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Abstract. With the growing complexity of embedded systems, a systematic design process
and tool are vital to help designers assure that their design meets specifications. The design
of an embedded system evolves through multiple modeling phases, with varying levels of
abstraction. A modeling toolkit should also support the various evaluations needed at each
stage, in the form of simulation, formal verification, and performance evaluation. This chapter
introduces our model-based engineering process with the supporting toolkit TTool, with two
main design stages occurring at a different level of abstraction. A system-level design space
exploration selects the architecture and partitions functions into hardware and software. The
subsequent software design phase then designs and assesses the detailed functionality of the
system, and evaluates the partitioning choices. We illustrate the design phases and supported
evaluations with a Smart Card case study.
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1 Introduction

A systematic design methodology with supporting toolkit can help designers with the modeling
and evaluation of the system, and involves supporting multiple design phases at varying levels of
abstraction and different evaluation tools. The design of embedded systems is complicated by the
need to design both its hardware and software components. Their design methodology can therefore
be separated into two main phases.

A system-level design space exploration divides functions into hardware and software, based on
system performance, safety and security requirements. Next, the software design phase includes the
development of the detailed system functionality, and generation of code. However, since partitioning
decisions are taken at a high level of abstraction – e.g., with highly abstracted hardware components
–, it might be useful to validate – and possibly reconsider – partitioning choices during the software
and hardware development phase.

Several works of research and tools have addressed system-level partitioning and evaluation
of hardware platforms during the software development stage. However, the lack of integration
between partitioning and system development makes it difficult to reconsider partitioning choices.
Also, it is very common practice to test/execute software components on the local host, and to
integrate them later on the target. Consequently, errors due to the interaction between hardware
and software are discovered very late in the development cycle – e.g., during the integration phase.
Unfortunately, these errors may lead to reconsidering partitioning decisions. To minimize time
needed for a designer to re-do a partitioning, a toolkit should ideally minimize the manual work
needed to take in consideration those errors and better connect the two abstraction levels.



Thus, our work focuses on the development of a fully integrated model-driven approach to han-
dle both partitioning and software development. Our contribution supports both the selection of
candidate hardware and software architectures, and a software development approach that allows
designers to evaluate the relevance of the previously selected architectures early in the develop-
ment process. Automated model transformation and verification techniques - formal verification,
simulation, virtual prototyping - are supported for that purpose. Our contribution presents an
easy-to-comprehend methodology integrating these two stages contained within a single modeling
framework (TTool) [1]. Previous work [16] described our design process at multiple levels, but
lacked detailed automated performance analysis regarding performance metrics such as latency. In
Section 2, we present the related work of other system-level design toolkits. Section 3 describes our
overall methodology. Section 4 details the Smart Card case study that is then used to exemplify
the high-level design space exploration (Section 5) and the software component design (Section 6).
Finally, we present discussion and perspectives on future work in Section 7.

2 Design Techniques for Embedded Systems

Many frameworks have been proposed for the design of embedded systems. They offer modeling
capabilities at different levels of abstraction and using various approaches, such as Platform-Based
Design, Model-Driven Engineering, etc. These tools offers model edition capabilities and can verify
models with different simulation and verification tools. Some of them also target executable code
generation.

2.1 Design Space Exploration Approaches (with Simulation and Formal Techniques)

Ptolemy [9,33] proposes a modeling environment for the integration of diverse execution models, in
particular hardware and software components. If design space exploration can be performed with
Ptolemy, its first intent is the simulation of the modeled systems. The co-simulation facility of
Ptolemy II is demonstrated in [25]. Their approach relies on both a System-C architecture model
and a functional model. The paper describes how to use different abstractions level is detailed in
the paper.

Virtual prototyping of MPSoC is often hampered by slow simulation. Among approaches gen-
erating SystemC code, the virtual prototyping of [43] generates code for the TLM (transactional)
level, which is more efficient to simulate but less detailed. A team from KIT [35] proposes a method-
ology for fast parallel simulation, which is based on TLM and though with lost accuracy, even if
clock cycles can be taken into account. MPSoCSim [34], recently presented, proposes OVP pro-
cessor models to simulate NoC-based System-on-chip. Bus simulation is TLM2.0 based. We chose
to perform our simulations on cycle accurate bit accurate level and use a simulator based on fully
static scheduling [8], which makes it 10 to 20 times faster than the SystemC event-based simulator.

Capella [32] relies on Arcadia, a comprehensive model-based engineering method. It is intended
to check the feasibility of customer requirements, called needs, for very large systems. Capella pro-
vides architecture diagrams allocating functions to components, and advanced mechanisms to model
bit-precise data structures. Capella is however more business focused, and lacks formal verification
capabilities.

In POLIS [28], applications are described as a network of state machines. Each element of
the network can be mapped on a hardware or a software node. This approach is more oriented
towards application modeling, even if hardware components are closely associated to the mapping



process. Metropolis [2], an extension of POLIS, targets heterogeneous systems, and architectural
and application constraints are closely interwoven. Metropolis is based on a meta-model of a network
of concurrent objects, with a formal semantics. Applications are described in detail and simulated
with the help of instruction set simulators (ISS). This approach is more oriented towards application
modeling, even if hardware components are closely associated to the mapping process. While our
approach uses Model-Driven Engineering, Metropolis uses Platform-Based Design.

Sesame [11] proposes modeling and simulation features at several abstraction levels for Mul-
tiprocessor System-on-Chip architectures. Pre-existing virtual components are combined to form
a complex hardware architecture. Models’ semantics vary according to the levels of abstraction,
ranging from Kahn process networks (KPN [23]) to data flow for model refinement, and to dis-
crete events for simulation. Currently, Sesame is limited to the allocation of processing resources
to application processes. It models neither memory mapping nor the choice of the communication
architecture.

The ARTEMIS [31] project originates from heterogeneous platforms in the context of research on
multimedia applications in particular. It is strongly based on the Y-chart approach [24]. Application
and architecture are clearly separated: the application produces an event trace at simulation time,
which is then read in by the architecture model. However, behavior depending on timers and
interrupts cannot be taken into account.

MARTE [40] shares many commonalities with our approach, in terms of the capacity to sepa-
rately model communications from the pair application-architecture. However, it intrinsically lacks
a separation between control and message exchange. Even if the UML profile for MARTE adds
capabilities to model Real Time and Embedded Systems, it does not specifically support architec-
tural exploration. Other works based on UML/MARTE, such as Gaspard2 [14], are dedicated to
both hardware and software synthesis, relying on a refinement process based on user interaction
to progressively lower the level of abstraction of input models. However, such a refinement does
not completely separate the application (software synthesis) or architecture (hardware synthesis)
models from communication.

Saxena et Gabor [36] introduce an abstract design space exploration framework, and its integra-
tion into design space exploration solvers, thus paving the way for customized embedded systems
explorations. They define metrics (e.g., memory size) that are related to WCET. On the contrary,
DIPLODOCUS does not assume any WCET, but closely evaluates possible scenarios with simula-
tion and formal verification techniques.

The capacity of languages and models to support abstractions for designing embedded systems
is discussed in [21]. In particular, MARTE is evaluated against the Y-Chart scheme. Our papers
enhances their discussion with the refinement between two abstraction levels (partitioning and
prototyping).

2.2 Code Generation Approaches

Rhapsody [22] can automatically generate software, but not hardware descriptions from SysML.
MDGen from Sodius [39] adds timing and hardware specific artifacts such as clock/reset lines auto-
matically to Rhapsody models, generates synthesizable, cycle-accurate SystemC implementations,
and automates exploration of architectures.

The Architecture Analysis & Design Language (AADL [13]), a standard from the International
Society of Automotive engineer (SAE), allows the use of formal methods for safety-critical real-
time systems in avionics, automotive among other domains. It comprises a textual and a graphical



representation but does not a priori contain tool support for code generation, even if specific con-
tributions proposes code generator for specific domains, e.g. for avionics systems. In that case, the
generated code can be executed for within a specific platforms, for instance for ARINC653 systems.
. Similar to our environment, a processor model can have different underlying implementations and
its characteristics can easily be changed at the modeling stage. Recently, [42] developed a model-
based formal integration framework which endows AADL with a language for expressing timing
relationships.

Bombieri et al. [7] propose a method ranging from system specification to code generation,
with an intermediate HW/SW partitioning stage. Their method is compliant with SW components,
device driver generation, a software wrapper – e.g., to handle interrupts – and High-level synthesis
for HW components. While being more advanced on code generation issues, simulation and formal
verification, as well as iterations between partitioning and prototyping is not addressed as deeply
as in our contribution.

Batori [3] proposes a design methodology for telecommunication applications. From use cases,
the method proposes several formalisms to capture the application structure ("interaction model")
and behavior (Finite State Machine) and for its deployment from which executable code can be
generated. The platform seems limited to specific components ("Runes component") – we could
call it Specific Platform-Based design – and no design exploration seems possible. Additionally, the
code generation process targets a real platform, and not a prototyping environment.

As we explain in the next section, our approach combines both HW/SW partitioning and soft-
ware development and prototyping, with formal verification and simulation offered for most views
and abstraction levels, including safety, performance and security evaluation.

3 Methodology

3.1 Modeling Phases

The advantages of our methodology lie in its support of multiple phases of the design process,
and its ability to evaluate a design with a diverse range of tools. These advantages have allowed
our methodology to be applied for the modeling of a wide range of real-world systems, including
automotive systems, telecommunications, security protocols, etc. [15, 19, 37]. Our method relies on
a set of UML/SysML views supported with the same environment/toolkit (as shown in Figure 1.
The method is organized as follows:

1. We start with system-level hardware / software partitioning based on design space exploration
techniques. This phase contains three sub-phases: modeling of the functions to be realized by
the system ("functional view"), modeling of the candidate architecture ("architecture view")
expressed as an assembly of highly abstracted hardware nodes, and the mapping phase ("map-
ping view"). A function mapped over a processor is considered a software function. On the
contrary, a function mapped over a hardware accelerator corresponds to a custom ASIC. At
this stage, we are concerned mostly with how communications and function affect the perfor-
mance of a mapping, so we do not need to concern ourselves with the exact behavior of internal
task behavior or contents of communications. Logical communication between functions are
also expected to be mapped on a "communication path" consisting of buses, bridges, memories,
Direct Memory Access controllers, networks-on-chip, etc.
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Fig. 1. Overall approach

2. Once a mapping has been decided, i.e., the system is fully partitioned between software and
hardware functions, the design of the software and the hardware can start. Our approach offers
software modeling while taking into account hardware parameters. Thus, a software component
view is used to build the system software architecture and behavior, and a deployment view
displays how the software components relate to the hardware components. The model of software
and hardware components is more refined than in partitioning, which means that simulations
and proofs are much more complex and take more time.

TTool [1], a free and open-source toolkit, supports the entire method with SysML diagrams.
TTool includes UML/SysML diagram editors, compilers to perform model-to-specifications trans-
formations, model-checkers and simulation engines.

3.2 Simulation, Verification and Prototyping

During the methodological phases, simulation and formal verification help to determine if safety,
performance and security requirements are fulfilled. TTool offers a press-button approach for per-
forming these proofs. Model transformations translate the SysML models into an intermediate form
that is sent into the underlying simulation and formal verification toolkits - some of them are built
into TTool, while others are third party toolkits. In all cases, backtracing to UML/SysML models
is performed to better inform the users about the verification results.

During functional modeling – our highest abstraction level –, verification intends to identify
general safety properties (e.g., absence of deadlock situations). At the mapping stage, verification
intends to check if performance and security requirements are met. As researchers demonstrate the
increasing number of hacks on embedded systems, it becomes important to detect their security
flaws before mass-production. The security of communications depends on the architecture, as we
explain in subsection 6.2.

During software design, software components can be verified independently from any hardware
architecture in terms of safety and security. For example, when designing a component implementing



a security protocol, the reachability of the states and absence of security vulnerabilities can be
verified. TTool support for integrated formal verification tools helps a designer ensure the safety
and security of his/her design.

When the software components are more refined, it becomes important to evaluate performance.
Since the target system is commonly not yet available, our approach offer two facilities. (i) A
deployment view is used to map software components over hardware nodes. Their semantics is much
more concrete – i.e., less abstract – than the one used for partitioning. (ii)A press-button approach
can transform the deployment view into a SoCLib specification built upon virtual component models
[38].

SoCLib is a public domain library of models written in SystemC, targeting shared-memory
architectures based on the Virtual Component Interconnect protocol [41]. Hardware is described at
several abstraction levels: TLM-DT (Transaction level with distributed time), CABA (Cycle/Bit
Accurate), and RTL (Register Transfer Level). SoCLib also contains a set of performance evaluation
tools [18, 20]. CABA level simulation allows measurement of cache miss rates, latency of memory
accesses and of any transactions on the interconnect, fill state of the buffers, taking/releasing of
locks etc. in the context of video streaming and telecommunication applications [18].

A variety of low level performance measuring tools exist for SoCLib, as described in [17, 20].
However, such approaches are purely based on simulating on the virtual prototype i.e. at a low level
of abstraction, and lack the possibility to formally verify the application model and give it precise
semantics. Moreover, they are more accessible to researchers than to engineers, nowadays very much
at ease in the UML/SysML world. Hardware elements – i.e. topcells – are either described by hand,
which is error-prone, or generated, making them not easily readable.

Since SoCLib hardware models are much more precise than partitioning models, precise timing
and hardware mechanisms – e.g. cache miss – can be evaluated. If the performance results differ too
greatly from the results obtained during the design space exploration stage – e.g., a cache miss ratio
– then, the design space exploration shall be performed again to assess if the selected architecture
is still the best according to the system requirements. If not, the definition of software components
may be (re)designed. Once the iterations over the high-level design space exploration and the low
level virtual prototyping of software components finished, software code can be generated from the
most refined software model.
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4 Case Study

Our methodology is illustrated by a "Smart Card" application. The smart card is meant to be
plugged into a reader that exchanges information with the interior of the application by TCP
formatted packets. The data transfer can be aborted, for example, because the smart card was
unplugged. The reader (InterfaceDevice) signals the smart card to start, while the smart card
controller handles the initialization of the other functions (e.g., the application and the network
stack). In the next sections, we present modeling and analysis of the Smart Card application at the
different design phases.

5 Partitioning with DIPLODOCUS

5.1 Models

The HW/SW partitioning phase, implemented in the DIPLODOCUS profile of TTool, models the
abstract, high-level functionality of a system [26] and general architecture. It follows the Y-chart
approach (as shown in the upper right section of Figure 1), first modeling the abstract functional
tasks (Application View), candidate architectures (Architectural View), and finally mapping tasks
to the hardware components (Mapping View) [24]. Before the next stage, simulation and formal
verification ensure that our design meets performance, behavioral, and schedulability requirements.

Application Modeling, Architectural Modeling, and Mapping are presented in detail in the rest
of this section, using the smart card application as an example.

Figure 2 displays the functional view built upon 5 functional blocks: InterfaceDevice represents
the interface with the reader and the internals of the smart card. SmartCard features the main
controller. Application mostly models data exchanges that can occur with the reader. TCPIP and
its Timer model the network stack. Exchanges between blocks are modeled with events, requests
and data exchanges.

Application View The Application View comprises of a set of communicating tasks, as shown in
Figure 2. The behavior of tasks is described abstractly. Functional abstraction allows us to ignore the
exact computations and data processing of algorithms, and considers only computation complexity
and data transfer size. Each individual task describes its abstract functional behavior using com-
munication operators, computation elements, and control elements. Data abstraction allows us to
consider only the size of data sent or received, and ignore details such as type, values, or names. On
the Component Design Diagram, an extension of the SysML Block Instance Diagram, the designer
specifies the list of tasks, and within the task, attributes and ports indicating communication.

Architectural View The architectural model (consider only hardware components of Figure 3,
i.e. without the artifacts) displays the underlying architecture as a network of abstract execution
nodes, communication nodes, and storage nodes. Execution nodes consist of CPUs and Hardware
Accelerators, defined by parameters for simulation. All execution nodes must be described by data
size, instruction execution time, and clock ratio. CPUs can further be customized with scheduling
policy, task switching time, cache-miss percentage, etc. Figure 4 shows processor parameters. Com-
munication nodes include bridges and buses. Buses connect execution and storage nodes for task
communication and data storage or exchange, and bridges connect buses. Buses are characterized
by their arbitration policy, data size, clock ratio, etc, and bridges are characterized by data size
and clock ratio. Storage nodes are Memories, which are defined by data size and clock ratio.



Mapping View Mapping partitions the application into software and hardware and also specifies
the location of their implementation and of their communication on the architectural model. A task
mapped onto a processor will be implemented in software, and a task mapped onto a hardware
accelerator will be implemented in hardware. The exact physical path of a data/event write may
also be specified by mapping channels to buses and bridges. More complex communication schemes
can be modeled with another view, which is part of recent work [10]. The mapping of Figure 3 shows
that the InterfaceDevice is mapped to a specific hardware execution node, while TCPIP, SmartCard
and Application are mapped to a general purpose processor - actually, the main microcontroller of
the smart card. Also, the timer is implemented with a dedicated execution node.

<<CPURR>>
CPU0

AppC::SmartCard

AppC::Application

AppC::TCPIP

<<CPURR>>
CPU1

AppC::InterfaceDevice

<<CPURR>>
CPU2

AppC::Timer

<<BUS>>
Bus0

<<MEMORY>>
Memory0

Fig. 3. Mapping view (DIPLODOCUS)

Fig. 4. Adapting processor parameters in DIPLODOCUS



5.2 High-Level Simulation and Verification

Simulation of DIPLODOCUS partitioning specifications involves executing tasks on the different
hardware elements. Each computation transaction executes for a variable time depending on execu-
tion cycles, CPU parameters and bus / memory behavior when transactions require data exchanges.
The simulation shows performance results like bus usage, CPU usage, execution time, etc. Results
are backtraced to the different views, with an example shown in Figure 5. One can notice the high
average load of the main microcontroller (91%). Also, TTool can generate a vcd trace to view de-
tailed bus/CPU activity in gtkwave of a single execution sequence. TTool can also assists the user
by automatically generating all possible architectures and mappings, and summarizes performance
results of each possible mapping. Users are provided with the “best” architecture under specified
criteria, such as minimal latency or bus/CPU load.

<<CPURR>>
CPU0

AppC::SmartCardAppC::SmartCard

AppC::ApplicationAppC::Application

AppC::TCPIP

91%

AppC::TCPIP

<<CPURR>>
CPU1

AppC::InterfaceDevice

22%

AppC::InterfaceDevice

<<CPURR>>
CPU2

AppC::TimerAppC::Timer

0%

AppC::Timer
AppC::Timer

<<BUS>>
Bus0

25%

<<MEMORY>>
Memory0

Fig. 5. Load of CPUs and buses after a simulation

For a given mapping, the user can also generate the system reachability graph. The entire graph
along with an enhanced excerpt is given in Figure 6. All paths are terminated with a red state. The
last actions before each red or termination state specifies the number of cycles corresponding to the
path leading to that termination state. For example, the termination state “84” is preceded by an
action “allCPUsTerminated<166>” which means that this system path contains 166 cycles.

TTool also makes it possible to list all termination or deadlock states (see Figure 7): the graph
contains 10 terminations states with a duration in number of cycles ranging from 20 to 247. In the
shortest path, the connexion was aborted after a few exchanges. On the contrary, in the longest
execution path, the smart card exchanges several TCP packets. These timings are to be confirmed
with more concrete software and hardware components in the design stage.

6 Software Design with AVATAR/SoCLib

Once partitioning is complete, the AVATAR methodology [30] allows the user to design the software,
perform functional simulation and formal verification, and finally test the software components in a
virtual prototyping environment. Where partitioning models represent an algorithm as an abstract
execution spanning a duration, the software design models details of algorithms, including their
attributes, int/float operations, control operators, etc.



Fig. 6. Reachability graph of the mapping view

Fig. 7. List of termination states in the reachability graph. The number of cycles on each path is given
along with the last action before a termination state



6.1 Software Components

Figure 8 shows the software components of the smart card case study modeled using an AVATAR
block diagram. These modeling elements have been selected as software elements during the previous
modeling stage (partitioning). Software components are grouped into the different applications
running on the Smart Card using a hierarchical block called SmartCard.

– Interface Device initiates the connection and then communicates with the Smart Card.
– SmartCard Controller manages communication between the Interface Device, application,

and TCPIP.
– Application communicates with the TCPIP application and sends and receives packets.
– TCPIP manages the TCP connection.
– TCPPacketManager manages packet transmission and storage.

<<block>>
SmartCard

<<block>>
SmartCardController

- packetIn = false : bool;

- packetOut = false : bool;

- packet1 : TCP_PACKET;

- packet2 : TCP_PACKET;

~ in reset()
~ in pTS()

<<block>>
Application

- val = 7 : int;

~ out open()
~ out sendTCP(int value)
~ out close()

~ out abort()
~ in startApplication()

<<block>>
TCPPacketManager

- nbOfPackets = 0 : int;
- packet : TCP_PACKET;
- cpt : int;
- timerP : Timer;
- timerSet = false : bool;

<<block>>
TCPIP

- mainTimer : Timer;
- tcp : tcpctrl;
- packet : TCP_PACKET;
~ in start()
~ in open()
~ in close()

<<block>>
InterfaceDevice

- val = 5 : int;

- cpt : int;

- nbOfComputedPackets = 1 : int.

- packet : TCP_PACKET;

~ out activation()

~ out reset()

~ out pTS()

<<datatype>>
tcpctrl

- state = 0 : int;
- seqNum = 1 : int;
- wind = 1 : int;

<<datatype>>
TCP_STATES

- CLOSED = 0 : int;
- OPENED = 1 : int;
- FOUR = 4 : int;
- NINE : int;

<<datatype>>
TCP_PACKET

- srcdest : int;
- seqNum : int;
- ackNum : int;
- control : int;
- management : int;
- checksum : int;
- othersAndPadding : int;
- data : int;

Fig. 8. Avatar Block Diagram

The AVATAR model can be functionally simulated using the integrated simulator of our toolkit,
which takes into account temporal operators but completely ignores hardware, operating systems
and middleware. While being simulated, the model of the software components is animated. This
simulation aims at identifying logical modeling bugs. Figure 9 shows the state machine of the
Smart Card Controller, and Figure 10 shows a visualization of a generated sequence diagram. Also,
a reachability graph can be generated and analyzed.

6.2 Formal Verification

As previously described, TTool includes its own formal verification tools to e.g. generate a reacha-
bility graph, minimize the graphs, and check if a given reachability of liveness property is satisfied.

Alternatively, UPPAAL [5] may also be used from TTool to evaluate safety and liveness prop-
erties. UPPAAL is a a model checker for networks of timed automata, the behavioral model of
a system to be verified is first translated into a UPPAAL specification to be checked for desired
behavior. For example, UPPAAL may verify the lack of deadlock, such as two threads both waiting
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for the other to send a message. Behavior may also be verified through “Reachability”, “Leads to”,
and other general statements. The designer can indicate which states in the Activity Diagram or
State Machine Diagram should be checked if they can be reached in any execution trace. “Leads to”
allows us to verify that one state must always be followed by another. Other user-defined UPPAAL
queries can check if a condition is always true, is true for at least one execution trace, or if it will be
true eventually for all execution traces. These statements may be entered directly on the UPPAAL
model checker, or permanently stored on the model as pragma to be verified in UPPAAL.

For example, for our case study, we can verify that the TCP Packet Manager is capable of
sending the storePacket signal, that the Application can abort and thereby stop, and the Smart
Card Controller can send a packet. Figure 11 shows the UPPAAL verification window which allows
the user to customize which queries to execute, and then returns the results regarding whether each
query is satisfied or not. In our example, the three states we queried are all reachable.

Formal verification of security is performed using ProVerif, a verification tool operating on pi-
calculus specifications [6]. A ProVerif specification consists of a set of processes communicating
on public and private channels. Processes can split to create concurrently executing processes,
and replicate to model multiple executions (sessions) of a given protocol. Cryptographic primitives
such as symmetric and asymmetric encryption or hash can be modeled through constructor and
destructor functions. ProVerif assumes a Dolev-Yao attacker, which is a threat model in which
anyone can read or write on any public channel, create new messages or apply known primitives.

ProVerif verifications query the properties of reachability, confidentiality, and authenticity. Reach-
ability of an element (within the Activity Diagram or State Machine) determines if there exists an
execution trace of the model in which this element is reached. Confidentiality of data refers to if the
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Fig. 10. High Level Simulation: generated Sequence diagram



Fig. 11. UPPAAL formal verification

attacker can recover that data by listening and sending messages, and performing computations.
Authenticity determines if the data received during a message exchange is necessarily the same as
the data sent.

In DIPLODOCUS models, security modeling and verification determines the security mecha-
nisms required to secure critical data based on an architecture and mapping, and also impact on
performance due to the added security. Certain architectural buses can be modeled to be accessi-
ble to an attacker. Abstract security operators then model the encryption/decryption of channel
data and the impact of security on performance. Recent work [27] describes how the architecture
and mapping selected during HW/SW Partitioning affects the security of communications, and
security-related operations impacts the safety and performance of a system.

AVATAR models describe the detailed implementations of security mechanisms, and verifies the
security of critical attributes [29]. The security verification determines the confidentiality of keys
and specific attributes, the authenticity of encrypted exchanges over public channels accessible to
an attacker, and the ability of a encryption algorithm to terminate correctly.

6.3 Prototyping

To prototype the software components with the other elements of the destination platform (hard-
ware components, operating system), a user must first map them to a model of the target system.
Mapping can be performed using the new deployment features introduced in [15]. Our toolkit thus
supports use of AVATAR Deployment Diagrams. It features a set of hardware components, their
interconnection, tasks, and channels.

In the partitioning phase, an architecture with two CPUs was selected. Tasks destined to become
software tasks are mapped onto the CPUs, which is the case for all tasks in our example; it is also
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Fig. 12. Smart Card Deployment Diagram

possible to realize other tasks as hardware accelerators. Now, in the prototyping phase, things are
different since the AVATAR models includes only software tasks that are thus mappable only on
general-purpose processors. Consequently, each hardware accelerator of the prototyping platform
in SoCLib needs to be specifically developed. which requires a significant effort. We do not consider
that case because the smartcard is fully software implemented.

If the user has to explicitly model several properties pertaining to mapping, e.g. CPUs and mem-
ories parameters, the simulation infrastructure and interrupt management are added transparently
to the top cell during the transformation into a SoCLib platform.

Figure 12 shows the Deployment Diagram, containing two CPUs, one memory bank and one
TTY. The InterfaceDevice block is mapped onto CPU1, and the other five blocks are mapped onto
CPU0. Each signal between AVATAR blocks is translated into a software channel mapped to on-chip
RAM (for more detail, see [12]). In the case study, there are twenty-nine such signals, translated
into twenty-nine SoCLib channels, which are all mapped on the single RAM, also containing the
AVATAR runtime and the operating system.

From the Deployment Diagram, a SoCLib prototype is generated as described in [15]. This
prototype consists of a SystemC top cell, the embedded software in the form of POSIX threads
compiled for the target processors, and the embedded operating system [4]. Figure 13 from [16]
shows an overview of the prototyping tool, with the simulation trace, code generation, and SocLib
windows, and model in the back.

6.4 Capturing Performance Information

We now show how performance information can be obtained by running simulations with the SoCLib
virtual prototype of the SmartCard use case. The experiments shown here use a MP-SoC based
on two general purpose PowerPC 405 processor cores running with 800 Mhz. Later on, we plan to
rely on a microcontroller, which would be more realistic for the SmartCard example. As a central
interconnect, we use the VCI Generic Serial Bus (VGSB).

Although accelerated using the technique described in [8], the cycle accurate bit accurate
(CABA)-level simulation is quite slow. It allows however detailed measurement of per-processor
cache miss rates, latency of any transaction on the interconnect, etc. Since SoCLib hardware mod-
els are much more precise than the ones used at the design space exploration level, precise timing
of the use of hardware mechanisms such as locks can be evaluated. However, these evaluations take
considerable time compared to high-level simulation/evaluation.



Fig. 13. AVATAR/SoCLib prototyping environment in TTool

Fig. 14. Panel for varying cache associativity in SoCLib prototype



As previously stated, the SoCLib prototype allows a designer to evaluate each processor sepa-
rately, which is particularly useful for detecting unbalanced CPU loads, indicated by the Cycles per
Instruction (CPI) metric.

In the following three paragraphs, we investigate three performance metrics: CPI, cache misses
and latencies.

CPI An overview of performance problems can be obtained using the numbers of Cycles per
Instruction (CPI). It represents all phenomena that can slow down execution of instructions by
the processors, such as memory access latency, interconnect contention, overhead due to context
switching, etc.

Using these metrics, we can observe that CPU0 has a high average load – this issue was similarly
noticed during the partitioning stage. Figure 15 shows that this CPU is far more challenged than
CPU1 containing only the InterfaceDevice. The reason for this is due to the fact that implementing
the semantics of synchronous channels requires a central request manager. Requests are stored
in waiting queues for synchronous communications, in order to be canceled when they became
obsolete. Requests that observe a delay before execution have to be waken up. Future work will
address a better distribution of this functionality, called the AVATAR runtime, over the entire
MPSoC architecture.

We also observe that adding cache associativity does not automatically improve the CPI. The
application is characterized by an uneven mixture of small accesses (for example, open or abort
signals which take one byte), and accesses to data of packet type which, as can be seen in the Data
Type Block of the Block Diagram of Figure 8, are composed of eight integers.
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Cache Misses One important parameter of the CPU used in DIPLODOCUS partitioning is the
overall cache miss rate, which is initially estimated to be 18% in DIPLODOCUS (see line Cache-
miss in Figure 4). While the estimate of cache misses includes both data and instruction cache
misses, we measure them separately. Instruction cache miss rates will be higher for the cache of
CPU0 because the central request manager runs on this CPU, as noted in the previous paragraph.



We vary associativity of both caches for the same cache size. Figure 14 shows the processor
parameters of the Deployment Diagram. Parameters are the degree of associativity (instruction/data
cache ways, in the Figure set to 2), the number of lines in the cache (instruction/data cache sets, here
set to 16) and the number of words in a line (instruction/data cache words, here 4). Figure 16 shows
the data cache miss rates, and Figure 17 shows instruction cache miss rates for set associativities
of 1, 2, 4 and 8, using the same overall cache size, and same block size.

We observe clearly that from two cache sets onwards, cache misses are divided by two. The
improvement is still around 30% for the instruction cache; we also note that CPU1 is much less
challenged, as already shown for the CPI. In the worst case of a direct mapped cache, we have an
instruction cache miss rate of 25% on the cache of CPU0, less than 1% for CPU1 (which essentially
contains the interface and has a very small memory footprint). Thus, we can provide significantly
more useful detail for a hardware implementation.

A first exploration presented in [16] for a different case study showed that cache misses can
only be imprecisely estimated at the DIPLODOCUS model. However, that case study lacked the
detailed modeling that we present here, both at the DIPLODOCUS and the AVATAR level. The
Smart Card case study remedies this shortcoming.

We can now go back to the DIPLODOCUS level and customize the CPU by adapting the cache
miss rate (Figure 4): we were thus able to check that the partitioning result is still the same.

Latencies In previous work [16], performance results were limited to those obtained using the
hardware counters of the SoCLib modules. A recent update to TTool added support for automati-
cally measuring latencies for channel transfers/between events during simulation. Activity elements
can be marked as potential checkpoints on the model.

Events and channels in DIPLODOCUS both translate into signals in AVATAR. The left side of
Figure 18 shows a DIPLODOCUS activity diagram for the Application task, with two checkpoints
set, one on the open and the send_TCP event. On the right side, it shows the timed automaton of
the Application block. Again, we place one checkpoint on the open and another on the send_TCP
signal.

The latencies panel of DIPLODOCUS is shown in Figure 19. Our toolkit allows the user to choose
which checkpoints he or she would like to analyze, and then displays the minimum, maximum, and
average latencies in execution cycles between those two checkpoints.

On the MPSoC prototype for which the code is generated from AVATAR, latencies can be
determined by hardware counters added to the SoCLib models. These counters allow identification
of the processor that triggered the transfer, but not on which of the communication channels it took
place. A recent improvement integrated the SoCLib logging mechanism presented in [17]. Thus, the
MPSoC platform is enhanced with spies that can record all transfers on the interconnect, retrieve
the names of software objects from the loader, and match them to the steps of the channel access
protocol. This module is added to the VCI interface and does not impact performance results.
Thus, we can now measure latencies on the MPSoC platform that are due to contentions on the
interconnect, to the time spent waiting to obtain a lock, etc.

Table 1 shows the latencies for selected channels corresponding to four signals in AVATAR.
While reset, start and open signals have no parameters, fromTtoP conveys a packet (eight bytes in
the case study).

As these first results show, there is no apparent correlation between the latency measured on the
MPSoC platform and the latency obtained by DIPLODOCUS simulation. In fact for code gener-
ated from AVATAR running multiprocessor platform, cache effects, contention on the interconnect



evt
close()

evt
abort()

evt
send_TCP()

chl
fromAtoT(1)

evt
open()

[ ] [ ]

open()

sendTCP(val)

close() abort()

startApplication()

ClosingOrAborting

ReadingPackets
RL?

receiveTCP(val)

after (5,5)

Fig. 18. Latency checkpoints (left) DIPLODOCUS (right) AVATAR

Fig. 19. DIPLODOCUS latencies panel

and others have to be taken into account. In particular, the storing and retrieving time of pack-
ets varies strongly. We are currently working on establishing correlations where this is possible,
together with even more in-depth performance evaluation. It would be important to extend the
latency measurement capability to AVATAR simulations, which should relate more closely to tests
in SoCLib.

Other Performance Metrics As can be seen in the CPU attributes window of Figure 4, our
toolkit potentially allows a designer to improve estimates of several more hardware parameters
like branch misprediction rate and go idle time. Channels play a particular role: for asynchronous



AVATAR Signal DIPLODOCUS MPSoC
min max min max

SmartCardController_reset__InterfaceDevice_reset 2 2 0.56 0.64
SmartCardController_start_Application__Application_startApplication 4 4 0.56 0.58

Application_open__TCPIP_open 4 4 0.56 0.59
SmartCardController_fromTtoP__TCPIP_fromTtoP 38 75 1.6 1.7

Table 1. Latencies (milliseconds) for DIPLODOCUS simulation and SoCLib prototype

channels, they may overflow or otherwise be empty most of the time, slowing down or even blocking
the application. Dimensioning of the channels is thus an important issue. Better understanding of
the state of communication channels (fill state, evolution of read and write operations over time
etc.) will be achieved by integrating new performance measuring functionality based on the work
described in [20].

7 Discussion and Future Work

Our approach integrates both system-level design space exploration and the design and prototyping
of refined software components in the same toolkit. Using a Smart Card case study, we show how
the different metrics can easily be evaluated at the push of a button in the two abstraction levels. In
particular, transformations of the software component model mapped onto a deployment diagram
help precisely determine the CPI, as well as the finer metrics as cache miss rate and latencies of
the application. From these evaluations, partitioning choices can be confirmed or invalidated.

We are currently working on a more complete method to determine and compare performance
metrics in particular latencies at the AVATAR and DIPLODOCUS level and hope to establish
correlations. Relating partitioning and software level simulations may also help us determine the
accuracy of the estimates of execution duration of functions in partitioning.

The close integration of partitioning and software design facilitates the invalidation of partition-
ing decisions. The current backtracing to models assists the engineer in investigating how to better
partition the model or to reconsider the software components. Ideally, once an invalidation has been
encountered, it would be helpful for the toolkit to automatically suggest another partitioning. We
propose increased automation as part of our future work, to better support designers between the
different stages of the design process.
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