)>

0∨maxIterations > 0 do
5 query← “In the previous response” +r+

“the following errors were found, do
correct them:”

6 foreach element e in errjson do
7 query← query+ e
8 end
9 foreach element e in errconst do

10 query← query+ e
11 end
12 sendToLLM(query)
13 r← NewLLMResponse
14 errjson← listOfJSONFormatErrorsIn(r)
15 errconst← listOfViolatedConstraintsIn(r)
16 maxIterations← maxIterations−1
17 end
18 ri← r

Algorithm 12 provides a structured description of
the feedback loop. Currently, the feedback loop is
implemented for the following features:

• UCD generation
• BD generation
• SMDs generation
• Model mutation
• Attack-tree generation

2ε designates the empty string.
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• Countermeasure identification

3.3.5 Graphical model generation

Once valid JSON arrays are provided by the LLM at
the output of the feedback loop, TTool-AI parses them
to generate both textual and graphical models, with the
graphical models automatically rendered in the TTool
GUI.

4 TTool-AI: a Practical Insight
This section now offers a practical overview of several
TTool-AI features based on the mechanisms discussed
hereinabove. To illustrate these features effectively,
we will use a running example that demonstrates their
utility and outputs in a concrete way.

4.1 Running Example

Fig. 2: One of the fins used for active stabilization,
deployed from the hull of a passenger ship [16]

Our running example is an active fin stabilizer
system, a stabilization system deployed on modern
vessels. A ship at sea is indeed subject to strong envi-
ronmental stresses. Among these, rolling is the most
detrimental, as it can cause difficulties for the ship
to maintain its course, create discomfort for the crew
and passengers, damage the cargo due to violent rol-
l/righting movements, and even in extreme cases lead
to capsizing. To tackle these issues, active fin stabiliz-
ers are often used for roll compensation. This kind of
stabilizer relies on deployable fins located in pairs on
both sides of the hull. In the system we consider as a
running example in the paper and inspired by the sys-
tems presented in [16], the movement of these fins is
controlled by actuators, managed by a controller. This
controller develops commands based on data received

from a gyrometer and an inclinometer, which enable
it to detect the ship’s rolling movements and heel-
ing. It also generates commands for the retraction and
deployment of the fins. For this purpose, the system is
equipped with a control console that enables the crew
for commanding the retraction or deployment of the
fins.

To illustrate the various TTool-AI features
involved in an MDE process, we will walk through
a toy MDE process using this system. For this pur-
pose, we have developed a textual specification for the
fin stabilizer, which closely mirrors the previous para-
graph (see Figure 5). This specification will serve as
the input for the TTool-AI features presented.

4.2 Assisting SysML Analysis and Design
4.2.1 Analysis stage: requirements

identification

We start with the analysis of the specification. An
essential initial step for an engineer at the analysis
stage is to derive requirements from the specification.
For this purpose, we utilize the requirement identifi-
cation feature of TTool-AI. This feature requires the
user to input the textual specification, and forges a
query including this specification, a question tasking
the LLM with the generation of a list of requirements,
and knowledge defining the expected JSON format.
The JSON contains an array of requirements, each
requirement containing the following fields: name,
unique identifier, description (the requirement itself),
and relationships with other requirements (composi-
tion, derivation, refinement). Below is an excerpt from
the array returned by TTool-AI for our example:

Requirement JSON array

{
"name": "

Deployable_Fins_Installation
",

"id": "R01",
"doc": "The system shall have

deployable fins located in
pairs on both sides of the
hull.",

"compose": [],
"derive": ["Fin Deployment

Control"],
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"refine": ["Dynamic Angle
Adjustment"]

},
[...]

Overall, the generated list—which accurately mir-
rors the system specification—contains the following
requirements:

Requirement List
R01 The system shall have deployable fins

located in pairs on both sides of the hull.
R02 The deployable fins shall dynamically

change their angle of attack to compensate
roll and heeling.

R03 The movement of the fins shall be con-
trolled by actuators.

R04 The controller shall manage the actuators.
R05 The controller shall compute angle of attack

commands based on data received from a
gyrometer and an inclinometer.

R06 The system shall use a gyrometer to detect
the ship’s rolling movements.

R07 The system shall use an inclinometer to
detect the ship’s heeling.

R08 The controller shall generate commands for
the retraction and deployment of the fins.

R09 Each time a command is computed by the
controller, it shall be sent to the actuators.

R10 The system shall be equipped with a control
console that allows the crew to command
the retraction or deployment of the fins.

4.2.2 Analysis stage: UCD generation

Knowledge on
actors (JSON +
UCD constraints)

User input: sys-
tem specification

Question on
actors iden-
tification

Automatic query
generation

Stage 1 query

LLM

Stage 1 response

Automatic analysis

Errors

Actors array
Knowledge
on use cases
(JSON + UCD
constraints)

Question on
use cases

identification

Automatic query
generation

Stage 2 query

LLM

Stage 2 response

Automatic analysis

Errors

Use cases array

Knowledge on
connections
(JSON + UCD
constraints) +
Actors array
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Fig. 3: UCD generation process
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My system

Execute_Command_By_Actuators

Send_Command_To_Actuators_For_Fin_Movement

Receive_Data_From_Inclinometer

Receive_Data_From_Gyrometer

Compute_Angle_Of_Attack_Command

Command_Controller_To_Deploy_Fins

Command_Controller_To_Retract_Fins

Inclinometer_Sensor

Gyrometer_Sensor

Ship_Crew

<<include>>

<<include>>
<<include>>

<<include>>

<<include>>

<<include>>

My system

Execute_Command_By_Actuators

Send_Command_To_Actuators_For_Fin_Movement

Receive_Data_From_Inclinometer

Receive_Data_From_Gyrometer

Compute_Angle_Of_Attack_Command

Command_Controller_To_Deploy_Fins

Command_Controller_To_Retract_Fins

Inclinometer_Sensor

Gyrometer_Sensor

Ship_Crew

<<include>>

<<include>>
<<include>>

<<include>>

<<include>>

<<include>>

Fig. 4: Generated UCD

Fig. 5: TTool-AI Window. The top section contains the options menu, allowing users to select a TTool-AI feature
(here, “Identify system blocks”) and the desired LLM (here, “gpt-4-turbo”). The central section is designated for
interactions with the LLM. The bottom section includes command buttons, with “Apply response” initiating the
process of parsing and drawing diagrams based on the LLM’s responses.

A second analysis task that TTool-AI can assist with
is the definition of use cases from the system spec-
ification. The framework includes a UCD generation
feature, initially introduced in [29], which operates in
three consecutive stages as depicted in Figure 3.

• Stage 1: the user provides TTool-AI with the sys-
tem specification. TTool-AI then constructs a query
that includes this specification, a question asking
the LLM to identify the actors in the use case dia-
gram, and contextual knowledge about the expected
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JSON format and naming rules3 for actors. Upon
receiving the LLM’s response, TTool-AI initiates
the analysis and feedback loop. The loop continues
iteratively until either (i) the LLM produces an actor
list that complies with a set of actors-related rules,
or (ii) 20 iterations are completed. At the end of this
stage, a validated JSON array containing the actors
is built and TTool-AI automatically moves to Stage
2.

• Stage 2: TTool-AI follows a similar process to gen-
erate an array of use cases—except no user input is
provided. The initial query includes a question that
tasks the LLM with identifying use cases, and con-
textual knowledge about the expected JSON format
and naming rules for use cases (the system specifi-
cation has been provided at Stage 1 and is already
included in the context of the LLM). By the end
of this second stage, the framework produces a val-
idated JSON array that includes the identified use
cases.

• Stage 3: equivalent steps are then undertaken
to generate an array containing the relationships
between the use cases, and between the use cases
and the actors. At the end of this stage, a JSON
structure containing the full UCD is generated. The
user can then choose to either generate a graphical
UCD with a single click in the TTool-AI interface
or ask the framework to refine the UCD by adding
new questions in the interface (e.g., “add an actor
representing the sensors”).

The UCD produced by TTool-AI for our running
example (without human intervention) is depicted in
Figure 4. Overall, it accurately mirrors the speci-
fication, although it would be beneficial to include
an actor representing the actuators. Additionally, the
include relationships involve the correct use cases, but
they are drawn in the wrong direction.

3A comprehensive list of rules included in the UCD generation process,
including these naming rules, is available in [29].

4.2.3 Design stage: BD generation

Knowledge on
blocks (JSON +
BD constraints)

User input: sys-
tem speci�cation
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blocks iden-

ti�cation

Automatic query
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Stage 1 query
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Stage 1 response

Automatic analysis

Errors

Blocks array

Knowledge
on signals and
connections
(JSON + BD
constraints)

Question on
signals and
connections

identi�cation

Automatic query
generation

Stage 2 query

LLM

Stage 2 response

Automatic analysis

Errors

Signals and con-
nections array

Knowledge
on attributes
(JSON + BD
constraints)

Question on
attributes

identi�cation

Automatic query
generation

Stage 3 query

LLM

Stage 3 response

Automatic analysis

Errors

Block diagram

Fig. 6: BD generation process

12



block

Deployable_Fins

- angle_of_attack = 0 : int;
- is_deployed = false : bool;

~ in finCommands(bool deploy, bool retract)

block

Actuators

- current_position = 0 : int;
- target_position = 0 : int;

~ in angleOfAttack(int angle)

block

Controller

- fin_command = 0 : int;
- deploy_command = false : bool;

~ out angleOfAttack(int angle)
~ out finCommands(bool deploy, bool retract)
~ in rollData(int rollAngle)
~ in heelingData(int heelAngle)
~ in manualCommand(bool deploy, bool retract)block

Gyrometer

- roll_velocity = 0 : int;

~ out rollData(int rollAngle)

block

Inclinometer

- heel_angle = 0 : int;

~ out heelingData(int heelAngle)

block

Control_Console

- manual_override = false : bool;
- requested_deploy_state = false : bool;

~ out manualCommand(bool deploy, bool retract)

block

Deployable_Fins

- angle_of_attack = 0 : int;
- is_deployed = false : bool;

~ in finCommands(bool deploy, bool retract)

block

Actuators

- current_position = 0 : int;
- target_position = 0 : int;

~ in angleOfAttack(int angle)

block

Controller

- fin_command = 0 : int;
- deploy_command = false : bool;

~ out angleOfAttack(int angle)
~ out finCommands(bool deploy, bool retract)
~ in rollData(int rollAngle)
~ in heelingData(int heelAngle)
~ in manualCommand(bool deploy, bool retract)block

Gyrometer

- roll_velocity = 0 : int;

~ out rollData(int rollAngle)

block

Inclinometer

- heel_angle = 0 : int;

~ out heelingData(int heelAngle)

block

Control_Console

- manual_override = false : bool;
- requested_deploy_state = false : bool;

~ out manualCommand(bool deploy, bool retract)

Fig. 7: Generated BD

TTool-AI can also assist system architects during the
design stage. In SysML-based MDE methods, block
diagrams are central to this stage. As TTool relies
on a SysML profile that merges internal block dia-
gram and block definition diagram into a single block
diagram, TTool-AI can assist this design step by gen-
erating a block diagram from a textual specification.
Similarly to the UCD generation feature, this function
employs a sliced generation process operating in three
consecutive stages (see Figure 6).

Figure 5 illustrates the interactions between
TTool-AI and the LLM during the BD generation
process. On the left, the user input (the system specifi-
cation) is displayed. On the right, the automated inter-
actions between TTool-AI and the LLM are shown.
The question tasking the LLM with the block iden-
tification is displayed on the top. Below this, the
LLM’s response—the JSON containing the identi-
fied blocks—is shown. Following this, our framework
generates a question to task the LLM with identi-
fying signals and connections. For the sake of user-
friendliness, contextual knowledge injection occurs in
the background and therefore is not displayed in the
window.

Figure 7 displays the block diagram generated by
the BD generation feature. A minor anomaly is that
TTool-AI has included two separate blocks, “Actua-
tors” and “Deployable Fins”, which could be com-
bined into a single block. However, TTool-AI includes
a consistency feature that detects and corrects incon-
sistencies within and between diagrams. This feature,

which can be applied at this stage to improve and
align the BD with the previously generated UCD,
leverages both LLMs and formal consistency rules, as
introduced in [29].
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4.2.4 Design stage: SMDs generation

Knowledge on
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(JSON + SMD
constraints)

User input:
system speci-
fication + BD
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identification
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generation

Stage 1 query

LLM

Stage 1 response

Question on
attributes

identification

Automatic query
generation

Stage 2 query

LLM

Stage 2 response

Automatic analysis

Errors

State ma-
chine diagram

Fig. 8: SMD generation process

To complement the BD generation feature, TTool-AI
also has an SMD generation feature that associates
an SMD with each block of the generated BD. This
feature requires the user to provide the system specifi-
cation and select a block diagram in TTool’s GUI. For
each block of the selected BD, a specific query is gen-
erated. This query includes the system specification,
the block diagram in textual format, contextual knowl-
edge on state machines, and a question formatted as
follows:

Question for SMD generation

From the system specification, and
from the definition of blocks
and their connections, identify
the state machine of block:
Control_Console

This block has the following
attributes:

bool manual_override = false
bool requested_deploy_state = false

This block has the following signals
:

out manualCommand(bool deploy,bool
retract)

The generation feature (see Fig. 8) operates in
two consecutive stages: first, it generates the state
machine, and second, it assigns types (integer or
boolean) to all attributes involved in the generated
state machine’s guards and actions. For each gener-
ated SMD, similar to the UCD and BD generation
features, the response undergoes an analysis/feedback
loop to help the LLM converge on a better answer. To
illustrate this process, Figure 9 displays the SMD gen-
erated by TTool-AI for the block “Control Console”.
A syntactic error can be noted, as the signal “man-
ualCommand()” does not include the two boolean
attributes defined in the BD. Moreover, the states Start
and Idle could be merged.

4.3 Supporting Incremental Design
Incrementality is a fundamental aspect of MDE pro-
cesses, particularly in agile methodologies [25]. TTool
supports such incremental methodologies, includ-
ing SysML-Sec [26], which depend on continuous
updates to SysML models. In recent years, TTool
has been enhanced with features to support these
incremental processes. One such enhancement is
AMULET, a mutation language that enables for script-
ing all possible modifications of SysML models that
were previously only possible via TTool’s GUI [30].
Additionally, a new model checking algorithm has
been introduced to reduce the complexity of iterative
formal verification [13]. TTool-AI model mutation
feature is part of this effort.
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Start

Idle

Processing_Command

manualCommand()

Deploy_Fins

manualCommand()

Retract_Fins

after (5, 5)

requested_deploy_state == true && manual_override == false

after (5, 5)

after (5, 5)

manual_override == true

requested_deploy_state == false && manual_override == false

Start

Idle

Processing_Command

manualCommand()

Deploy_Fins

manualCommand()

Retract_Fins

after (5, 5)

requested_deploy_state == true && manual_override == false

after (5, 5)

after (5, 5)

manual_override == true

requested_deploy_state == false && manual_override == false

Fig. 9: Generated SMD

Table 1: Excerpt of AMULET syntax (provided in EBNF). From [30]

Mutation AMULET syntax Examples
Attribute addition add attribute type attribute-

Name [= intVal] in blockName
NB: type = int | bool

add attribute bool myBool in myBlock
or
add attribute myInt x = 42 in myBlock

Attribute deletion remove|rm attribute attribute-
Name in blockName

remove attribute myBool in myBlock

4.3.1 Tailoring contextual knowledge on
AMULET

AMULET enables for describing any model mutation
using a syntax that closely resembles natural language.
Table 1 provides a brief overview of this syntax. Con-
textual knowledge has been developed to enable GPT
to “learn” AMULET. For instance, the two operators
described in Table 1 are “taught” to GPT through the
injection of the following knowledge:

Contextual knowledge on AMULET

Adding an integer attribute i in a
block b is written "add
attribute int i in b".

Adding a boolean attribute x in a
block b is written "add
attribute bool x in b".

Removing an attribute a from a block
b is written "remove attribute

a in b".
If we want to set an existing

attribute n of a block myBlock
to a value x, we will write "
modify attribute n in myBlock to
x".

Note that in the previous knowledge, we do not
instruct GPT with the syntax enabling for adding an
attribute and setting its value in a single line of code.
Since AMULET already has an operator dedicated to
setting an existing attribute to a specific value, com-
posing these two operations (first adding the attribute,
then setting its value) is semantically equivalent. To
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avoid overloading the LLM with excessive knowl-
edge to process, we have chosen to rely solely on the
“value setting” operator for initializing newly created
attributes.

4.3.2 Model mutation in practice

Overall, the model mutation feature follows the pro-
cess presented in Figure 1. More in detail:

• Query generation: TTool-AI slices the query into
several sub-queries. The first sub-query contains
contextual knowledge about the syntax and seman-
tics of AMULET. After sending this sub-query,
another sub-query is generated containing the tex-
tual format of the diagram selected by the user in
TTool’s GUI. For each user input (e.g., “remove all
the integer attributes in blockName”), a sub-query
containing only this input is sent to the LLM.

• Response analysis: the mutation feature also
involves the automated analysis/feedback loop.
Each time the LLM provides an answer, TTool-AI
parses the response and extracts the AMULET code
lines. It then attempts to compile these code lines
using the AMULET compiler integrated into TTool.
Potential error messages from the compiler are
appended to iterative queries within the feedback
loop until the LLM produces a correct AMULET
script.

• Response application: once the validated script is
received, if the user clicks on “Apply response”,
the AMULET compiler compiles the script, and the
modified model is displayed in TTool’s GUI.

We now provide an example of the model muta-
tion feature in the context of our running example.
Suppose we need to modify the generated Block Dia-
gram (BD) shown in Figure 7. The goal is to align
the attribute names in the Inclinometer, Gyrometer,
and Control Console blocks with their corresponding
names in the signals. To achieve this, we input the
following request into the TTool-AI window:

#6: Example user input for model muta-
tion

In Inclinometer, replace the
attribute heel_angle with an
attribute (int) heelAngle. Do
the same in Gyrometer for
roll_velocity (with rollAngle),
and add two boolean attributes
deploy and retract in
Control_Console.

We then obtain the following mutation script:

Response to #6

remove attribute heel_angle in
Inclinometer

add attribute int heelAngle in
Inclinometer

remove attribute roll_velocity in
Gyrometer

add attribute int rollAngle in
Gyrometer

add attribute bool deploy in
Control_Console

add attribute bool retract in
Control_Console

After clicking on “Apply response”, we finally
obtain the updated block diagram displayed in
Figure 10.

5 Evaluation

5.1 Evaluation Setup
The principle of our evaluation is to compare the
performance of TTool-AI against Master-level stu-
dents on identical engineering tasks. The experiment
involved using TTool-AI (without any human modifi-
cation of the generated diagrams) to answer the same
final exam questions given to five cohorts of about 15
to 25 students, after they completed a 21-hour course
on TTool and modeling and verification of embedded
systems with SysML.

We conducted two series of evaluations of TTool-
AI. The first series, carried out for the study reported
in [4], involved using TTool-AI to generate diagrams
based on three system specifications from three final
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block

Control_Console

- manual_override = false : bool;
- requested_deploy_state = false : bool;
- deploy = false : bool;
- retract = false : bool;

block

Inclinometer

- heelAngle = 0 : int;

~ out heelingData(int heelAngle)

block

Gyrometer

- rollAngle = 0 : int;

~ out rollData(int rollAngle)

block

Controller

- fin_command = 0 : int;
- deploy_command = false : bool;

~ out angleOfAttack(int angle)
~ out finCommands(bool deploy, bool retract)
~ in rollData(int rollAngle)
~ in heelingData(int heelAngle)
~ in manualCommand(bool deploy, bool retract)

block

Actuators

- current_position = 0 : int;
- target_position = 0 : int;

~ in angleOfAttack(int angle)

block

Deployable_Fins

- angle_of_attack = 0 : int;
- is_deployed = false : bool;

~ in finCommands(bool deploy, bool retract)

block

Control_Console

- manual_override = false : bool;
- requested_deploy_state = false : bool;
- deploy = false : bool;
- retract = false : bool;

block

Inclinometer

- heelAngle = 0 : int;

~ out heelingData(int heelAngle)

block

Gyrometer

- rollAngle = 0 : int;

~ out rollData(int rollAngle)

block

Controller

- fin_command = 0 : int;
- deploy_command = false : bool;

~ out angleOfAttack(int angle)
~ out finCommands(bool deploy, bool retract)
~ in rollData(int rollAngle)
~ in heelingData(int heelAngle)
~ in manualCommand(bool deploy, bool retract)

block

Actuators

- current_position = 0 : int;
- target_position = 0 : int;

~ in angleOfAttack(int angle)

block

Deployable_Fins

- angle_of_attack = 0 : int;
- is_deployed = false : bool;

~ in finCommands(bool deploy, bool retract)

Fig. 10: Mutated BD

exam subjects (a platoon of rovers, an automated brak-
ing system, a spatial communication system). Specif-
ically, TTool-AI generated 5 BDs and 5 SMDs for
each of the 5 BDs using GPT-3.5-turbo as the underly-
ing LLM. The second series, conducted for this paper,
involved the following tasks:

• For the first specification (a packaging chain): gen-
erating 5 UCDs.

• For the second specification (a connected device):
generating 5 UCDs, 5 BDs, and a set of SMDs for
each BD.

In this second series, GPT-4o was used as the under-
lying LLM. Additionally, for each of the two exam
subjects, we tasked the LLM with generating two sets
of safety properties to verify based on the specifi-
cations and explaining the strategies to verify them
(either by checking a CTL property or by adding
an observer block to the BD). This question was
also posed to the students. The prompt used for the
properties identification is as follows:

#7: Tasking GPT-4o with properties
identification

From the following system
specification, and assuming you
have a SysML block diagram
modeling the system, list three
properties to verify on the
system. How would you proceed to
verify them? (using a CTL

property, an observer block, etc
.)

The answers were subsequently graded. The grad-
ing criteria remained consistent for both TTool-AI
and the students. These criteria adhere to the prin-
ciples of software engineering quality criteria. They
encompass:

• Completeness: the adequacy of the diagrams to
the specification (does the proposed architecture
meet the specification? Is the behavior of the state
machines in line with this specification?)

• Quality of abstraction: how well the model captures
the system specification at an appropriate level of
abstraction? This relates to the number of blocks
and states and the consistency of their naming, the
number of connectors between blocks, the absence
of attributes declared in blocks but not utilized in
state-machine diagrams

• Effective use of the modeling language constructs
to accurately represent system features, and the syn-
tactic correctness of the models (i.e., the number

17



of errors and warnings detected by TTool’s syntax
checker).

5.2 Comparative Evaluation and
Discussion

Tables 2 and 3 summarize the results of the two eval-
uations. Table 2 corresponds to the evaluation initially
presented in our previous article, using GPT-3.5-turbo
as the underlying LLM, and Table 3 corresponds to the
supplementary evaluation for which TTool-AI used
GPT-4o. The complete dataset used for the evaluation,
including the input specifications and the different
models generated by TTool-AI, is available on a public
Git repository 4.

Use case diagrams
TTool-AI produces complex UCDs (ranging from 5 to
15 use cases and 3 to 8 actors for the packaging line,
and 7 to 13 use cases with 2 to 4 actors for the con-
nected device) in about half a minute each time, with
very low standard deviation. It is obviously impossi-
ble for a human engineer to diagram such a model
in this time. Moreover, depending on the specification
provided, the grades of the students and of TTool-AI
are equivalent or higher for TTool-AI (8.7/10 com-
pared to 6.2/10), showing that the produced diagrams
are sound, as evidenced by the diagram generated for
our running example in Section 4 (see Figure 4).

Block diagrams
Across both experiments, TTool-AI produced block
diagrams for the following specifications: the platoon
(2-6 blocks, 1-6 connectors), spatial system (10-16
blocks, 9-13 connectors), automated braking system
(6-12 blocks, 0-11 connectors), and connected device
(8 blocks, 2-6 connectors). The quality of generated
diagrams is close to or slightly better than those gen-
erated by students. In the second experiment, with
GPT-4o, syntax verification detects no errors. This is
partly expected due to the contextual knowledge injec-
tion step that embeds consistency rules, and the dia-
gram generation stage from the validated response that
enforces some of these rules [29]. However, a recur-
ring mistake is that TTool-AI uses attribute names
in the signal signatures that often do not match the
names of the attributes of the block. Currently, our
consistency feature [29] often detects attributes that

4https://github.com/zebradile/ttool-ai

are declared in a block but not used. Adding a consis-
tency rule specifically tackling this issue to the rule set
injected to the LLM and enforced at the diagram gen-
eration would eliminate these naming discrepancies.
In addition, it should be noticed that generation times
are consistently low (about one minute).

State-machine diagrams
The time needed to generate SMDs is higher than
for UCDs and BDs, as TTool-AI generates as many
SMDs as there are blocks in the provided BD. It is
still satisfactory, with an average of about 3 minutes in
both experiments for generating up to 8 SMDs. How-
ever, the quality of the diagrams produced is lower
than that of the UCDs and BDs (this trend is also
observed in student-generated diagrams). This may be
due to the more complex semantics of these diagrams,
particularly regarding transitions that involve various
elements such as guards (logical tests), different types
of actions (affectation of variables, emission or recep-
tion of signals), and timers. Additionally, TTool-AI
with GPT-4o does not seem to perform better at this
SMD generation task than TTool-AI with GPT-3.5-
turbo, although it produced higher quality BDs. For
the connected device, generated SMDs include 4 to 8
states per diagram, for the automated braking system,
2 to 7 states, for the platoon, 2 to 10 states, and for the
spatial system, 3 to 11 states.

Safety properties
Another feature evaluated is property identification.
TTool, which is primarily a verification toolkit, uti-
lizes formally defined SysML profiles that enable for
verifying the models against a set of CTL* proper-
ties. This verification stage is crucial when using an
LLM-based assistant to eliminate responses that might
potentially violate requirements. In this task often
challenging for students, GPT-4o excelled, generating
and explaining three properties in about 30 seconds.
It consistently identified relevant properties and pro-
vided detailed explanations on how to verify them,
offering sound CTL formulas or consistent strategies
to add observer blocks and state machines to the dia-
grams. This promising experiment opens the way for
a new TTool-AI feature dedicated to generating a set
of CTL* properties based on input BD/SMDs and a
list of requirements. However, it should be noted that
the observed grading gap between GPT-4o and stu-
dents on this specific task is somewhat biased, as some
students did not attempt this question during the exam.
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Table 2: Comparative evaluation of TTool-AI (GPT-3.5-turbo) vs. Master students

BD SMDs
Metrics Students TTool-AI Students TTool-AI

Grade (/10)

Average 7 8.1 5.8 6.3

Std. Dev. 2.6 1.6 3.2 1.5

Min 0 4.5 0 3

Max 10 10 10 9

Time (s)
Average <2700 40 <2700 178

Std. Dev. — 10 — 97

Table 3: Comparative evaluation of TTool-AI (GPT-4o) vs. Master students

UCD BD SMDs Properties
Specification Metrics Students TTool-AI Students TTool-AI Students TTool-AI Students GPT-4o

Packaging
chain Grade (/10)

Average 7.9 7.7 — — — — 5.3 8.4

Std. Dev. 1.7 1.8 — — — — 1.6 1.7

Min 5 5 — — — — 3.3 6.7

Max 10 9.2 — — — — 10 10

Median 8.3 8.8 — — — — 5 8.8

Time (s)
Average <900 34.8 — — — — <900 34

Std. Dev. — 2.3 — — — — — 2.2

Connected
device

Grade (/10)

Average 6.2 8.7 9.2 9.3 6.6 6.3 4.7 9.3

Std. Dev. 1.6 1.3 1.2 1.1 1.1 0.5 1.9 0.7

Min 3.3 6.7 7.5 7.5 5 5.8 1.7 8.8

Max 8.3 10 10 10 10 6.7 6.7 10

Median 5.8 9.2 10 10 6.7 6.7 1.7 8.8

Time (s)
Average <900 31.8 <2250 62.2 <2250 201.6 <900 31.4

Std. Dev. — 12 — 23 — 47.3 — 1.7

Overall thoughts
Overall, the analysis of these results demonstrates
that TTool-AI, even without human engineer inter-
vention, generates high-quality diagrams that are as
good as, or better than, those produced by students.
However, the primary strength of the tool lies in the
minimal time required to design these diagrams. As an
assistant, TTool-AI excels in providing a more-than-
correct initial draft for the system architect, allowing
them to then refine the diagrams by focusing on finer
details. However, while the quality of the automat-
ically generated diagrams is satisfactory, they can
still be improved. To help addressing some incon-
sistencies, users can utilize TTool-AI’s consistency
verification feature [29] but ultimately, it is always

the user’s responsibility to assess the quality and rel-
evance of the diagrams, and to refine them. In a few
words, while TTool-AI cannot replace engineers, it
serves as a valuable new class of engineering assis-
tant, helping save time and quickly explore alternative
architecture patterns.

5.3 Threats to Validity
It should be kept in mind that this evaluation, even if
it provides a basis for discussing the relevance of our
contributions, has several limitations.
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5.3.1 Construct validity

The first one is that even if the evaluation criteria are
well defined, their appreciation still bears a part of
subjectivity: for instance, two different evaluators will
not necessarily have the same criterion for evaluating
readability of a diagram.

5.3.2 Internal validity

Another limit is the estimation of the time spent by
the students to realize the different diagrams. Indeed,
we evaluated this time according to the global time
alloted for the exam and the respective difficulties of
the questions. But we did not ask the students to write
the time they spent on each diagram, therefore these
estimated times are essentially indicative.

5.3.3 External validity

Finally, this evaluation compares engineers and a tool.
The results likely underestimate the value of TTool-
AI, which is designed to complement engineers, not
replace them. To accurately assess TTool-AI’s effec-
tiveness as an assistant to human engineers, it should
be interesting to evaluate two groups of engineers:
one using only TTool, and the other using TTool-AI.
This comparison will help measure the improvement
brought by TTool-AI.

6 Conclusions
Extending our previous work [4], the paper presents a
comprehensive overview of TTool-AI, an LLM-based
assistant integrated within TTool. Designed to assist
system architects in MDE processes, TTool-AI offers
various features aimed at generating diverse types of
models with a single click from a system specification
written in natural language. Additionally, it enables
for the incremental refinement of these models based
on simple descriptions of the desired changes pro-
vided by the user. TTool-AI relies on core mechanisms
common to its various features, including contex-
tual knowledge injection, automated prompt genera-
tion, and iterative analysis and feedback of the LLM
responses. These mechanisms aim to produce high-
quality diagrams while sparing the user from manually
checking the responses for syntactic and basic seman-
tic errors. The results of the different evaluations,
showing a good to excellent performance of TTool-
AI across most of its features, suggest that it can be a
highly valuable MDE assistant.

Future works include refining the queries gener-
ated for SMDs generation and formalizing and enrich-
ing of consistency rules for these diagrams, as has
been done for BDs and UCDs [29]. Additionally,
new consistency rules will be introduced and imple-
mented to systematically address discrepancies in BDs
between attribute names and signal parameter names.
Another planned extension of TTool-AI is a new fea-
ture for generating CTL* properties based on system
models and requirements. Furthermore, a promising
area of research involves providing clear explanations
or justifications for the design and modeling choices
made by the assistant. Currently, TTool-AI provides
the comprehensive interaction history between the
LLM and the tool, enabling users to trace the rea-
soning process. However, this history can be lengthy
and difficult to interpret. Further research will also
focus on improving the feedback loop by introduc-
ing a mechanism (in the model generation features)
for selecting the “best” generated models. Model
quality would be assessed, for instance, using two
criteria: (1) syntactic correctness and (2) semantic
correctness with respect to the specification, verified
through model checking. This direction is currently
under investigation. Finally, TTool-AI would benefit
from complementary evaluations, including compara-
tive studies measuring the performance of professional
engineers using standard TTool versus TTool-AI, as
well as further assessments based on objective, quan-
titative metrics.
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