
Incremental and Formal Verification of SysML Models

Sophie Coudert1, Ludovic Apvrille1*, Bastien Sultan1, Oana Hotescu2,
Pierre de Saqui-Sannes2

1*LTCI, Telecom Paris, Institut Polytechnique de Paris, 450 route des Chappes, Biot Sophia
Antipolis, 06410, France.

2ISAE-SUPAERO, Université de Toulouse, France.

*Corresponding author(s). E-mail(s): ludovic.apvrille@telecom-paris.fr;
Contributing authors: sophie.coudert@telecom-paris.fr; bastien.sultan@telecom-paris.fr;

oana.hotescu@isae-supaero.fr; pdss@isae-supaero.fr;

Abstract
Agile methods are now commonly used to design critical systems. They consist in progressively doing increments
to a model, and subsequently checking that all previously checked properties are still satisfied. Yet, model-
checking is not inherently incremental, which means that all proofs must be redone at each stage, where one
would expect to redo proofs only for parts of the systems that have been impacted by the modification. This makes
model evolution costly and hampers the use of agile development methods. The paper proposes to facilitate model
updates (also called mutations): whenever a mutation is performed on a model, the algorithms introduced in this
paper can determine which proofs remain valid and which ones must be performed again. The main idea to reduce
the proof obligation is to identify new possible execution paths that need to be re-verified. Our algorithm reuses
the results of proofs applied to a previous model version. The paper applies this approach on dependency graphs
generated from SysML models: our generic propagation algorithm can rework mutated dependency graphs so as
to deduce more simple properties to be proved on reduced dependency graphs. Our approach can handle reacha-
bility properties and discusses extensions to liveness properties. The embedded system of an autonomous vehicle,
characterized by real-time communication constraints, exemplifies the challenges and relevance of our approach.

Keywords: Model Mutation, Model Checking, SysML, Time Sensitive Network

1 Introduction
Model-Based Systems Engineering has opened
promising avenues, such as better early simulation and
formal verification, while also raising new challenges,
as elaborated by [28]. Among these challenges, the
incremental development of models stands out. Sup-
ported by well-known methods such as Event-B [1],
incremental modeling involves a meticulous progres-
sion, allowing the capture of complex issues through
a process of model mutation and verification. Yet,
formal verification is known to be costly, so having to

perform a formal check on a system even after a small
update is a clear limit to design agility.

The current paper, which extends our works ini-
tially published in [9], contributes to the formal ver-
ification of SysML [21] models after updates (that
we call mutations), enabling for the capture of more
profound changes in the models than the Event-B
approach allows. This is indeed a common practice
to progressively build a system from basic function-
alities: mutations can be performed in an agile way
by progressively adding new blocks (to a block dia-
gram) or new states and transitions to a state machine

1

diagram. Assuming that a set of reachability proper-
ties (e.g., “state 1“ is reachable) have been proven on
version n of a model, the paper proposes solutions
to simplify the reachability proofs to be performed
on version n+ 1. For this purpose, the current paper
reminds the notion of mutations as defined in [33],
and a set of algorithms to handle proof simplifica-
tion when a mutation has been performed. The main
idea behind the algorithm is first to figure out, for
a given reachability property of a model element e,
if a mutation has modified at least one path between
the start of the system (version n) and e. For this, a
dependency graph featuring logical dependency of the
model is built [27] [8], and paths are investigated in
this graph. In case at least one path has been modi-
fied, then a more complex algorithm, presented in the
current paper, handles this situation. In brief, the main
idea is to analyze if one old reachability path may still
be executable, or if a new path offers a new way to
reach the element of interest. For this, we rely on a
multi-labelling graph approach handled by a generic
propagation algorithm. A running case study, taken
from an autonomous driving system, illustrates the
main concepts. In particular, it shows how the differ-
ent mutations could impact the proof and the labelling
techniques used to circumvent these cases. The paper
also delves into the strengths and limitations of the
theoretical foundations presented, thereby unveiling
promising perspectives. These include the complex-
ity of the algorithms, the potential to broaden our
approach to include other mutation categories, iden-
tifying systems where our contribution could signif-
icantly reduce verification time, and potential exten-
sions to other types of properties, notably liveness
properties.

The paper is organized as follows. Section 2 intro-
duces the SysML diagrams and model mutations we
consider, both informally and formally, with a use
case. Section 3 illustrates the problem statement with
a case study. The heart of the contribution is presented
in Section 4 where main algorithms manipulating
paths in reachability graphs and paths in dependency
graphs are detailed, and then illustrated on the paper’s
case study. Section 5 discusses the strength, limits
and possible extensions of our work. Section 6 pro-
vides a survey of related work. In particular, Subsec-
tion 6.4 highlights the distinctions between our current
research and our previously published papers, as well
as details how it diverges from the state-of-the-art in
incremental model verification. Section 7 concludes
the paper.

2 Problem formalization
The paper presents an enhanced verification scheme
that can be applied to the design stage of systems.
In the scope of this paper, a design stage is made
upon a SysML block instance diagram and a set of
SysML state machine diagrams: each block instance
has its behavior defined in a state machine diagram.
Mutations concern either addition or extension of a
block, or the extension of state machines. Since our
proof algorithms use the semantics of models and
mutations, this section defines these concepts in both
informal and formal ways. For this, a use case is first
introduced, then the formalisation is illustrated with
this use case, thus leading to the problem statement
exposed in the next section.

2.1 Running example: an autonomous
automotive system

In this section, the use case helps to illustrate the
notion of SysML design and of mutations. In the
next section 3, it illustrates the notion of dependency
graphs, of reachability properties, of mutations, and of
incremental verification. It is also used in section 4.
However, for illustrating in detail each concept of
our verification algorithms (see Section 4.3.2), we
rely on toy systems and graphs because this running
case study is not adapted to concisely present precise
concepts.

As a case study, we consider the example of an
“in-vehicle network“ based on Ethernet-based Time-
Sensitive Networking (TSN) [17] for autonomous
vehicles. Autonomous automotive systems have to
perform various functions such as advanced driver
assistance, infotainment and autonomous driving.
Consequently, they need an important number of Elec-
tronic Control Units (ECUs) including sensors such as
radars, Lidars and cameras interconnected by a back-
bone network. To maintain low complexity of wiring,
recent studies in [4, 23] propose a zone-based in-
vehicle network architecture to group the ECUs in
zones according to their physical location as illus-
trated in Figure 1.

In-vehicle architectures for autonomous vehicles
have to satisfy very stringent communication require-
ments since ECUs for autonomous driving must trans-
mit and receive time-sensitive data. For instance, data
from radars and Lidars must be processed in time
by the deciding ECU function to avoid accidents. To

2

Fig. 1: In-vehicle zonal architecture

guarantee such requirements, specific network proto-
cols have been designed such as the Time-Sensitive
Networking (TSN) Ethernet-based standard developed
by the IEEE 802.1 Working Group [17]. TSN provides
wide bandwidth and low data transmission with accu-
rate time synchronization which is very adapted for
the automotive domain.

Since in-vehicle systems are complex critical sys-
tems, the formal verification of their properties is
needed from the early stages of design. However, these
architectures evolve very quickly to provide new and
better services and features in vehicles and must adapt
accordingly to take into account new functions and
ECUs.

For modeling and verification purposes, we have
used the latest version of the TTool framework [35],
including its ability to generate dependency graphs,
its model-checker [11], and its support for model
mutations [33].

2.2 A first SysML model
The SysML internal block diagram of our first basic
system is given in Figure 2. The main lower block
represents a zone controller: it contains two sub
blocks, with ZC1 in1 handling input messages and
ZC1 out2 forwarding messages to an output inter-
face. The top left block represents a sensor sending
messages (ASFD Tx) to a data handler (DID Rx) rep-
resented at the top right of the Figure. Last, the pink
note area corresponds to safety properties that will be
discussed in the next section.

More formally, block instances and block instance
diagram can be defined as follows.

block
ZoneController_1

block
ZC1_in1

- msg : Message;

- swDelay : int;

~ in msgP1In(Mes...
~ out msgP1Out(...

block
ZC1_out2

- msg : Message;
- dataRate : int;
- transmissionDelay : int;

~ in msgP2In(Message ...
~ out msgP2Out(Messa...

block
Driver_Instrument_Display

block
DID_Rx

- messageReceived : Message;
- flowReceived : Flow;
- msgNumber = 0 : int;
- e2eLatency : int;
- deadline : int;

~ in msgReceive(Message messa...

block
ADAS_Sensor_FD

block
ASFD_Tx

- flow : Flow;
- msg : Message;
- msgNumber = 0 : int;
- period : int;
- dataRate : int;
- transmissionDelay : int;

~ out msgTransmit(Mess...

Safety Pragmas
E<> DID_Rx.AllDone

block
ZoneController_1

block
ZC1_in1

- msg : Message;

- swDelay : int;

~ in msgP1In(Mes...
~ out msgP1Out(...

block
ZC1_out2

- msg : Message;
- dataRate : int;
- transmissionDelay : int;

~ in msgP2In(Message ...
~ out msgP2Out(Messa...

block
Driver_Instrument_Display

block
DID_Rx

- messageReceived : Message;
- flowReceived : Flow;
- msgNumber = 0 : int;
- e2eLatency : int;
- deadline : int;

~ in msgReceive(Message messa...

block
ADAS_Sensor_FD

block
ASFD_Tx

- flow : Flow;
- msg : Message;
- msgNumber = 0 : int;
- period : int;
- dataRate : int;
- transmissionDelay : int;

~ out msgTransmit(Mess...

Safety Pragmas
E<> DID_Rx.AllDone

Fig. 2: Block diagram of the basic system (1 stream)

Definition: block instance. A block instance is a 8-
tuple B = ⟨id,A,M,P,Si,So,smd,Bp⟩ where:

• id is a String that names the block instance.
• A is an attribute list. An attribute is a 3-tuple
⟨identifier, type, initialValue⟩ where identifier is a
String, types include Integer, Boolean, Timer, and
user-defined Records, and initialValue is the initial
value of the attribute.

• M is a set of methods.
• P is a set of ports.
• Si and So are sets of input and output signals.
• smd is a state machine diagram.
• Bp represents the parent block to which B belongs.

Bp can be empty.

Definition: Block Instance Diagram. A Block
Instance Diagram models the architecture of a system
as a graph of interconnected block instances. More
formally, a Block Instance Diagram D is a 3-tuple
D = ⟨B,connect,assoc⟩.
• B is a set of block instances. We denote by Si the set

of all input signals of B , by So the set of all output
signals of B and by P the set of all ports of B .

3

• connect is a function P × P →
{No,synchronous,asynchronous} that returns the
communication semantics between two ports (∅ ,
synchronous or asynchronous).

• assoc is a function PB1 ×So×PB2 ×Si→ Bool that
returns true if an output signal so of block B1 is asso-
ciated to an input signal si of block B2 via 2 ports
p1, p2 of respectively B1 and B2, and if these two
ports are connected (i.e. connect(p1,p2) ̸= No).

2.3 State Machine Diagram
Each block instance contains one finite state machine
that supports states, transitions, attribute settings and
testings, inputs and outputs operations on signals, and
temporal operators such as delays and timers.

For instance, the state machine diagram of
ASFD Tx is represented in Figure 3. Basically, the
state machine features a configuration of parameters,
followed with the send of messages, and then loop-
ing again on the Ready state or going to the Stop
state once all messages have been sent. The behaviour
of DID Rx is quite similar (see Figure 4): the block
waits for messages (Ready state) until all of them have
been received. Then, it goes to the AllMessagesRe-
ceived state, before going to successive states model-
ing respectively the computations done from messages
and signaling that the processing is done (AllDone
state).

Definition: State Machine. A finite state machine
depicted by a SysML state machine diagram is a
bipartite graph ⟨s0,S,T⟩ where

• S is a set of states (s0 is the initial state).
• T is a set of transitions.

Definition: State Transition. A transition is a 5-
tuple ⟨sstart,after,condition,Actions,send⟩ where:

• sstart is the initial state of the transition.
• after(tmin, tmax) specifies that the transition is

enabled only after a duration between tmin and tmax

has elapsed.
• condition is a Boolean expression that conditions

the execution of the transition.This Boolean expres-
sion can use block attributes.

• action ∈ {variable affectation, send signal, receive
signal} represents the action attached to the tran-
sition. The action can be executed only once the
transition has been enabled, i.e. when the after
clause has elapsed and the condition equals true.

Sending

Ready

msgTransmit(msg, transmissionDelay)

Sent

Stop

Ready

after(flow.period)

msgNumber=msgNumber+1

[else]

[msgNumber<flow.nbrOfMessages]

msg.flowID = flow.id
msg.length=flow.msgLength
msg.trafficPriority=flow.trafficPriority
msg.bag=flow.period
transmissionDelay=msg.length*8

dataRate=100
flow.id=0
flow.msgLength=10
flow.trafficPriority=1
flow.period=125
flow.nbrOfMessages=5

Sending

Ready

Sent

Stop

Ready

after(flow.period)

msgNumber=msgNumber+1

[else]

[msgNumber<flow.nbrOfMessages]

msg.flowID = flow.id
msg.length=flow.msgLength
msg.trafficPriority=flow.trafficPriority
msg.bag=flow.period
transmissionDelay=msg.length*8

dataRate=100
flow.id=0
flow.msgLength=10
flow.trafficPriority=1
flow.period=125
flow.nbrOfMessages=5

Fig. 3: State machine diagram of ASFD Tx

AllMessagesReceived

Ready

msgReceive(messageReceived, e2eLatency)

Received

Ready

ResultComputed

AllDone

[else][msgNumber<5]

flowReceived.id=messageReceived.flowID
flowReceived.msgLength=messageReceived.length
flowReceived.trafficPriority=messageReceived.trafficPriority
flowReceived.period=messageReceived.bag
msgNumber=msgNumber+1

deadline=100

after (10, 10)

AllMessagesReceived

Ready

msgReceive(messageReceived, e2eLatency)

Received

Ready

ResultComputed

AllDone

[else][msgNumber<5]

flowReceived.id=messageReceived.flowID
flowReceived.msgLength=messageReceived.length
flowReceived.trafficPriority=messageReceived.trafficPriority
flowReceived.period=messageReceived.bag
msgNumber=msgNumber+1

deadline=100

after (10, 10)

Fig. 4: State machine diagram of DID Rx

4

send signal, receive signal can use its signals, or the
signals of the parent block Bp, and so on.

• send is the final state of the transition.

2.4 Design mutation
The current paper considers SysML model muta-
tions [33] used to update design diagrams. These
mutations rely on elementary functions. We consider
five kinds of mutation functions at block instance
diagram-level and state machine diagram-level as fol-
lows:

• Block instance diagram-level: addition of a new
block instance, a new connection between two
ports, and a new input or output signal declaration.

• State machine diagram-level: addition of a new
state, and a new transition between two states.

For instance, in our running case study, one may
want to improve the system architecture with an
updated interconnection network by adding new zone
controllers (ZoneController 2), or by adding new zone
controller ports in ZoneController 1. The behavior
of the system could also be updated by adding new
behaviors. For example, the display instrument driver
may need to display other information coming either
from the ADAS Sensor, or from other sensing blocks.

Let D be the set of all block instance diagrams, B
the set of all block instances, A the set of all attributes,
P the set of all ports, So (resp. Si) be the set of all
output (resp. input) signals, L be the set of all states
and T be the set of all transitions.

We now formalize some of the possible model
mutations.

2.4.1 Architectural mutations

Function to add a block:

addBlock : D×B→D
(⟨B,connect,assoc⟩,B)

7→

{
⟨B ∪{B},connect,assoc⟩ if B ̸∈ B
⟨B,connect,assoc⟩ otherwise

Function to add a port connection:

addConn : D×P×P×{no,sync,async}→D
(⟨B,connect,assoc⟩,⟨p1,p2⟩,semantics)

7→

{
⟨B,connect′,assoc⟩ if (p1,p2) ∈ P ×P
⟨B,connect,assoc⟩ otherwise

where connect and connect′ are such that
connect(p1,p2) = no and ∀⟨p,q⟩ ∈ P × P \
{⟨p1,p2⟩},connect′(p,q) = connect(p,q) ∧
connect′(p1,p2) = semantics1.

Function to add a signal association2

addAssoc : D×P×P×So×Si 7→D
(⟨B,connect,assoc⟩,⟨p1,p2⟩,so,si)

7→


⟨B,connect,assoc′⟩ if (p1,p2) ∈ P ×P
∧(so,si) ∈ So×Si

⟨B,connect,assoc⟩ otherwise

where assoc and assoc′ are such that
¬assoc(p1,so,p2,si) and ∀⟨p,q,s, t⟩ ∈ P ×
P × So × Si \ {⟨p1,p2,so,si⟩},assoc′(p,s,q, t) =
assoc(p,s,q, t)∧assoc′(p1,so,p2,si).

Function to add an attribute:

addAttr : B×A→B
(⟨id,A,M,P,Si,So,smd,Bp⟩,a)

7→

{
⟨id,A∪{a},M,P,Si,So,smd,Bp⟩ if a ̸∈ A

⟨id,A,M,P,Si,So,smd,Bp⟩ otherwise.

2.4.2 Behavioral mutations

Function to add a state:

addState : B×L→B
(⟨id,A,M,P,Si,So,⟨s0,S,T⟩,Bp⟩,s)

7→

{
⟨id,A,M,P,Si,So,⟨s0,S∪{s},T⟩,Bp⟩ if s ̸∈ S

⟨id,A,M,P,Si,So,⟨s0,S,T⟩,Bp⟩ otherwise.

For the needs of the following definition, we define
the function

parents : B 7→

{
∅ if Bp is empty

{Bp}∪parents(Bp) otherwise

For a given block instance B =
⟨id,A,M,P,Si,So,⟨s0,S,T⟩,Bp⟩, we denote with:

• S+
i = Si∪

⋃
Block∈parents(B)

SiBlock

• S+
o = So∪

⋃
Block∈parents(B)

SoBlock

where SiBlock (resp. SoBlock) is the input (resp. output)
signals set of Block.

1P is the set of all ports of B such as defined herein above.
2So (resp. Si) is the set of all output (resp. input) signals of B .

5

Sending

Ready

msgTransmit(msg, transmissionDelay)

Sent

Stop

Ready

after(flow.period)

msgNumber=msgNumber+1

[else]

[msgNumber<flow.nbrOfMessages]

msg.flowID = flow.id
msg.length=flow.msgLength
msg.trafficPriority=flow.trafficPriority
msg.bag=flow.period
transmissionDelay=msg.length*8

dataRate=100
flow.id=0
flow.msgLength=10
flow.trafficPriority=1
flow.period=125
flow.nbrOfMessages=5

after(restartDelay)
msgNumber = 0

Sending

Ready

Sent

Stop

Ready

msgNumber=msgNumber+1

[else]

[msgNumber<flow.nbrOfMessages]

msg.flowID = flow.id
msg.length=flow.msgLength
msg.trafficPriority=flow.trafficPriority
msg.bag=flow.period
transmissionDelay=msg.length*8

dataRate=100
flow.id=0
flow.msgLength=10
flow.trafficPriority=1
flow.period=125
flow.nbrOfMessages=5

msgNumber = 0

Fig. 5: State machine diagram of ASFD Tx after
mutation

• T|B the subset of T such that
∀⟨sstart,after,condition,Actions,send⟩ ∈ T|B,
(sstart,send) ∈ S2 ∧ condition is an expression over
elements of A ∧ Actions contains only variable
affectations over elements of A, receive signal
actions over elements of S+

i and send signal actions
over elements of S+

o .

Function to add a transition:

addTrans : B×T 7→B
(⟨id,A,M,P,Si,So,⟨s0,S,T⟩,Bp⟩, t)

7→


⟨id,A,M,P,Si,So,⟨s0,S,T ∪{t}⟩,Bp⟩
if t ∈ T|⟨id,A,M,P,Si,So,⟨s0,S,T⟩,Bp⟩

⟨id,A,M,P,Si,So,⟨s0,S,T⟩,Bp⟩
otherwise

For instance, enhancing the behav-
ior of the ASDF Tx, as modeled by the
SMD depicted in Figure 3 with an auto-
matic reboot feature, can be achieved through
the following additive mutations: ASFD′Tx =
addAttr(ASFDTx,⟨restartDelay,N,0⟩) and then
addTrans(ASFD′Tx,⟨Stop,restartDelay,⊤,msgNumber←
0,Ready⟩). This results in the SMD illustrated in
Figure 5, which now includes the new transition
between the states Stop and Ready.

3 Problem statement and
illustration

This section provides a formalized problem statement,
and illustrates this problem statement with our run-
ning example. As articulated in the preceding section,
our aim is to reduce proof complexity when updat-
ing a system. Design languages, like SysML, do not
inherently provide a straightforward foundation for
reasoning. Consequently, we intuitively introduce the
concept of dependency graphs in this section, with
a formalization presented in Section 4. The use of
dependency graphs, constructed from SysML models,
has already been explored in a distinct context by [8].

3.1 Problem statement: reachability
The pink box depicted in Figure 2 features the
safety property the system shall satisfy. For instance,
the property given in the box specifies the reach-
ability of state AllDone in block DID Rx : E <>
DID Rx.AllDone. This property is expressed using
CTL operators. “E” stands for “on at least one path”
and “<>” stands for “in at least one state“. Reachabil-
ity properties are at the heart of the paper contribution:
our interest is whether reachability properties proven
as satisfied remain satisfied, or not, when mutations
are applied on the system. Liveness properties are
not handled by the present contribution, but they are
discussed in section 5.

More formally, we denote a reachability property
as E <> o where o is a state or a send/receive action
of a state machine of a design D.

We denote with DI = ⟨BDI ,connectDI ,assocDI ⟩
the initial design and with DM =
⟨BDM ,connectDM ,assocDM ⟩ a mutated design,
i.e. DM derives from DI through a muta-
tion or a composition of mutations among
{addBlock,addConn,addAssoc,addState,addTrans}.

We assume that the reachability property is sat-
isfied in the initial design, i.e., DI |= E <> o3, i.e.,
the operator4 o is reachable in DI . In our running
example, it would mean that state “AllDone” or block
“DID Rx” is reachable in the initial system.
Problem 1. Instead of reproving if DM |= E <> o
using model-checking techniques applied to DM and
E <> o, could we reuse the result DI |= E <> o and

3Symbol |= means “satisfy”
4In this context, the term ’operator’ refers to a state-machine artifact,

encompassing elements such as states and send or receive actions, whose
reachability we aim to verify.

6

DM = m(DI) to lower the complexity of the proof of
E <> o on DM?

3.2 Dependency graphs
As explained by Apvrille et al. in [8], a dependency
graph is equivalent to a SysML design model. This
graph features all the logical dependencies between
system elements: i.e. state to transition, transition to
states, and actions including communication actions.
The logical dependencies of communication actions
take into consideration the definition of communica-
tion between blocks, i.e., in which blocks signals are
defined, but also the connection of signals through
ports, and finally how blocks are embedded into each
other. In the scope of this paper, we consider only
asynchronous communications with infinite FIFOs
(i.e., a writer is never blocked, while a reader must
wait for a message to be available in the FIFO when
reading). Basically, all SysML elements have at least
one corresponding vertex in the graph such that it is
possible to rebuild the original SysML design model
from a graph. Such a dependency graph has vertices
with no input edges (they correspond to the start states
of state machines), vertices with no output edge (states
of state machines with no output transitions), and
other vertices corresponding to states, to transitions,
or to actions of transitions.

We now examine the dependency graph of the
running example depicted in Figure 6. This graph
depicts each block (ASFD Tx, ZC1 in1, ZC1 out2,
DID Rx) from left to right, respectively. The graph
incorporates start states of blocks, represented as
green vertices, thus correlating to the initial states of
the four state machines. It also features termination
vertices (represented in red), aligning with the stop
states of ASFD Tx and DID Rx. Given that ZC1 in1
and ZC1 out2 perpetually await incoming messages
prior to processing, they do not encompass a termi-
nation vertex. Vertices correlated to regular states or
transitions within the SysML model are indicated in
gray. Communication vertices are denoted in purple
for sending actions, and in blue for receiving actions.
To convey the communication dependency between a
sender and a receiver, a green edge is depicted between
associated sending and receiving actions. Broadly,
all edges illustrate a logical dependency among the
operators within the state machines.

3.3 Updating the system
In the design process of such an in-vehicle network,
it is common practice to incrementally introduce new
network streams. This method allows for a progressive
escalation of system complexity. Moreover, it facil-
itates the consideration of scenarios where network
streams are added dynamically during system opera-
tion due to the activation of a device by the driver. For
instance, upon the driver’s initiation of the GPS sys-
tem, new data streams are established between various
Electronic Control Units (ECUs) within the system.

Table 1 showcases four systems, where the initial
system is sequentially augmented through three sepa-
rate mutations. Each mutation increases the complex-
ity of the system, adding numerous blocks, establish-
ing connections between these blocks, and introducing
related state machines5. Consequently, the execution
of each update necessitates the application of multiple
mutation functions (addition of each block, addition
of their attributes and signals, adding each element of
their state machines).

The first update introduces a new network stream
using different ports of ZoneController 1. This novel
stream originates from a new device IntegratedAn-
tenna and ends in ADAS Sensor FD. The second
mutation appends a secondary destination to the data
stream flowing between ASFD Tx and DID Rx. In
this mutation, ZC1 in1 is in charge of duplicating the
stream that now reaches both DID Rx and a new ECU
represented by a block named Engine. Lastly, the third
mutation introduces a GPS transmitter, GPS Tx, that
dispatches a data stream to ASFD Tx. Consequently,
ASFD Tx now receives dual data streams: one from
IntegratedAntenna and another from GPS Tx. The
final block diagram is illustrated in Figure 7.

3.4 Verification after a system update
Table 1 provides an overview of the dimensions of
the dependency graphs and the corresponding reach-
ability graphs. Results were obtained using the latest
version of TTool running on a 16-core Macbook pro
with 32 GB of RAM. This table exemplifies the benefit
of the contribution exposed in Section 4: predomi-
nantly operating on dependency graphs facilitates the
verification procedure after mutation by reducing the
complexity of both the model and properties fed to
the model checker. Even in the scope of three muta-
tions, which introduced three new data streams, the

5Table 1 specifies only the number of newly added blocks

7

24 / DID_Rx / Receiving signal "msgReceive"

23 / ZC1_out2 / Sending signal "msgP2Out"

22 / ZC1_out2 / Receiving signal "msgP2In"

21 / ZC1_in1 / Sending signal "msgP1Out"

20 / ZC1_in1 / Receiving signal "msgP1In"

19 / ASFD_Tx / Sending signal "msgTransmit"

18 / ZC1_out2 / Ready

17 / ZC1_out2 / start

16 / ZC1_in1 / Ready

15 / ZC1_in1 / avatar transition

14 / ZC1_in1 / start

13 / DID_Rx / Stop

12 / DID_Rx / Received

11 / DID_Rx / avatar transition

10 / DID_Rx / Ready

9 / DID_Rx / avatar transition

8 / DID_Rx / start

7 / ASFD_Tx / Stop

6 / ASFD_Tx / Sent

5 / ASFD_Tx / avatar transition

4 / ASFD_Tx / Sending

3 / ASFD_Tx / avatar transition

2 / ASFD_Tx / Ready

1 / ASFD_Tx / avatar transition

0 / ASFD_Tx / start

24 / DID_Rx / Receiving signal "msgReceive"

23 / ZC1_out2 / Sending signal "msgP2Out"

22 / ZC1_out2 / Receiving signal "msgP2In"

21 / ZC1_in1 / Sending signal "msgP1Out"

20 / ZC1_in1 / Receiving signal "msgP1In"

19 / ASFD_Tx / Sending signal "msgTransmit"

18 / ZC1_out2 / Ready

17 / ZC1_out2 / start

16 / ZC1_in1 / Ready

15 / ZC1_in1 / avatar transition

14 / ZC1_in1 / start

13 / DID_Rx / Stop

12 / DID_Rx / Received

11 / DID_Rx / avatar transition

10 / DID_Rx / Ready

9 / DID_Rx / avatar transition

8 / DID_Rx / start

7 / ASFD_Tx / Stop

6 / ASFD_Tx / Sent

5 / ASFD_Tx / avatar transition

4 / ASFD_Tx / Sending

3 / ASFD_Tx / avatar transition

2 / ASFD_Tx / Ready

1 / ASFD_Tx / avatar transition

0 / ASFD_Tx / start

Fig. 6: Dependency graph of the basic system (1 stream). In green: start states ; in red: stop states ; in purple:
sending actions ; in blue: receiving actions ; gray: any other state machine elements (states, transitions, actions)

block
ZoneController_1

block
ZC1_in3

- msg : Message;
- transmissionDelay : int;
- swDelay : int;

~ in msgP3In(Message msg, int transmissi...
~ out msgP3Out(Message msg, int transm...

block
ZC1_out1

- msg : Message;
- dataRate : int;
- transmissionDelay : int;

~ in msgPO13In(Message msg, ...
~ in msgPO15In(Message msg, ...
~ out msgPO1Out(Message msg...

block
ZC1_in1

- msg : Message;
- transmissionDelay : int;
- swDelay : int;

~ in msgP1In(Message ms...
~ out msgP14Out(Messag...

block
ZC1_out2

- msg : Message;
- dataRate : int;
- transmissionDelay : int;

~ in msgP2In(Message msg,...
~ out msgP2Out(Message m...

block
ZC1_in5

- msg : Message;
- transmissionDelay : int;
- swDelay : int;

~ in msgP5In(Message msg...

block
IntegratedAntenna

block
IA_Tx

- flow : Flow;
- msg : Message;
- msgNumber = 0 : int;
- period : int;
- dataRate : int;
- transmissionDelay : int;

~ out msgTransmit(Message ...

block
ZC1_out4

- msg : Message;
- dataRate : int;
- transmissionDelay : int;

~ in msgPO4In(Message msg, ...
~ out msgPO4Out(Message m...

block
Driver_Instrument_Display

block
DID_Rx

- id = 1 : int;
- messageReceived : Message;
- flowReceived : Flow;
- msgNumber = 0 : int;
- e2eLatency : int;
- deadline : int;

~ in msgReceive(Message messa...

block
Engine

block
En_Rx

- id = 2 : int;

- flowReceived : Flow;
- msgNumber = 0 : int;
- e2eLatency : int;
- deadline : int;

block
ADAS_Sensor_FD

block
ASFD_Rx

- id = 3 : int;
- messageReceived : Message;
- e2eLatency : int;
- flowReceived0 : Flow;
- flowReceived1 : Flow;
- msgNumber0 = 0 : int;
- msgNumber1 = 0 : int;
- e2eLatency0 : int;
- e2eLatency1 : int;
- deadline0 : int;

block
ASFD_Tx

- flow1 : Flow;
- flow0 : Flow;
- msgNumber1 = 0 : int;
- msgNumber0 = 0 : int;
- msg : Message;
- dataRate : int;
- transmissionDelay1 : int;
- transmissionDelay0 : int;

~ out msgTransmit(Message msg, i...

block
GPS

block
GPS_Tx

- flow : Flow;
- msg : Message;
- msgNumber = 0 : int;
- period : int;
- dataRate : int;

~ out msgTransmit(Me...

block
ZoneController_1

block
ZC1_in3

- msg : Message;
- transmissionDelay : int;
- swDelay : int;

~ in msgP3In(Message msg, int transmissi...
~ out msgP3Out(Message msg, int transm...

block
ZC1_out1

- msg : Message;
- dataRate : int;
- transmissionDelay : int;

~ in msgPO13In(Message msg, ...
~ in msgPO15In(Message msg, ...
~ out msgPO1Out(Message msg...

block
ZC1_in1

- msg : Message;
- transmissionDelay : int;
- swDelay : int;

~ in msgP1In(Message ms...
~ out msgP14Out(Messag...

block
ZC1_out2

- msg : Message;
- dataRate : int;
- transmissionDelay : int;

~ in msgP2In(Message msg,...
~ out msgP2Out(Message m...

block
ZC1_in5

- msg : Message;
- transmissionDelay : int;
- swDelay : int;

~ in msgP5In(Message msg...

block
IntegratedAntenna

block
IA_Tx

- flow : Flow;
- msg : Message;
- msgNumber = 0 : int;
- period : int;
- dataRate : int;
- transmissionDelay : int;

~ out msgTransmit(Message ...

block
ZC1_out4

- msg : Message;
- dataRate : int;
- transmissionDelay : int;

~ in msgPO4In(Message msg, ...
~ out msgPO4Out(Message m...

block
Driver_Instrument_Display

block
DID_Rx

- id = 1 : int;
- messageReceived : Message;
- flowReceived : Flow;
- msgNumber = 0 : int;
- e2eLatency : int;
- deadline : int;

~ in msgReceive(Message messa...

block
Engine

block
En_Rx

- id = 2 : int;

- flowReceived : Flow;
- msgNumber = 0 : int;
- e2eLatency : int;
- deadline : int;

block
ADAS_Sensor_FD

block
ASFD_Rx

- id = 3 : int;
- messageReceived : Message;
- e2eLatency : int;
- flowReceived0 : Flow;
- flowReceived1 : Flow;
- msgNumber0 = 0 : int;
- msgNumber1 = 0 : int;
- e2eLatency0 : int;
- e2eLatency1 : int;
- deadline0 : int;

block
ASFD_Tx

- flow1 : Flow;
- flow0 : Flow;
- msgNumber1 = 0 : int;
- msgNumber0 = 0 : int;
- msg : Message;
- dataRate : int;
- transmissionDelay1 : int;
- transmissionDelay0 : int;

~ out msgTransmit(Message msg, i...

block
GPS

block
GPS_Tx

- flow : Flow;
- msg : Message;
- msgNumber = 0 : int;
- period : int;
- dataRate : int;

~ out msgTransmit(Me...

Fig. 7: Block diagram of the system after applying 3 mutations

System Design Mutations DG RG
Vertices Edges Vertices Edges

1 7 blocks: 1 Tx, 1 Rx, 1 in, 1 out, 1 stream initial system 25 28 581 1072
2 12 blocks: 2 Tx, 2 Rx, 2 in, 2 out, 2 streams + 5 blocks 53 59 14k 35k
3 15 blocks: 2 Tx, 3 Rx, 2 in, 3 out, 3 streams + 3 blocks 72 84 2.5M 7.6M
4 18 blocks: 3 Tx, 3 Rx, 3 in, 3 out, 4 streams + 3 blocks 94 111 > 32M* > 110M*

*RG generation stopped after 40 minutes

Table 1: List of systems. System n is created using mutations applied to system n−1

dependency graph remains reasonably manageable. Conversely, the reachability graph expands to encom-
pass several dozens of million states and transitions,

8

49 / DID_Rx / Receiving signal "msgReceive"

48 / ZC1_out2 / Sending signal "msgP2Out"

47 / ZC1_out2 / Receiving signal "msgP2In"

46 / ZC1_in1 / Sending signal "msgP1Out"

45 / ASFD_Rx / Receiving signal "msgReceive"

44 / ZC1_out1 / Sending signal "msgPO2Out"

43 / ZC1_out1 / Receiving signal "msgPO1In"

42 / ZC1_in3 / Sending signal "msgP3Out"

41 / ZC1_in1 / Receiving signal "msgP1In"

40 / ASFD_Tx / Sending signal "msgTransmit"

39 / ZC1_in3 / Receiving signal "msgP3In"

38 / IA_Tx / Sending signal "msgTransmit"

37 / DID_Rx / Stop

36 / DID_Rx / Received

35 / DID_Rx / avatar transition

34 / DID_Rx / Ready

33 / DID_Rx / avatar transition

32 / DID_Rx / start

31 / ZC1_out2 / Ready

30 / ZC1_out2 / start

29 / ZC1_in1 / Ready

28 / ZC1_in1 / avatar transition

27 / ZC1_in1 / start

26 / ZC1_out1 / Ready

25 / ZC1_out1 / start

24 / ZC1_in3 / Ready

23 / ZC1_in3 / avatar transition

22 / ZC1_in3 / start

21 / ASFD_Tx / Stop

20 / ASFD_Tx / Sent

19 / ASFD_Tx / avatar transition

18 / ASFD_Tx / Sending

17 / ASFD_Tx / avatar transition

16 / ASFD_Tx / Ready

15 / ASFD_Tx / avatar transition

14 / ASFD_Tx / start

13 / ASFD_Rx / Stop

12 / ASFD_Rx / Received

11 / ASFD_Rx / avatar transition

10 / ASFD_Rx / Ready

9 / ASFD_Rx / avatar transition

8 / ASFD_Rx / start

7 / IA_Tx / Stop

6 / IA_Tx / Sent

5 / IA_Tx / avatar transition

4 / IA_Tx / Sending

3 / IA_Tx / avatar transition

2 / IA_Tx / Ready

1 / IA_Tx / avatar transition

0 / IA_Tx / start

49 / DID_Rx / Receiving signal "msgReceive"

48 / ZC1_out2 / Sending signal "msgP2Out"

47 / ZC1_out2 / Receiving signal "msgP2In"

46 / ZC1_in1 / Sending signal "msgP1Out"

45 / ASFD_Rx / Receiving signal "msgReceive"

44 / ZC1_out1 / Sending signal "msgPO2Out"

43 / ZC1_out1 / Receiving signal "msgPO1In"

42 / ZC1_in3 / Sending signal "msgP3Out"

41 / ZC1_in1 / Receiving signal "msgP1In"

40 / ASFD_Tx / Sending signal "msgTransmit"

39 / ZC1_in3 / Receiving signal "msgP3In"

38 / IA_Tx / Sending signal "msgTransmit"

37 / DID_Rx / Stop

36 / DID_Rx / Received

35 / DID_Rx / avatar transition

34 / DID_Rx / Ready

33 / DID_Rx / avatar transition

32 / DID_Rx / start

31 / ZC1_out2 / Ready

30 / ZC1_out2 / start

29 / ZC1_in1 / Ready

28 / ZC1_in1 / avatar transition

27 / ZC1_in1 / start

26 / ZC1_out1 / Ready

25 / ZC1_out1 / start

24 / ZC1_in3 / Ready

23 / ZC1_in3 / avatar transition

22 / ZC1_in3 / start

21 / ASFD_Tx / Stop

20 / ASFD_Tx / Sent

19 / ASFD_Tx / avatar transition

18 / ASFD_Tx / Sending

17 / ASFD_Tx / avatar transition

16 / ASFD_Tx / Ready

15 / ASFD_Tx / avatar transition

14 / ASFD_Tx / start

13 / ASFD_Rx / Stop

12 / ASFD_Rx / Received

11 / ASFD_Rx / avatar transition

10 / ASFD_Rx / Ready

9 / ASFD_Rx / avatar transition

8 / ASFD_Rx / start

7 / IA_Tx / Stop

6 / IA_Tx / Sent

5 / IA_Tx / avatar transition

4 / IA_Tx / Sending

3 / IA_Tx / avatar transition

2 / IA_Tx / Ready

1 / IA_Tx / avatar transition

0 / IA_Tx / start

System before mutation

Mutation

Resulting
system

Fig. 8: Dependency graph (circled in blue) after applying one mutation. This graph has two independent parts: the
top part of the Figure (circled in green) is exactly the previous system (see Figure 6), the bottom part (circled in red)
represents the added network elements. Thus, the logical separation between these two graphs demonstrates that
the mutation creates a new network stream logically independent from the network stream of the original model.
But again the whole Figure features only a single dependency graph (circled in blue): the model after mutation.

thereby complicating the task of scrutinizing paths
within this reachability graph.

As further discussed in section 5.1, the muta-
tions we consider in this paper cannot remove exist-
ing logical dependencies: they can only extend the
model by adding new blocks, new elements of blocks
(for instance, attributes) or new elements of state
machines, thus resulting in new logical dependencies.
Since deletions are proscribed, logical dependencies
of the dependency graph present before the muta-
tion are still present, but obviously the behavior might
be altered by additive mutations. Also, the only sit-
uation for which an operator o of a state machine
would become non reachable is when applying muta-
tions that would prevent all dependency paths to o
to be executable. Said differently, previous execution
paths would all be “preempted” by the mutations,
while no new execution paths would lead to o. The

approach exposed in section 4 investigates these two
cases (preemption and new path).

Coming back to our example, the dependency
graph after applying one mutation is given in Figure 8.
One can easily notice that the added data stream cre-
ates two concurrent sub dependency graphs: they have
no logical dependencies. The top of this graph (circled
in blue) corresponds to the dependencies of the former
that are still present in the new model, while the lower
part (circled in red) corresponds to the new network
stream. Both upper and lower graphs (circled in blue,
”resulting system”) represent the whole dependency
graph of the new model. Thus, old execution paths are
still valid because they cannot be preempted by the
new execution paths. Since AllDone state was proved
as reachable before mutation, we can easily prove that
AllDone is still reachable after the first mutation. Our
algorithm works similarly: it first investigates how old
paths could be impacted by new ones.

9

The previous mutation added new elements with-
out dependencies with the old elements: this was a
trivial example. The dependency graph after three
mutations is far more complex, but still totally man-
ageable (94 vertices, 111 edges) with regards to the
reachability graph of this updated system. While it
also contains a sub-graph totally independent from the
old logical paths leading to AllDone (this sub-graphs
relates to data streams independent from each other),
it also add new paths from which AllDone logically
depends. Consequently, it may not be feasible to infer
that the original paths retain their executability, as a
newly introduced path could potentially preempt all
existing paths leading to AllDone. Simultaneously, it
is unfeasible to assert with certainty that a new path
reaches AllDone. Nevertheless, we can undertake the
following steps:

• We can remove all vertices and edges that are not in
paths leading to AllDone.

• If an edge could preempt an old path and that
path does not lead to AllDone, we can rework that
preemption (notion of Next explained in Section 4).

• When considering old paths leading to AllDone, if
a certain point p of an old path is reached and if
there is not possible preemption after p, and after p
there are no more vertices from which the system
blocked at previous verification stage, then reaching
p means reaching AllDone. The proof of reachabil-
ity of AllDone can thus be replaced by the proof of
reachability of p. For instance, the reachability of
AllDone is ensured as soon as the vertex of AllMes-
sagesReceived is reached. So, the reachability of
AllDone can be replaced by the one of AllMes-
sagesReceived. Consequently, some of the vertices
and edges can be removed from the dependency
graph. Figure 9 gives an excerpt of the dependency
graph after 3 mutations. We can cut all vertices and
edges between the vertex of AllDone (vertex 43)
and the vertex of AllMessagesReceived (vertex 40).
After this cut, a new reachability property must be
verified: E <> DID Rx.AllMessagesReceived.

All these concepts (and others) useful for incremental
verification are detailed in next section.

4 Incremental verification:
algorithms

In this section, we precisely describe our approach to
simplify the verification of a mutated model w.r.t. a

91 / DID_Rx / Receiving signal "msgReceive"

90 / ZC1_out2 / Sending signal "msgP2Out"

89 / ZC1_out2 / Receiving signal "msgP2In"

88 / ZC1_in1 / Sending signal "msgP12Out"

68 / ZC1_out2 / Ready

67 / ZC1_out2 / start

43 / DID_Rx / AllDone

42 / DID_Rx / ResultComputed

41 / DID_Rx / avatar transition

40 / DID_Rx / AllMessagesReceived

39 / DID_Rx / Received

38 / DID_Rx / avatar transition

37 / DID_Rx / Ready

36 / DID_Rx / avatar transition

35 / DID_Rx / start

91 / DID_Rx / Receiving signal "msgReceive"

90 / ZC1_out2 / Sending signal "msgP2Out"

89 / ZC1_out2 / Receiving signal "msgP2In"

88 / ZC1_in1 / Sending signal "msgP12Out"

68 / ZC1_out2 / Ready

67 / ZC1_out2 / start

43 / DID_Rx / AllDone

42 / DID_Rx / ResultComputed

41 / DID_Rx / avatar transition

40 / DID_Rx / AllMessagesReceived

39 / DID_Rx / Received

38 / DID_Rx / avatar transition

37 / DID_Rx / Ready

36 / DID_Rx / avatar transition

35 / DID_Rx / start

Fig. 9: Excerpt of the dependency graph after applying
three mutations

set of reachability properties that have been proven as
satisfied on the initial model (before mutation).

Technically, models and dependency graphs
are two alternative representations of identi-
cal information. We therefore assume: Model ≡
graphToModel(modelToGraph(Model)). Then the
algorithms presented here rely on these graphs,
and for reasons of simplicity, we may occasionally
consider graphs as sets of both edges and vertices.

The approach replaces the verification of one
reachability property p on a mutated graph with the
verification of a set of reachability properties on two
smaller graphs: as soon as one of these properties
is proved as satisfied, then p is proved as satisfied
on the mutated graph. The complexity and interest
of proving this set on smaller graphs is discussed in
section 5.3. Yet, to compute the two smaller graphs
and the related set of reachability properties, we use
a central algorithm called splitGraph. Subsection 4.1
presents this general approach with the definition
of these two graphs and why relying on them for
verification instead of the whole mutated graph is
sound. Then, section 4.2 is a high level presentation
of splitGraph algorithms (later, the two last sections
provide a complete technical description of them).
Section 4.3 presents a general vertex labelling algo-
rithm which is widely used in our implementation

10

of splitGraph. This algorithm is later customized to
fulfill different types of labelling aiming to achieve
our goal. Following this, section 4.4 fully specifies
the function splitGraph itself. Finally, Subsection 4.5
reuses the main case study to illustrate a few key
concepts in a more concrete way.

4.1 Global Approach
The approach considers one single reachability prop-
erty by iterating on a process that computes a set of
reachability properties. The inputs of this process are:

• DGI : the initial model (before mutations)
• DGM: the mutated model (after mutation)
• vp: a vertex in DGI (and thus in DGM) that corre-

sponds to a reachability property, denoted by p, that
needs to be verified.

• The knowledge that vp is reachable in DGI , and the
set of blocking states of DGI (see section 4.4.3),
both obtained by model-checking.

Our objective entails verifying the reachability
of vp after mutation, in other words, confirming the
accessibility of vp for system DGM . Instead of apply-
ing model-checking on DGM , we propose to decom-
pose the verification w.r.t. the following simple (and
obviously sound) decomposition principle:

• assertion: if vp is reachable DGM (reach(DGM,vp)),
there is at least one executable path leading to vp

from start vertices in DGM and this path is (exhaus-
tively):

– either an old path,
i.e all the used vertices and edges are in DGI .

– or a new path,
i.e. at least one used edge is not in DGI . This
edge corresponds to the addition of a new logical
dependency.

• conclusion: if we have both a method
reachold(DGM,vp) that decides if there is an old
path, and a method reachnew(DGM,vp) that decides
if there is a new path, then reach(DGM,vp) =
reachold(DGM,vp)∨ reachnew(DGM,vp)

Then our main idea is to build two smaller graphs to
implement reachold and reachnew:

• DGN is dedicated to new paths and is such that
reachnew(DGM,vp) = reach(DGN ,vp)

• DGO is dedicated to old paths, together with a
set of reachability properties PO (i.e., a set of ver-
tices of DGO) such that reachold(DGM,vp) = ∃v ∈
PO,reach(DGO,v).

Considering PO instead of vp in the latter case is an
optimization explained later (cutting some branches in
DGM , c.f. section 4.4.6).
Approximation: building a graph DGN that accepts
new paths without accepting old paths is complex and
not required. Thus, in practice, our reach(DGN ,vp)
may accepts old paths and return true also if no
new path exists, which is not a false positive w.r.t
our main goal: the so detected reachability actu-
ally hold in DGM . In short, our approximation
ensures that reachnew(DGM,vp) ⇒ reach(DGN ,vp)
and reach(DGN ,vp)⇒ reach(DGM,vp). One issue is
to minimize the residual old paths in DGN : indeed,
smaller dependency graphs mean a faster graph anal-
ysis and thus a faster verification process.

Building DGN , DGO and PO is the purpose of
the core function of our algorithms splitGraph whose
high level behaviour can be informally summarized as
follows.

function splitGraph(DGI ,DGM,vp,blockings)
returns (DGO,PO,DGN) where

• DGO is a reduced graph and PO is a subset of
its vertices, such that vp is reachable in DGM

through an old path if and only if at least one
p ∈ PO is reachable in DGO.

• DGN is a reduced graph such that if vp is reach-
able through a new path in DGM , then it is
reachable in DGN , and any reachable path in
DGN is a reachable path in DGM .

Then, using splitGraph, the main process of our
approach is described by Algorithm 1 (where block-
ing information is abstracted). It decides if a set Prop
of reachability properties that have been proved in
the initial model are preserved after mutation. The
algorithm iterates on properties: for each reachability
property, it first builds the two small graphs men-
tioned before, then tests if PO is reachable using old
paths, and finally tests if vp is reachable using a new
path. The algorithm stops as soon as one of the tests
succeeds. Of course, executing all tests may be com-
putationally intensive: the earlier a test succeeds, the
more our approach is efficient.

11

Algorithm 1: Simplifying reachability
proofs after mutation

Data: DGI , DGM , Prop
Result: res[Prop]

1 S foreach p ∈ Prop do
2 DGO,PO,DGN =

splitGraph(DGI ,DGM,vp)
3 foreach pr ∈ PO do
4 res(p) = prover(DGO,pr)
5 if res(p) then
6 break
7 end
8 if not res(p) then
9 res(p) = prover(DGN ,vp)

10 end

The work presented herein is forward-looking, and
the algorithms detailed in this paper are not intended
to represent optimized implementations. Rather, they
serve to provide a precise specification, fast proto-
typing, and a breakdown of the computation into
manageable steps, thus facilitating understanding, rea-
soning, and mastery of the concepts. In essence, the
focus here is on establishing a proof of concept.

Next section provides a high level description
of splitGraph’s algorithm (and sub-algorithms) while
the following ones contain their precise mathematical
description.

4.2 splitGraph Overview
A. splitGraph computes DGO and PO

DGO and PO must cover all old paths to vp and all
ways to leave these paths in DGM , as these ways may
compromise the reachability of vp. The algorithm has
four main stages:

1. Keeping only vertices of DGI that are on paths
from start vertices to vp

2. Identifying branches that are known to eventually
lead to vp: we call these branches “locally live”.
This set of branches defines P0: vertices in P0 are
the root vertices from which all these branches
start.

3. Cutting branches from P0 because they don’t have
to be checked since, by definition, they all reach vp.

At this point, all old paths to vp have been considered,
but events that may lead to diverge from these paths

are not yet represented. This is done at the following
stage:

4. Adding all “escaping edges” and their targets, i.e.,
control edges that have their source in the obtained
graph but that are not in this graph.

Escaping edges directly lead to deadlock vertices
because after them, we are not on an old path any
more, but necessarily on a new one. To ensure this,
their (added) targets are “copies” of their original tar-
gets in DGM , without any outgoing edge. Then, the
updated model is ready for a classical model checking.

B. splitGraph computes DGN

DGN must cover all new paths to vp and all ways to
leave these paths in DGM .

1. Keep only vertices of DGM that are on new paths
from start vertices to vp

2. Add all “escaping edges”.

C. splitGraph uses label propagation
Technically, both algorithms apply a similar approach

1. First, the vertices to keep are identified. This is
done by progressively labelling the graphs using a
label propagation algorithm. At the end of this pro-
cess, the vertices to keep are labeled by specific
labels #DGO, #PO and #DGN .

2. The vertices are kept and the relevant edges are
added (inherited from DGI and DGM), to build the
graph that recognized all old or new paths.

3. Finally, escaping edges are added.

Section 4.3 presents a generic label propaga-
tion algorithm that may be instantiated by different
kinds of labels. Then section 4.4 presents splitGraph’s
implementation, using relevant labels for this purpose.

4.3 Labelling and Propagation
Here we formalize how to build labellings of graph
vertices in a general way by simply composing func-
tions that make evolve these labellings, with associ-
ated notations. We call these functions propagation
functions since they add labels to vertices by look-
ing at the neighbourhood of these vertices and their
labelling. Section 4.3.1 precisely defines the labellings
and section 4.3.2 presents the algorithm used to build
them.

12

4.3.1 Labelling and Chained Propagations

A labelling associates a set of labels with each vertex
of a graph.

Labels is the set of all labels.
Vertices is the set of graph vertices.
Graphs is the set of all graphs with vertices in
Vertices
Labellings is the set of labellings, i.e. total func-
tions lbl : Labels→ P (Vertices).
εL is the empty labelling, associating ∅ to all
labels.
Propagations are functions

propag : Labellings→ Labellings,

inL(propag) ⊆ Labels is the set of labels on
which propag depends,
i.e., the smallest set L such that for any labelling
l, propag(l) = propag(l|L),
where l|L is the restriction of l to the domain
L⊆ Labels.

In this paper, we successively apply simple propa-
gation functions, each of them assigning a distinct set
of labels L. Once L has been assigned by a step, no
subsequent propagation can alter the labels in L. Fur-
thermore, for such a step function to be applied, all the
labels it relies on must have been previously handled.
Indeed, the step may look at the labels assigned by pre-
vious ones to decide which vertices must be labeled by
L. This is denoted by inL(propag) above. This leads
us to define the subsequent constrained composition
along with the associated notation.

Given a set of atomic propagations propagL,
with L⊆ Labels
and propagL ̸= propagL′ ⇒ L∩L′ =∅

• L−→ denotes propagL, with assigned(L−→) = L
• If pr1 and pr2 denote two propagations,with

inL(pr2) ⊆ exported(pr1), then pr1 pr2
denote pr2 ◦ pr1 and assigned(pr1 pr2) =
assigned(pr1)∪assigned(pr2).

• If l is a labelling and pr denotes a propagation,
l pr denotes pr(l).

where exported(pr) = inL(pr)∪assigned(pr) for
any propagation pr.

As chained propagations are widely used in the
sequel, we adopt a compact notation to denote them, as

specified by the last item above. For example, if #a, #b
and #c are labels assigned by propagations propag#a
and propag#b,#c such that inL(propag#a) = ∅

and inL(propag#b,#c) = {#a}, then εL
#a−→ #b, #c−−−→

denotes the labelling propag#b,#c(propag#a(εL)),
which assigns exactly the labels #a, #b and #c.

4.3.2 Propagation Algorithm

Algorithm 2 implements a generic propagation that
assigns a set of labels L. It first initializes the labels it
handles (line 2) by means of a function initL (meant
to be provided for each particular instantiation). Then,
it propagates labels by iterating over a loop in which
each vertex v decides which labels it gets by look-
ing at its neighbours and their relative labels. This
is the purpose of functions test#l(v,Labelling), line
9, also specific to each instantiation. Test functions
rely on the close neighbourhood of v in some graphs
(in our application, DGM or DGI), and the labelling
of this neighbourhood. Moreover, we use per-label
initialisations that can be applied in any order.

Instantiating algorithm 2 specifies the set V of
vertices to handle and provides for each #l in L:
- Init#l : Labelling→ P (Vertices)
- test#l : Vertices×Labellings→ Bool.
Considering
- init#l(l) = l, except that init#l(l)(#l) = Init#l(l)
- initL: composition of the init#l functions
This defines propagV

L : Labellings→ Labellings

For so-defined propagations, we have propagL =

propagV
L . We can write LV

−→ instead of L−→ for a more
informative notation, and V can be a graph G, as a
shortcut for vertices(G).

In general, the order of initialisations may matter,
as well as the order of the vertices and labels in the
loop. Actually, in our instantiations, this order has no
impact.

As an obvious example, we can assign a label
#rch to (statically) reachable vertices of a usual con-
trol graph. Init#rch(l) contains the start vertices, and
test#rch(v, l) is true iff l assigns #rch to some direct
predecessor of v. Figure 10 unrolls this instantiation of
algorithm 2 on a toy example graph. Iteration 3 is the
last one as it does not assign any new vertex.

In a similar way, we could label paths leading to a
vertex v by initially labelling v and then apply back-
ward propagation for labelling direct predecessors of

13

Algorithm 2: Propagation algorithm

1 Inputs:
V ⊆ Vertices
InLabelling ∈ Labellings
L⊆ Labels

Result: OutLabelling
2 Labelling = initL(InLabelling)
3 Continue = true
4 while Continue do
5 Continue = false
6 foreach v ∈ V do
7 foreach #l ∈ L do
8 if #l ̸∈ Labelling(v) then
9 if test#l(v,Labelling) then

10 Labelling(v) =
Labelling(v)∪{#l}

11 Continue = true
12 end
13 end
14 end
15 OutLabelling = Labelling

already labeled vertices. Chaining both propagations
allows to identify the reachable paths to v. This is one
of the intuitions underlying the approach in the next
section.

4.4 Computing PO, DGO and DGN

Here, we precisely present the splitGraph’s algo-
rithms, i.e., we detail the three steps summarized in
section 4.2.C. Propagation algorithms used in step
1 are applied on dependency graphs, thus up from
here, Graphs contains dependency graphs and we rely
on their specific notion of neighbourhood presented
in section 4.4.1. Section 4.4.2 presents the “adding-
edge” tools used to implement steps 2 and 3. Finally,
the following sections details the three steps, i.e. the
applied propagations and the way functions of section
4.4.2 are used to obtain PO, DGO and DGN .

Respecting our approach, we make a preliminary
simplification: paths downstream of vp are not use-
ful because as soon as vp has been reached while
model-checking DGO or DGN , the reachability query
is solved and it is not useful to continue on the path.
Thus, we remove edges starting from vp (paths after
PO are also removed, technically in section 4.4.8).

Fig. 10: #rch label (orange circles) propagation

We remove all edges starting from vp:
DGM := DGM\{(v,v′) ∈ Edges(DGM) | v = vp}
DGI := DGI\{(v,v′) ∈ Edges(DGI) | v = vp}

4.4.1 Neighbourhood in Dependency Graphs:

In dependency graphs, neighbourhood is defined
by two binary relations on vertices: control-related
order and communication dependency. In the sequel,
Edges(DG) is Ctrl(DG) ∪ Com(DG).

−−−→
ctrlDG(v) and

←−−−
ctrlDG(v) respectively denote the sets of succes-
sors and predecessors of the vertex v with respect
to the control relation, i.e., {v′ ∈ DG | (v′,v) ∈
Ctrl(DG)} and {v′ ∈ DG | (v,v′) ∈ Ctrl(DG)}. Simi-
larly, −−−−→comDG(v) and←−−−−comDG(v) respectively denote the
sets of successors and predecessors of the vertex v
with respect to the communication relation.

4.4.2 Some Tools: addAllEdges, Nexts

The two following functions define concepts used to
build graphs. The first one completes a target graph TG
with all the relevant edges of another one, the source
SG (com/ctrl edge typing is preserved):

addAllEdges(SG,TG) = TG ∪ {(nd,nd′) ∈
Edges(SG) | {nd,nd′} ⊆ vertices(TG)}

The second one is a way to test if an execution
can escape a subgraph DG of DGM . Indeed, in the
sequel, we build the graph of old paths and the graph
of new paths leading to vp, and we expect to test the
reachability of vp with respect to these subcategories
of paths. Thus, in these specialised graphs (where all
paths lead to vp), we must add all edges of DGM that
may “preempt” these paths, i.e., disrupt the path lead-
ing to vp which may compromise the reachability of

14

vp. For this, we suggest to enrich DG with all control
edges e that exit from DG and their target vertex. For
each e:

1. Either e has its source in DG but not its target. In
that case, e and its target are added to DG.

2. Or e is in Ctrl(DGM) but not in Ctrl(DG) and its
target is in DG. Then the copy of e’s target is added
to DG, together with a control edge from the source
of e to the added copy (so, a new edge is created).

For added edges that were initially directed towards
vertices of DG, we use copies of targets because it
ensures that we can’t come back to the graph after exit-
ing: all new paths in enriched DG, i.e., paths having at
least a new edge, terminate just after this new edge, in
an added vertex that is not in DG and has no control
successors (in particular in DG). More formally,

• Let NextOut(DG) = {(v,v′) ∈ Ctrl(DGM) | v ∈
DG∧ v′ ̸∈ DG}.

• Let NextNew(DG) = {(v,v′) ∈ Ctrl(DGM) | v ∈
DG∧ (v,v′) ̸∈ DG}\NextOut(DG).

Nexts(DG) = DG ∪ targets(NextOut(DG)) ∪
NextOut(DG) ∪ copy(targets(NextNew(DG))) ∪
{(v,v′) | ∃(v,v′′)∈NextNew(DG), v′ = copy(v′′)}

Nexts is exemplified in Figure 11. Vertices i and j
illustrate the above-defined point 1, whereas vertex f
illustrates point 2, e.g., the addition of a copy f ′.

In fact, this version of the Nexts function relies
on a (temporary) strong simplification we make in
the scope of this paper: “next” vertices must not have
incoming communications, otherwise our approach
fails. Indeed, if j has an incoming communication
from a vertex x, we would have to add the part P of
the graph useful to potentially reach x, as reaching x
would be a condition to reach j. But adding P could
unfortunately add paths that don’t lead to vp, which
contradicts the elaboration of this graph. It could also
add new paths to vp that are not in DG (using edges
in P\DG), which again contradicts the purpose of
this graph. As later explained (section 5.2), work is
in progress to tackle this limitation, at least partially,
thanks to a subtle definition of P.

4.4.3 Initial Labelling: #blocking

A path is a sequence of vertices that begins with a
start vertex and continues following our dependency
relation. Thus paths are static and provide an over-
approximation of dynamic paths (which are actually

Fig. 11: Use of the Nexts function

executable). In general, static analysis cannot decide
if a vertex is live, that is if it necessarily leads to some
another vertex of interest. The existence of a static
path between the two vertices is not sufficient as this
path may never be dynamically used.

But since we assume that dynamic execution was
performed on the initial system DGI , we can reuse
some of the dynamic information from this execu-
tion, such as local liveness. This liveness information
we need is identified with #blocking labels. #blocking
labels the vertices that may be blocking in DGI , i.e.,
for which there is a way to reach them with all output
edges disabled. Note that we could also use a statically
computed over-approximation of blocking vertices but

15

the loss of precision would be important. We compute
#blocking labels at the beginning of the algorithmic
chain. For consistency’s sake, it can be treated as a
constant propagation that doesn’t have dependencies.

DGI enhanced with the label #blocking defines
the following propagation:
propag#blocking : Labellings→ Labellings
with inL(propag#blocking) =∅.

4.4.4 Identifying paths: #path,#pathI,#pathM

We use the following parameterized definition to char-
acterize labels vertices of #path(DG) that are stati-
cally reachable by using only vertices of DG. Also,
if a vertex relies on incoming communications, it can
only execute if at least one of these incoming com-
munications is reachable—that is, the source of the
corresponding edge is reachable.
Let DG be in Graphs. #p is isomorphic to #path(DG),
denoted #p≡ #path(DG), if

• Initp(l) = {DG’s start vertices}
• testp(v, l) =
(∃v′ ∈ DG, v′ ∈ l(#p)∧ (v′,v) ∈ Ctrl(DG))
∧ (←−−−−comDGM (v) =∅∨∃v′ ∈←−−−−comDG(v), v′ ∈ l(#p))

We use two times this parameterised label: #pathI ≡
#path(DGI) and #pathM ≡ #path(DGM).

#pathI labels the paths in DGI , i.e., the stati-
cally reachable vertices in DGI . To be used with
vertices(DGI)⊆ V .
#pathM labels the paths in DGM , i.e., the stati-
cally reachable vertices in DGM . To be used with
vertices(DGM)⊆ V .
Both labels have no dependencies
(inL(propagDG

#path(DG)
) =∅).

#path is illustrated in Figure 12. In this Figure, ver-
tices c, d, g are not (statically) reachable in DG
because they are not on a control path from a start
vertex. Vertex k cannot be reached as the incoming
communication of h cannot occur. Finally, vertex o is
unreachable because j depends on a communication
that can only occur in DGM and not in DG.

4.4.5 Identifying old local liveness: #live

We are now interested in vertices from which vp is live
in DGM relying only on old paths. Intuitively, vp is live

Fig. 12: #path Illustration

from a vertex v if reaching v ensures to reach vp, i.e.,
all executable paths from v lead to vp. The live vertices
we identify here are the ones from which vp was live
in DGI and this liveness could not have been compro-
mised by diverging edges in DGM since only additive
mutations are considered. Identifying these live ver-
tices in DGM avoids re-exploring the successors of
these vertices while model-checking the old paths of
DGO in DGM .

Actually, label #live is an underestimation of this
local liveness, which impacts the efficiency but not the
correctness.

• Initlive(l) = {vp}
• testlive(v, l) = v ∈ l(#pathI)∧

v ̸∈ l(#blocking)∧
(∀v′ ∈

−−−−→
ctrlDGM (v), v′ ∈ l(#live)

#live labels vertices that have local liveness to vp

in DGM when reached from old paths in DGI .
To be called with vertices(DGI)⊆ V .
inL(propagDGM

#live) = {#pathI ,#blocking}

#live is illustrated in Figure 13 which only represents
the part of DGI that is relevant, i.e. reachable con-
trol paths in the component of vp. #live vertices have
an orange circle: h, j, k, l, n, and vp. They certainly

16

lead to vp using an old path. Vertices like i that do
not have all their outgoing paths leading to vp are not
live. Vertex g leads to vp but is not live since it could
block. Vertex e is not live as the loop that originates
from it may be infinite. And finally vertices like f may
seem to be live but one of its outgoing paths (to p)
goes through DGM\DGI . Thus it has not been tested
while model-checking DGI and cannot be ensured to
be dynamically live.

The dynamic information issued from the model
checking of DGI is transmitted by #blocking in order
to ensure that vp is live in DGI for all vertices tagged
#live. Thus, if a vertex v labelled #live is reachable in
DGM through old paths, then vp is reachable in DGM

through old paths (because in this case, vp remains
live through old paths at v in DGM). Conversely, if
vp is reachable in DGM through old paths, then there
are some v, labelled #live, that are reachable in DGM

through old paths (trivial: vp is labelled #live).
Of course, using model-checking to decide if there

exists a #live-labelled v that is reachable in DGO may
be much more complex than directly checking the
reachability of vp in DGM . This is particularly true if
vp is the only #live vertex. But in some cases, finding a
relevant v early makes the approach we propose much
less complex. Thus, defining efficient strategies to find
such a v is of utmost importance: our approach is a first
step in this direction. Basically, our approach identi-
fies PO which is the minimal subset of #live labelled
vertices that it is sufficient to explore while searching
v. Developing new strategies is part of our future work.

Handling of loops is another limitation: as soon
as a vertex precedes a loop, it cannot be live because
termination of loops is not known. Using known
static information to compute loop termination would
enhance knowledge on live vertices. For instance, ver-
tices b and e defined in Figure 13 could be tagged
#live if the loop can be proved as always terminating.
Handling loops is also part of our future work.

We now characterize PO, and the graph DGO

which are such that PO is reachable in DGO if vp is
reachable in DGM using an old path.

4.4.6 Computing Output PO: #PO

• If all reachable control predecessors of v are live, we
don’t need to test the reachability of v because the
existence of any path to v is detected when testing
the existence of a path to its predecessors.

Fig. 13: #live and PO Illustration

• If any control predecessor v′ of v is not live, the
reachability of v may have to be tested, as v was per-
haps only reachable in DGI through a path to v′ that
may be compromised in DGM .

As #live is an underestimation of true local liveness,
applying this principle with #live-labelling instead
of true liveness leads to a loss of efficiency, as
non-identified live vertices will be re-explored while
model-checking. As a matter of fact, this does not pre-
vent the tool from identifying whether vp is reachable
or not.

Then PO is the set of #live-labelled vertices that
have at least one predecessor which is not #live-
labelled. Since label #PO is not recursive, it can be
defined with a custom propagation function.

17

propag#PO
(l) is equal to l, except that

propag#PO
(l)(#PO) = {v ∈ DGI | v ∈ l(#live)∧

∃v′ ∈ DGI ,v′ ∈ (l(#pathI)∩
←−−−−
ctrlDGI (v))\l(#live)}

#PO labels the vertices of the output PO

inL(propag#PO
) = {#pathI ,#live}

Thus, εL
#blocking−−−−−−→

#pathI−−−−→ #live−−−→ #PO−−→ is a com-
plete computation of PO: PO is the set of vertices
labelled by #PO at the end of the computation.

PO is illustrated in Figure 13: bold-circled vertices
are the #live-labelled vertices that have at least one
predecessor in DGI that is not #live-labelled.
The challenge is now to recognize old paths that lead
to PO.

4.4.7 Identifying ways: #way

A “way” to v is a sequence of vertices that leads
to the vertex v following our dependency relation in
some graph, and conforming to a set of labels. As this
notion of “leading to” is used in different contexts, its
definition is parameterized.
Let DG be in Graphs. Let #l and #w be labels, and X
a set of vertices. #w is isomorphic to #way(DG,#l,X),
denoted #w≡ #way(DG,#l,X), if

• Initw(l) = X∩ l(#l)
• testw(v, l) = v ∈ l(#l)∧
(∃v′ ∈ DG, v′ ∈ l(#w)∧ (v,v′) ∈ Edges(DG))

#way(DG,#l,X) labels vertices on ways to X by
following the dependency relation in DG through
#l-labeled vertices.
To be used with vertices(DG)⊆ V .
inL(propagDG

#way(DG,#l,X)) = {#l}

#way is illustrated in Figure 14 by orange-circled ver-
tices. Only #l-labelled vertices (blue) can be orange
circled. They are circled if some vertex of X is their
direct or indirect successor, using both types of edges
and going only through blue vertices.

4.4.8 Computing Output DGO

DGO must be such that PO is reachable in DGO iff PO

is reachable in DGM using an old path, i.e., a path in
DGI . As a consequence:

1. DGO must contain all (useful) old paths to PO.
2. DGO must not contain any new path to PO.

Fig. 14: #way Illustration

3. DGO must contain any edge of DGM that allows
to escape from old paths to PO and thus may
compromise its reachability.

#way(DGI ,#pathI ,PO) computes all old paths to PO

in DGI . Unfortunately, it also captures paths start-
ing from PO. These parts of paths are useless since
reaching PO ensures the reachability of vp by construc-
tion. Our approach thus starts by removing the edges
starting from PO, so that these sub-paths are elimi-
nated from the result. Then, we re-use #path to update
reachability in DGIopt.

• DGIopt = DGI\(PO×PO)
• #pathPO

≡ #path(DGIopt).
• #DGO ≡ #way(DGI ,#pathPO

,PO)

Label #DGO is depicted in Figure 15, as a continua-
tion of Figure 13. It describes all paths to PO, i.e. bold
circled vertices in Figure 13, except that vertex i has
been excluded because checking the reachability of j
or h is sufficient. Here communication paths (that were
abstracted in Figure 13) are relevant, thus they appear
relying v, w, y and f with green and blue edges.

The following expression ensures that we build an
optimized graph DGPO that respects points 1 and 2

18

Fig. 15: Illustration of #DGO w.r.t. Fig. 13

above, that is DGPO contains all useful old paths to PO

and no new path.

• lblO =

εL
#blocking−−−−−−→

#pathI−−−−→ #live−−−→ #PO−−→
#pathPO−−−−−→ #DGO−−−−→

• DGPO = addAllEdges(DGIopt, lblO(#DGO))

Finally, adding the escaping edges mentioned in point
3 above is the role of function Nexts defined in
Section 4.4.2.

DGO = Nexts(DGPO)

A side-effect of the “Nexts” function is to reintroduce
edges from PO. Fortunately, these edges do not modify
the reachability of PO. Yet, since these useless edges
could make the model-checking process less efficient,
we can remove them as follows:

DGO := DGO\{(v,v′) ∈ DGO | v ∈ PO}

4.4.9 Computing Output DGN

The purpose of DGN is to deal with new paths: DGN

must be guaranteed to contain at least all new paths to
vp. It may also contain false positives, i.e., old paths
leading to vp. Our approach intends to minimize them
for efficiency purposes.

We first identify vertices on path to vp in DGM ,
labeled #tovpM:

• #tovpM ≡ #way(DGM,#pathM,{vp}).

Then, among all these vertices, we intend to keep only
the ones that are on at least one modified path. These
are the vertices v that have at least either a modified
edge upstream (between some start vertex and v) or
a modified continuation downstream (between v and
vp), or both. We respectively label these two categories
of vertices by #δup and #δdown, as defined by the
propagations below.

Computing the #δup label is simple: modified
edges contaminate all their descendants through con-
trol. However, we also need to identify vertices that
have been contaminated by their incoming communi-
cation edges, which is the purpose of #δcom. Vertices
in #δcom are not necessarily in #δup or #δdown. They
also make their control descendants labelled by #δup.
For these labels, the propagation algorithm is called
with V = vertices(DGM).

• Initδcom(l) =∅
• Initδup(l) = {v ∈ l(#tovpM) |
∃(v′,v′′) ∈ Ctrl(DGM)\Ctrl(DGI), v′′ = v}

• testδcom(v, l) = v ∈ l(#tovpM) ∧ ∃(v′,v′′) ∈
Com(DGM)∧ v′′ = v∧ v′ ∈ l(#δup)∪ l(#δcom)

• testδup(v, l) = v ∈ l(#tovpM) ∧ ∃(v′,v′′) ∈
Ctrl(DGM), v′′ = v∧ v′ ∈ l(#δup)∪ l(#δcom)

#δup and #δcom are illustrated in Figure 16. Edges
e → d and h → j make their descendants pink (i.e.
#δup-labelled). Green circled k is the single #δcom-
labelled vertex, due to the edge i→ k with i labelled
by #δup. Its descendants are pink.

Vertices labelled by #δdown are the ancestors
of modified vertices, i.e., vertices that have a new
outgoing edge or that are in #δcom.

• Initδdown(l) = { v ∈ l(#tovpM) |
∃(v′,v′′) ∈ Edges(DGM),

(v′,v′′) ̸∈ Edges(DGI)∧v = v′∧v′′ ∈ l(#tovpM)}
• testδdown(v, l) = v ∈ l(#tovpM)∧ (
∃(v′,v′′) ∈ Ctrl(DGM),

19

v′ = v∧ v′′ ∈ l(#δdown)∪ l(#δcom) ∨
∃(v′,v′′) ∈ Com(DGM), v′ = v∧ v′′ ∈ l(#δdown))

#δdown-labelled vertices are red circled vertices in
Figure 16. All vertices having either a new outgoing
edge or a #δcom-labelled vertex in some control path
starting from them are concerned. Although it is not
illustrated, #δdown can also be propagated by com-
munication edges: for example, if k→ m were purple,
k would be red circled and then i would be red circled
too, as it would have a modified outgoing path.

Fig. 16: #δup and #δdown illustration

Vertices in #δcom, #δup or #δdown represent all
the vertices on modified paths. Together they define a
graph containing all new paths, but adding all edges
of DGM between these vertices also adds edges that
are only in old paths, and so not in the new ones. This
is the case for edges e1 and e2 in Figure 16. Remov-
ing these edges leads to an optimized graph (defined
as DGnew, see below). These edges are such that all
paths using them are neither modified in upstream nor
in downstream.

• lblnew =

εL
#pathM−−−−→

#tovpM−−−−→ #δup, #δcom−−−−−−−−→ #δdown−−−−−→.
• DGnew = DG\{(v,v′) ∈ Edges(DG) |

v ̸∈ lblnew(#δup)∧ v′ ̸∈ lblnew(#δdown)},
where DG = addAllEdges(DGM, l(#δcom) ∪
l(#δup)∪ l(#δdown)).

Next, to obtain a complete graph where all these paths
are statically (or logically) executable, we have to add
the incoming communications these paths depend on.
This includes the paths that lead to the source of these
incoming communications. Indeed, these paths could
be part of old paths that have not been labelled by
the previous steps. Building this complete graph is the
purpose of label #complete

• #complete =
#way(DGM; #pathM, lbl(#δup)∪ lblnew(#δdown))

• DGcomplete =
DGnew∪addAllEdges(DGM, lbl(#complete)),

where lbl = lblnew
#complete−−−−−−→.

In Figure 16, the edge n→ o leads to label n and a
with #complete.

Thanks to these labellings, we have characterized
a graph that allows the execution of all new paths to vp

but no path that is not a path to vp in DGM . Finally, to
obtain a model determining if one of these old paths
could be executed, we add all escaping edges.

DGN = Nexts(DGp2)

Unfortunately, “Nexts” reintroduces edges from vp

that can later be easily removed to decrease the com-
plexity of model-checking. For this, we do:
DGN := DGN\{(v,v′) ∈ DGN | v = vp}.

20

block
ADAS_Sensor_FD

block
ASFD_Stop

~ out stopRequest()
~ in shutdownStart()
~ in shutdownCompleted()

block
ASFD_Tx

- flow : Flow;
- msg : Message;
- msgNumber = 0 : int;
- period : int;
- dataRate : int;
- transmissionDelay : int;

~ out msgTransmit(Message msg, int...
~ in stopRequest()
~ out shutdownStart()
~ out shutdownCompleted()

Safety Pragmas
E<> ASFD_Tx.STOPPED

block
ADAS_Sensor_FD

block
ASFD_Stop

~ out stopRequest()
~ in shutdownStart()
~ in shutdownCompleted()

block
ASFD_Tx

- flow : Flow;
- msg : Message;
- msgNumber = 0 : int;
- period : int;
- dataRate : int;
- transmissionDelay : int;

~ out msgTransmit(Message msg, int...
~ in stopRequest()
~ out shutdownStart()
~ out shutdownCompleted()

Safety Pragmas
E<> ASFD_Tx.STOPPED

Fig. 17: Architectural modifications within ASFD
(mutation m1)

4.5 Application to our use case
We now come back to our use case, and show more
concretely some of the notions and notations that were
presented in this formal section.

4.5.1 A first mutation m1

Let us consider the initial system presented in
section 2 on which we introduce a mutation. This
first mutation, called m1, adds a new block (i.e.,
ASFD Stop) to handle the shutdown of the sensor
by shutting down the transmitter of this sensor (i.e.,
block ASFD Tx) as shown in Figure 17. Thus, we
add a new block, called ASFD Stop, and three signals
to ASFD Tx that connect to ASFD Stop with a new
connection between ASFD Tx and ASFD Stop. The
updated state machine diagram of ASFD Tx is pre-
sented in Figure 18. Basically, a new transition makes
it possible to exit the main loop of ASFD Tx from the
Ready state. We also consider a new reachability prop-
erty: E <> ASFD Tx.STOPPED which corresponds
to the accessibility of the last state of the shutdown
procedure.

The dependency graph of this updated applica-
tion is shown in Figure 19. Yet, since the reachability
property concerns a model element not present in the
previous model version, the reachability property can-
not be optimized with our approach (the verification
is not incremental). The verification takes 46 ms, and
the reachability graph has around 11k states and 25k
transitions.

Sending

Ready

msgTransmit(msg, transmissionDelay)

Sent

StopReady

after(flow.period)

msgNumber=msgNumber+1

[else]
[msgNumber<flow.nbrOfMessages]

msg.flowID = flow.id
msg.length=flow.msgLength
msg.trafficPriority=flow.trafficPriority
msg.bag=flow.period
transmissionDelay=msg.length*8

dataRate=100
flow.id=0
flow.msgLength=1250
flow.trafficPriority=1
flow.period=25
flow.nbrOfMessages=5

stopRequest()

ShuttingDown

shutdownStart()

ShutdownFinished

shutdownCompleted()

STOPPED

Sending

Ready

msgTransmit(msg, transmissionDelay)

Sent

StopReady

after(flow.period)

msgNumber=msgNumber+1

[else]
[msgNumber<flow.nbrOfMessages]

msg.flowID = flow.id
msg.length=flow.msgLength
msg.trafficPriority=flow.trafficPriority
msg.bag=flow.period
transmissionDelay=msg.length*8

dataRate=100
flow.id=0
flow.msgLength=1250
flow.trafficPriority=1
flow.period=25
flow.nbrOfMessages=5

stopRequest()

ShuttingDown

shutdownStart()

ShutdownFinished

shutdownCompleted()

STOPPED

Fig. 18: State machine diagram of ASFD Tx after
mutation m1

4.5.2 Applying a second mutation m2

Now, we add a shutdown facility to the Display (block
DID Rx) as well as a new block to handle this shut-
down, DID Stop. The state machine of DID Rx is
similar to the one of ASFD Tx in mutation m1 in
which a new stopRequest signal can be received from
the main loop of DID Rx.

Let’s verify this updated system. Proving E <>
ASFD Tx.STOPPED without using our approach now
takes 968 ms.

Now, let us consider our approach. The depen-
dency graph of the updated system is given in
Figure 20. Generating this dependency graph takes
less than 1 ms. Let us apply our reduction algorithm
on this graph. DGI is the dependency graph given in
Figure 19 while Figure 20 depicts DGM .

By applying our incremental verification algo-
rithm, we can cut most of DGM since only ASFD Tx
and ASFD Stop tasks are determined as relevant.
Moreover, a part of ASFD Stop’s state machine is cut
as it does not impact the checked reachability, and
a “live-to-vp” branch is cut as it does not have to
be checked again. Figure 20 illustrates PO and DGO

(ASFD Tx.STOPPED is vp). DGN is empty as there
is no new path to vp. The #live label labels the live

21

35 / DID_Rx / Receiving signal "msgReceive"

34 / ZC1_out2 / Sending signal "msgP2Out"

33 / ZC1_out2 / Receiving signal "msgP2In"

32 / ZC1_in1 / Sending signal "msgP1Out"

31 / ASFD_Tx / Receiving signal "stopRequest"

30 / ASFD_Stop / Sending signal "stopRequest"

29 / ZC1_in1 / Receiving signal "msgP1In"

28 / ASFD_Tx / Sending signal "msgTransmit"

27 / ASFD_Stop / Receiving signal "shutdownCompleted"

26 / ASFD_Tx / Sending signal "shutdownCompleted"

25 / ASFD_Stop / Receiving signal "shutdownStart"

24 / ASFD_Tx / Sending signal "shutdownStart"

23 / ZC1_out2 / Ready

22 / ZC1_out2 / start

21 / ZC1_in1 / Ready

20 / ZC1_in1 / avatar transition

19 / ZC1_in1 / start

18 / DID_Rx / Stop

17 / DID_Rx / Received

16 / DID_Rx / avatar transition

15 / DID_Rx / Ready

14 / DID_Rx / avatar transition

13 / DID_Rx / start

12 / ASFD_Stop / stop

11 / ASFD_Stop / start

10 / ASFD_Tx / Stop

9 / ASFD_Tx / Sent

8 / ASFD_Tx / avatar transition

7 / ASFD_Tx / Sending

6 / ASFD_Tx / avatar transition

5 / ASFD_Tx / STOPPED

4 / ASFD_Tx / ShutdownFinished

3 / ASFD_Tx / ShuttingDown

2 / ASFD_Tx / Ready

1 / ASFD_Tx / avatar transition

0 / ASFD_Tx / start

35 / DID_Rx / Receiving signal "msgReceive"

34 / ZC1_out2 / Sending signal "msgP2Out"

33 / ZC1_out2 / Receiving signal "msgP2In"

32 / ZC1_in1 / Sending signal "msgP1Out"

31 / ASFD_Tx / Receiving signal "stopRequest"

30 / ASFD_Stop / Sending signal "stopRequest"

29 / ZC1_in1 / Receiving signal "msgP1In"

28 / ASFD_Tx / Sending signal "msgTransmit"

27 / ASFD_Stop / Receiving signal "shutdownCompleted"

26 / ASFD_Tx / Sending signal "shutdownCompleted"

25 / ASFD_Stop / Receiving signal "shutdownStart"

24 / ASFD_Tx / Sending signal "shutdownStart"

23 / ZC1_out2 / Ready

22 / ZC1_out2 / start

21 / ZC1_in1 / Ready

20 / ZC1_in1 / avatar transition

19 / ZC1_in1 / start

18 / DID_Rx / Stop

17 / DID_Rx / Received

16 / DID_Rx / avatar transition

15 / DID_Rx / Ready

14 / DID_Rx / avatar transition

13 / DID_Rx / start

12 / ASFD_Stop / stop

11 / ASFD_Stop / start

10 / ASFD_Tx / Stop

9 / ASFD_Tx / Sent

8 / ASFD_Tx / avatar transition

7 / ASFD_Tx / Sending

6 / ASFD_Tx / avatar transition

5 / ASFD_Tx / STOPPED

4 / ASFD_Tx / ShutdownFinished

3 / ASFD_Tx / ShuttingDown

2 / ASFD_Tx / Ready

1 / ASFD_Tx / avatar transition

0 / ASFD_Tx / start

Vp
Fig. 19: Dependency graph of the system after applying m1

46 / DID_Rx / Receiving signal "stopRequest"

45 / DID_Stop / Sending signal "stopRequest"

44 / DID_Rx / Receiving signal "msgReceive"

43 / ZC1_out2 / Sending signal "msgP2Out"

42 / ZC1_out2 / Receiving signal "msgP2In"

41 / ZC1_in1 / Sending signal "msgP1Out"

40 / DID_Stop / Receiving signal "shutdownCompleted"

39 / DID_Rx / Sending signal "shutdownCompleted"

38 / DID_Stop / Receiving signal "shutdownStart"

37 / DID_Rx / Sending signal "shutdownStart"

36 / ASFD_Tx / Receiving signal "stopRequest"

35 / ASFD_Stop / Sending signal "stopRequest"

34 / ZC1_in1 / Receiving signal "msgP1In"

33 / ASFD_Tx / Sending signal "msgTransmit"

32 / ASFD_Stop / Receiving signal "shutdownCompleted"

31 / ASFD_Tx / Sending signal "shutdownCompleted"

30 / ASFD_Stop / Receiving signal "shutdownStart"

29 / ASFD_Tx / Sending signal "shutdownStart"

28 / DID_Stop / stop

27 / DID_Stop / start

26 / ZC1_out2 / Ready

25 / ZC1_out2 / start

24 / ZC1_in1 / Ready

23 / ZC1_in1 / avatar transition

22 / ZC1_in1 / start

21 / DID_Rx / Stop

20 / DID_Rx / Received

19 / DID_Rx / avatar transition

18 / DID_Rx / STOPPED

17 / DID_Rx / ShutdownFinished

16 / DID_Rx / ShuttingDown

15 / DID_Rx / Ready

14 / DID_Rx / avatar transition

13 / DID_Rx / start

12 / ASFD_Stop / stop

11 / ASFD_Stop / start

10 / ASFD_Tx / Stop

9 / ASFD_Tx / Sent

8 / ASFD_Tx / avatar transition

7 / ASFD_Tx / Sending

6 / ASFD_Tx / avatar transition

5 / ASFD_Tx / STOPPED

4 / ASFD_Tx / ShutdownFinished

3 / ASFD_Tx / ShuttingDown

2 / ASFD_Tx / Ready

1 / ASFD_Tx / avatar transition

0 / ASFD_Tx / start

46 / DID_Rx / Receiving signal "stopRequest"

45 / DID_Stop / Sending signal "stopRequest"

44 / DID_Rx / Receiving signal "msgReceive"

43 / ZC1_out2 / Sending signal "msgP2Out"

42 / ZC1_out2 / Receiving signal "msgP2In"

41 / ZC1_in1 / Sending signal "msgP1Out"

40 / DID_Stop / Receiving signal "shutdownCompleted"

39 / DID_Rx / Sending signal "shutdownCompleted"

38 / DID_Stop / Receiving signal "shutdownStart"

37 / DID_Rx / Sending signal "shutdownStart"

36 / ASFD_Tx / Receiving signal "stopRequest"

35 / ASFD_Stop / Sending signal "stopRequest"

34 / ZC1_in1 / Receiving signal "msgP1In"

33 / ASFD_Tx / Sending signal "msgTransmit"

32 / ASFD_Stop / Receiving signal "shutdownCompleted"

31 / ASFD_Tx / Sending signal "shutdownCompleted"

30 / ASFD_Stop / Receiving signal "shutdownStart"

29 / ASFD_Tx / Sending signal "shutdownStart"

28 / DID_Stop / stop

27 / DID_Stop / start

26 / ZC1_out2 / Ready

25 / ZC1_out2 / start

24 / ZC1_in1 / Ready

23 / ZC1_in1 / avatar transition

22 / ZC1_in1 / start

21 / DID_Rx / Stop

20 / DID_Rx / Received

19 / DID_Rx / avatar transition

18 / DID_Rx / STOPPED

17 / DID_Rx / ShutdownFinished

16 / DID_Rx / ShuttingDown

15 / DID_Rx / Ready

14 / DID_Rx / avatar transition

13 / DID_Rx / start

12 / ASFD_Stop / stop

11 / ASFD_Stop / start

10 / ASFD_Tx / Stop

9 / ASFD_Tx / Sent

8 / ASFD_Tx / avatar transition

7 / ASFD_Tx / Sending

6 / ASFD_Tx / avatar transition

5 / ASFD_Tx / STOPPED

4 / ASFD_Tx / ShutdownFinished

3 / ASFD_Tx / ShuttingDown

2 / ASFD_Tx / Ready

1 / ASFD_Tx / avatar transition

0 / ASFD_Tx / start

Vp

Po

DGo

DGN is empty

#live
Fig. 20: Dependency graph of the system after applying m1 and m2

46 / DID_Rx / Receiving signal "stopRequest"

45 / DID_Stop / Sending signal "stopRequest"

44 / DID_Rx / Receiving signal "msgReceive"

43 / ZC1_out2 / Sending signal "msgP2Out"

42 / ZC1_out2 / Receiving signal "msgP2In"

41 / ZC1_in1 / Sending signal "msgP1Out"

40 / DID_Stop / Receiving signal "shutdownCompleted"

39 / DID_Rx / Sending signal "shutdownCompleted"

38 / DID_Stop / Receiving signal "shutdownStart"

37 / DID_Rx / Sending signal "shutdownStart"

36 / ASFD_Tx / Receiving signal "stopRequest"

35 / ASFD_Stop / Sending signal "stopRequest"

34 / ZC1_in1 / Receiving signal "msgP1In"

33 / ASFD_Tx / Sending signal "msgTransmit"

32 / ASFD_Stop / Receiving signal "shutdownCompleted"

31 / ASFD_Tx / Sending signal "shutdownCompleted"

30 / ASFD_Stop / Receiving signal "shutdownStart"

29 / ASFD_Tx / Sending signal "shutdownStart"

28 / DID_Stop / stop

27 / DID_Stop / start

26 / ZC1_out2 / Ready

25 / ZC1_out2 / start

24 / ZC1_in1 / Ready

23 / ZC1_in1 / avatar transition

22 / ZC1_in1 / start

21 / DID_Rx / Stop

20 / DID_Rx / Received

19 / DID_Rx / avatar transition

18 / DID_Rx / STOPPED

17 / DID_Rx / ShutdownFinished

16 / DID_Rx / ShuttingDown

15 / DID_Rx / Ready

14 / DID_Rx / avatar transition

13 / DID_Rx / start

12 / ASFD_Stop / stop

11 / ASFD_Stop / start

10 / ASFD_Tx / Stop

9 / ASFD_Tx / Sent

8 / ASFD_Tx / avatar transition

7 / ASFD_Tx / Sending

6 / ASFD_Tx / avatar transition

5 / ASFD_Tx / STOPPED

4 / ASFD_Tx / ShutdownFinished

3 / ASFD_Tx / ShuttingDown

2 / ASFD_Tx / Ready

1 / ASFD_Tx / avatar transition

0 / ASFD_Tx / start

46 / DID_Rx / Receiving signal "stopRequest"

45 / DID_Stop / Sending signal "stopRequest"

44 / DID_Rx / Receiving signal "msgReceive"

43 / ZC1_out2 / Sending signal "msgP2Out"

42 / ZC1_out2 / Receiving signal "msgP2In"

41 / ZC1_in1 / Sending signal "msgP1Out"

40 / DID_Stop / Receiving signal "shutdownCompleted"

39 / DID_Rx / Sending signal "shutdownCompleted"

38 / DID_Stop / Receiving signal "shutdownStart"

37 / DID_Rx / Sending signal "shutdownStart"

36 / ASFD_Tx / Receiving signal "stopRequest"

35 / ASFD_Stop / Sending signal "stopRequest"

34 / ZC1_in1 / Receiving signal "msgP1In"

33 / ASFD_Tx / Sending signal "msgTransmit"

32 / ASFD_Stop / Receiving signal "shutdownCompleted"

31 / ASFD_Tx / Sending signal "shutdownCompleted"

30 / ASFD_Stop / Receiving signal "shutdownStart"

29 / ASFD_Tx / Sending signal "shutdownStart"

28 / DID_Stop / stop

27 / DID_Stop / start

26 / ZC1_out2 / Ready

25 / ZC1_out2 / start

24 / ZC1_in1 / Ready

23 / ZC1_in1 / avatar transition

22 / ZC1_in1 / start

21 / DID_Rx / Stop

20 / DID_Rx / Received

19 / DID_Rx / avatar transition

18 / DID_Rx / STOPPED

17 / DID_Rx / ShutdownFinished

16 / DID_Rx / ShuttingDown

15 / DID_Rx / Ready

14 / DID_Rx / avatar transition

13 / DID_Rx / start

12 / ASFD_Stop / stop

11 / ASFD_Stop / start

10 / ASFD_Tx / Stop

9 / ASFD_Tx / Sent

8 / ASFD_Tx / avatar transition

7 / ASFD_Tx / Sending

6 / ASFD_Tx / avatar transition

5 / ASFD_Tx / STOPPED

4 / ASFD_Tx / ShutdownFinished

3 / ASFD_Tx / ShuttingDown

2 / ASFD_Tx / Ready

1 / ASFD_Tx / avatar transition

0 / ASFD_Tx / start

Vp

Po

DGo

DGN is empty #live

next

Fig. 21: Dependency graph of the system after applying m2 then m1

22

branch that is cut (except PO). Finally, proving the
reachability of P0 in DG0 with TTool takes 5 ms.

4.5.3 m2 then m1

Let us now consider another modeling scheme: we
apply m2 on the initial model, and then m1. After
applying m2, the model has a new stopping procedure
for DID Rx and the property to be proved is E <>
DID Rx.STOPPED (indeed, DID Rx.STOPPED is
vp).

After applying m1, the system has both stop-
ping procedures, and our objective is to prove E <>
DID Rx.STOPPED in an incremental way. Figure 21
presents DGM reworked with our approach. As for
previous mutation, Figure 21 shows PO, DGO and
#live. This example also features escaping edges: the
red edge called “next” is an escaping edge. The cut
graph of mutations “m1 then m2” is much smaller:
yet, proving E <> DID Rx.STOPPED is reduced to
the proof of reachability of state “ShuttingDown“ in
DID/Rx. For instance, many communications can be
removed for this proof, as illustrated by all the ele-
ments outside of DGO. The proof with increment takes
around 900 ms, and the one using our approach takes
300 ms. Indeed, even if the system on which the
proof is applied is not smaller, many interleavings
mostly due to communication are removed. Even if the
gain is not as interesting as in the case m1 then m2,
the dependency graph reduction still makes the proof
lighter.

5 Discussion
This section discusses how limitations on input mod-
els, mutations and algorithms could be addressed. The
complexity of our approach is also discussed, as well
as enhancements, completions and extensions of this
forward-looking work. Part of this discussion relates
to work in progress or future work.

5.1 Subtractive mutations
As a first step, the approach presented in previous
section has been designed for additive mutations. An
additive mutation adds edges or vertices to the original
dependency graph. By contrast, subtractive mutations
can remove a whole block or simply some of the tran-
sitions, states or actions of a state machine: in all
cases, this results in the removal of vertices or edges
in the dependency graph. To handle such modification,

we noted two major impacts on the current version of
our algorithms.

First, the #live label estimates the local liveness
with the notion of addition in mind. We could surely
define this local liveness differently so as to make it
compatible with the removing of edges in the depen-
dency graph. Indeed, removing edges could remove
paths to vp, thus breaking the local liveness of some of
the vertices. Thus, with respect to the current version,
we must remove from the #live label of all the vertices
from which at least one path to vp has been removed.
Unfortunately, the computation of this updated local
liveness is more complex, and may require extra algo-
rithms that our generic propagation algorithm cannot
handle. However, this is a decidable problem that we
are currently working on.

Secondly, because of the removal of ver-
tices/edges, it is possible that what we name “old
paths“ do not refer anymore to paths in DGI . More
precisely, since vertices/edges have been removed, the
correct reference model to consider is DGdel = DGI ∩
DGM . Thus the computation of DGO must be imple-
mented using DGdel instead of DGI , in particular when
labelling old paths (section 4.4.4) and when imple-
menting the steps defined in section 4.4.8. By doing
so, we should be able to handle subtractive mutations,
and perhaps some other minor modifications. Indeed,
this part is still not fully proved.

However, it’s important to note that our approach,
even focusing on additive mutations, remains rel-
evant and practically applicable in various con-
texts. Indeed, while incremental modeling within this
model-based software engineering methods may occa-
sionally necessitate the removal of certain features,
it predominantly involves the addition of new com-
ponents. This typically includes incorporating new
blocks and state-machine diagrams, as well as intro-
ducing new states and transitions within these dia-
grams, as illustrated by the example given in Section 3
where the addition of a new behavior to a subsys-
tem consisted in applying two additive mutations (see
Figures 3 and 5). Note also that adding new elements
in state-machine diagrams can, paradoxically, limit
the model’s behavior. Consider a scenario where we
have two states, s1 and s2, connected by a transition
that is triggered by an after(3). If we were to add a
third state, s3, and a transition from s1 to s3 that fea-
tures an after(1), this modification would render state
s2 inaccessible. For all these situations that cover a
wide-spectrum of practical modeling circumstances,
our approach is fully valid.

23

5.2 Handling more additive mutations by
enhancing the Nexts function

As pointed out at the end of section 4.4.2, some of
the additive mutations cannot yet be handled. Indeed,
some graphs cannot be handled with the current defi-
nition of the Nexts function. Unfortunately, there is no
simple solution.

Let us illustrate this issue with Figure 22 with
a simple example. Basically, once we have built the
graph DGPO (yellow area in Figure 22) that contains
all old paths to PO (c.f. section 4.4.8), we add all the
edges that escape the graph (red edges): they corre-
spond to edges that have their source in the (yellow)
graph and their target outside the (yellow) graph. The
target vertices of these edges are added too (red next
vertex). Then, all the possible paths not going to PO

are taken into account: the model is finally ready to
be checked against the reachability of PO old paths
despite these added escaping possibilities.

The problem arises when one of the “next“ ver-
tices has an incoming communication edge. In that
case, we need more information to decide if the red
arrow could be taken by the model-checker. Indeed,
as reading from a channel is a blocking action, a
“next“ vertex can only be reached if data to be read
is available, i.e., if the x vertex (the blue vertex in
Figure 22) has been reached before. Thus, in this
example, not only we should add the red edge and
the pink vertex to the graph, but also all elements in
the purple triangle, i.e., all the paths that may lead to
x being reachable. Unfortunately, the purple triangle
may also contain new edges (due to mutations): these
edges may themselves produce new paths to vp in
the graph, which compromises the approach because
reaching PO through a new path compromises local
liveness. Intuitively, these so-called “dangerous“ new
edges reside at the intersection of the purple triangle
and the yellow region. In left part of figure 23, the
purple triangle is built upon nodes new, e and their
attached edges. In the context of this article, we do
not address such graphs. However, two methodologies
are currently being explored to solve this issue. A
first approach consists in being able to precisely iden-
tify when the graph contains “dangerous edges“. For
this, any more accurate overestimation than the cur-
rent one is relevant. With such an overestimation, we
could then compute the corresponding relevant purple
triangles. For instance, a basic rough approximation
consists in excluding graphs where some new edge
can lead both to an “x“ vertex (see Figure 22) and

Fig. 22: Issue with the Nexts function

Fig. 23: “Compromising“ and “Manageable“ graph
situations that Nexts function can handle with our
approximation

to an old communication reaching DGPO . Figure 23
illustrates typical graphs that we can and cannot han-
dle with this approximation. For instance, the graph
on the left cannot be handled because of the purple
edges (indirectly) leading both to x and d. These edges
are not in DGPO but they are still reintroduced by
the purple triangle, making this new (forbidden) path
b.c.d.new.e.c.d.@.u.v.vp potentially feasible, when it
should not be feasible. The graph on the right can be
handled because the purple edges introduced by the
purple triangle do not lead to d.

24

Fig. 24: A solution to the Nexts problem

A second approach consists in computing a new
graph where going through a new edge makes it defini-
tively impossible to communicate data to DGPO . This
approach seems to be more powerful, but the so-
built graph may be more complex than the original
one (at most, about twice), so making our incremen-
tal verification less interesting. Figure 24 represents
such a transformed graph for the graph on the left in
Figure 23. The purple edge now leads to a duplicate
of the loop in which the (forbidden) edge d′ →@ is
replaced by d′ →@′ where @′ is a new vertex with-
out any successor. The graph is built in such a way
that, after adding the purple edge, vp is not reachable
any more: no new path to vp is now introduced by
our approach, while still ensuring the reachability of x
through (new or old) original paths that led to it.

5.3 Complexity and Methodology
As previously highlighted, our propagation algorithm
serves as a proof of concept and is admittedly sub-
optimal when it comes to the computation of certain
labels. It operates akin to a backward propagation
mechanism, where a vertex references its neighbours
for self-labelling, potentially necessitating multiple

scans of all vertices, albeit with room for minor opti-
mization. In certain situations, forward propagation
could be used, whereby a labeled vertex propagates
its labels to its neighbours, circumventing the need for
extensive vertex browsing and consequently enhanc-
ing efficiency. Custom algorithms tailored for specific
labels could also be a feasible approach. Nevertheless,
it is important to note that such algorithms operat-
ing on graphs are usually complex and are generally
categorized as NP-complete.

In our approach, this complexity remains reason-
able since almost all our algorithms work on the model
graph, which is expected to be much smaller than
the reachability graph. One exception is the #blocking
label which is computed from the reachability graph of
DGI . However, this reachability graph must be com-
puted for the model-checking of DGI , so the only
added complexity is the computation of paths for
#blocking labels.

Once the different graphs of our approach have
been built (DGO and DGN , cf section 4), they are
used for model-checking, instead of the original one
(DGM). We are well aware that using these graphs for
model-checking will not always be more efficient, and
sometimes this will be less efficient. For instance, if
the initial system is rather tiny, and many mutations
are applied on the initial system, it is very likely that
execution paths will be strongly impacted.

More generally, our algorithms’ efficiency is
impacted when mutations concern several old paths
and introduce several new paths, including paths mod-
ifying vertices and edges on paths just before vp. Thus
the approach more likely to be efficient for muta-
tions having little impact on properties of vp. We
are presently developing a more formal characteriza-
tion of promising instances, by crafting metrics and
heuristics. We have already evaluated our approach on
various case studies, which have given confidence in
the relevance of our approach. This confidence stems
especially from the fact that mutations are typically
localized within a system, and do not trigger signif-
icant alterations. Our forthcoming research includes
performance evaluation of our algorithms on systems
and mutations generated randomly. Additionally, we
plan to categorize the results in relation to the original
system and the class of mutations.

Work is also planned to decrease the complex-
ity of the approach by allowing a more important
graph reduction. The approximation of local live-
ness is of main interest for cutting branches in DGO

(section 4.4.8). This approximation could be strongly

25

enhanced by handling terminating loops. For this
some information must be available (for example user-
provided) about which loops terminate. Research is
underway to identify the relevant form of such infor-
mation together with algorithms to exploit it.

Lastly, regarding our algorithms, they have been
defined to accommodate all additive mutations,
regardless of their position within the initial depen-
dency graph. However, in practice, certain cases yield
rather straightforward or easily determinable results.
For instance, when no mutations occur on all paths
from the starting states to a model element e, the muta-
tion does not influence the reachability of e. An opti-
mization strategy in such cases would involve early
identification of these scenarios, thereby circumvent-
ing the need for a more complex approach. Regardless,
our existing algorithms are already equipped to handle
these situations.

5.4 Other Properties
While the paper predominantly addresses reachability
properties, our methodology could also be advanta-
geous for a variety of other properties. For instance,
we might be willing to know if reachability is not
conserved, meaning that an (un)desirable state has
become unreachable due to a mutation, or contin-
ues to be unreachable post-mutation. Our approach
is adapted for such inquiries. For instance, if vp has
been validated as unreachable in DGI , then it certainly
remains unreachable via old paths in DGO, hence not
necessitating its construction. It only requires verifi-
cation that vp isn’t reachable via new paths in DGN .
On a broader scale, distinguishing old paths from new
paths could yield critical insights for certain purposes.
For example, identifying a shift in the path to reach
a vertex could signify a potential threat from a secu-
rity or safety perspective, as this vertex could then be
accessed with potentially new attribute values.

The liveness of a model element e is another com-
mon property of interest. The liveness of a model
element e is satisfied when all executable paths even-
tually reach vp. Without entering into many details
(viz., no definition nor algorithm), we hereafter pro-
vide an idea of how liveness could be taken into
account in an incremental way, in the case of additive
mutations.

Figure 25 illustrates the general idea. Basically, we
assume that the prover can output all executable paths
leading to vp on the initial model: DGI can thus be
reduced to all elements of these paths (black paths in

vp

start startstart

1

2

3

4

Fig. 25: Proving liveness after model mutation

Figure 25), thus leading to RDG. Let us now assume
that mutations are performed on the initial model, thus
leading to a new model DGM . New paths in DGM that
depend upon at least one element in RDG are added
to RDG (red paths), leading to build a RDGM graph.
Black paths, such that there are no mutations reach-
ing them or starting from them, can be ignored since
their ability to reach e was examined for DGI . In con-
trast, other paths are to be re-evaluated. For this, we
compute the next elements n (rounded in green in the
Figure) of divergent paths (i.e., the first elements of
a red path starting from a black path). Then, for each
element n, the prover is used, roughly speaking, on
the model reduced to all paths leading to n in DGM to
figure out whether n is reachable or not. If n is reach-
able, then there are two cases. First, if from n there
exists no path to vp, then the liveness is not satisfied
anymore. Otherwise, the liveness of vp from n must be
evaluated with the prover. For instance, if the next “2”
(Figure 25) is reachable, then the liveness is not satis-
fied. If the next “1“ is reachable, then the liveness from
“1“ to vp must be evaluated. From “3“, since there is
at least one path leading to vp, the liveness to vp must
also be evaluated.

Finally, if all reachable next elements n eventually
reach vp, then the liveness is satisfied.

6 Related Work

6.1 Formal Verification of SysML Models
The sooner one detects design errors in the life cycle
of systems, the lower is the price of fixing these errors.
Assuming a system S is modeled in SysML, check-
ing the SysML model of S against design errors may
rely on two complementary techniques: simulation or
formal verification. The former randomly traverses the

26

state space of the system. The latter more systemati-
cally explores the state space of the system. This paper
focuses on formal verification as does the current
section on related work.

Several verification techniques have been applied
to SysML models. In [26] it is proposed to explore
the SysML model entirely and to perform abstractions
of that complete behavior to focus verification results
on a limited subset of events occurring during the
life of the system. Another approach consists in look-
ing for invariants [6] in particular to address mutual
exclusion problems. Besides abstractions and search
for invariants, model checking is definitely the most
commonly investigated technique among papers that
address formal verification of SysML models.

Model checking [27] generalizes application of
exhaustive exploration of models state space. Fisman
and Pnuelli define model checking as the method
by which a desired behavioral property of a reactive
system is verified over a given system (the model)
through exhaustive enumeration (explicit or implicit)
of all the states reachable by the system and the
behaviors that traverse through them [14]. The model
checker is provided with a model of the system and
a formal expression of the properties to be verified.
The model checker processes the model and the prop-
erties, and outputs a “yes/no” answer stating whether
the property is verified or not. The model checker also
traces execution paths that lead to property violations.
The tool must indeed help the system designer with the
interpretation of the verification results with respect to
the system model.

A survey of the literature indicates that formal ver-
ification has been applied to SysML activity diagrams
[16, 22, 31] and state machine diagrams [7, 13, 29],
respectively. TTool, which is the SysML tool consid-
ered in the current paper, applies formal verification to
state machine diagrams in the context of SysML mod-
els where each block defining the architecture of the
system embodies a state machine.

SysML models formal verification tools usually
transform a SysML model into a formal language that
may provide an external and preexisting formal ver-
ification tool. Examples include Petri nets [13, 16,
25, 34], automata for NuSMV model checker [37],
timed automata [29] [15] for UPPAAL model checker,
hybrid automata [3], model checker NuSMV [19],
probabilistic model checker PRISM [3, 22], and a
theorem prover [18]. Translation from UML to pro-
cess algebra has been investigated for RT-LOTOS [7]

and CSP [5]. The family of correct by construction
specifications has been addressed with Event B [10].

The aforementioned papers essentially apply
model checking techniques where a SysML model is
checked against a set of properties. User friendliness
of formal verification tools therefore depends on the
way properties can be easily expressed or not. Users of
TTool may insert properties inside the SysML model
itself in the form of specific comments [27, 30].

In terms of user friendliness, users of SysML ver-
ification tools are further concerned by verification
results interpretation [24]. How to come back from
verification results to the initial state machines is an
issue. It is worth pointing out that the native model
checker of TTool can backtrack verification results to
the initial SysML model with no obligation for devel-
opers of the SysML diagrams to understand the inner
workings of TTool’s model checker.

6.2 Incremental Modeling and
verification

Event-B [1] is a well-know formalism to support
incrementality through the modeling and verification
processes, enabling the gradual development of sys-
tems with a correct-by-construction approach. In the
realm of modeling, Event-B allows system archi-
tects to start with an abstract model and iteratively
refine it, adding details and complexities in a stepwise
manner. This incremental approach ensures that each
refinement maintains consistency with the abstract
model, facilitating a systematic development process.
A refinement consists in adding a precision to a given
action. On the verification side, Event-B employs
mathematical proofs to validate the correctness of both
the initial model and its subsequent refinements. As
the system evolves, new proofs are generated for each
refinement, ensuring that the added details do not
violate the established properties of the system.

In [10] Bougacha, Laleau, Collart-Dutilleul and
Ben Ayed suggest to translate SysML models into
Event-B specifications, and to reuse the refinement
mechanisms of Event-B to formally verify the SysML
models. The work in [10] follows a correct by con-
struction approach. Conversely, the current paper
develops an incremental modeling and verification
approach where each increment in models construc-
tion results in an incremental model-checking, that
is, a model-checking based on reachability properties
proved on more simple application graphs.

27

In [12] Carrillo, Chouali and Mountassir focuses
discussion on relationships between requirements
and component-based systems architectures. They
use requirement, sequence and block diagrams to
represent systems requirements, components behav-
iors, and systems architectures, respectively. Atomic
requirements are one by one extracted from the
requirement diagrams to incrementally build an archi-
tecture of the system relying on components libraries.
Model checking enables verification of atomic com-
ponents modeled in Promela [20] against properties
expressed in the form of LTL formulas.

In [38] Xie, Tan, Yang, Li, Xing and Huang
present an integrated SysML modelling and verifica-
tion approach where compositional verification is used
to verify the nominal behaviour of the SysML model
and FTA (Fault Tree Analysis) is used for safety anal-
ysis. SysML is extended with contract information.
SysML models are transformed into OCRA specifica-
tions.

6.3 Model Mutation
Alterations of formal models are commonly called
mutations [36]. Model mutations are particularly used
for model-based testing purposes: for instance, Aich-
ernig et al. [2] present a method where a large set of
mutations is applied to a model of a system in order
to detect the implementation mistakes that can invali-
date the specification of the system. Model mutations
can also be used in a security impact assessment con-
text, since a vulnerability disclosure, an attack or a
countermeasure deployment on a given system can
be modeled with a mutation of the system’s model:
a vulnerability discovery leads to a change in the
knowledge we have of the system, and an attack or a
countermeasure leads to a change in the system itself.
In particular, the W-Sec method [32] relies on SysML
models for assessing the (positive or negative) impacts
of security countermeasures. The approach introduced
in this paper can therefore help in reducing the com-
plexity of the model-checking stages of testing and
impact assessment methods for SysML models.

6.4 Differential Positioning of the
Contribution

With respect to Event-B, our contribution enables
the utilization of a high-level language, SysML, to
achieve greater depth in model mutations. Unlike

refinements in Event-B, which are limited to refin-
ing existing actions into sub-actions or adding inde-
pendent actions (i.e., actions not impacting previous
ones), our approach facilitates the introduction of
new behaviors into the model, whether these new
behaviours are independent from the previous ones
or not. Moreover, it supports incremental verification,
ensuring that each addition or modification maintains
the system’s overall reachability properties.

Contrasting with [12], our approach achieves
incrementality not only through the successive com-
position of SysML blocks, but also through inter-
nal modifications within these blocks (like adding
attributes and signals), as well as in the associated
state-machines (including the addition of states and
transitions). Additionally, our model-checking algo-
rithms operate directly on the SysML models, bypass-
ing the need for an intermediate formal language like
Promela or OCRA as in [38].

Lastly, in comparison to the methodology pre-
sented in our previous conference paper [9], this
article introduces a fundamentally new algorithmic
strategy. Instead of depending on a mere dependency
graphs reduction, we now employ a novel graph split-
ting approach. This approach is further enhanced by
a new labeling and propagation algorithm, which we
apply at multiple stages, resulting in a more cohesive
and integrated algorithmic framework.

7 Conclusions
Apvrille et al. [8] demonstrated an enhancement in the
performance of a SysML model checker by comput-
ing a dependency graph of the SysML models prior to
applying model checking. Building on this, the present
paper advances this first idea by establishing a theo-
retical foundation for the incremental verification for
SysML models, thereby fostering the effectiveness of
agile design methods.

The new algorithms of the paper can decide how
a reachability property proved on a model before
an additive mutation can be proven on the mutated
model without the need for exhaustive examination
of the entire mutated model. The fundamental con-
cept revolves around discerning the influence of new
execution paths on their predecessors, and evaluating
how these novel paths could present additional execu-
tion paths potentially capable of affirming or negating
a property. An autonomous automotive system’s real-
time communication architecture serves as a case

28

study to illustrate this complex issue. A discussion
draws promising perspectives.

Our vision for future work, which has been par-
tially outlined in the discussion subsection, is multi-
faceted. A paramount aspect of this vision is optimiza-
tion, with the aim of ensuring that our algorithms com-
pute more swiftly than conventional model-checking
approaches. While we plan to better classify and
pinpoint systems where this advancement is most ben-
eficial, preliminary explorations on several complex
systems have already revealed significant reductions
in verification time for random additive mutations.

Expanding our approach to accommodate liveness
and, more broadly, CTL properties is also part of our
current work. For liveness, preliminary algorithms are
already in development.

Despite incremental modeling primarily involv-
ing the introduction of new details, it occasionally
necessitates the removal of features that have become
redundant or deprecated. At present, our algorithms
cannot process the elimination of modeling ele-
ments, a challenge which our theoretical framework
addresses by extending the concept of local liveness.

Finally, while the current contribution is exclu-
sively focused on safety properties, performance prop-
erties and security properties such as confidentiality,
integrity, and authenticity can also be influenced by
mutations. Our future endeavors will aim to address
these properties, thereby facilitating an agile integra-
tion of potentially opposing safety/security counter-
measures. Incorporating in a safe way such mecha-
nisms is a crucial facet for system architects, both
during design and maintenance phases.

Declarations
On behalf of all authors, the corresponding author
states that there is no conflict of interest.

References
[1] Abrial JR (2010) Modeling in Event-B: System

and Software Engineering, 1st edn. Cambridge
University Press, USA

[2] Aichernig BK, Lorber F, Ničković D (2013)
Time for mutants—model-based mutation test-
ing with timed automata. In: International Con-
ference on Tests and Proofs, Springer, pp 20–38

[3] Ali S (2018) Formal verification of SysML
diagram using case studies of real-time sys-
tem. Innovations in Systems and Software Engi-
neering 14(6):245–262. https://doi.org/10.1007/
s11334-018-0318-5

[4] Alparslan O, Arakawa S, Murata M (2023) A
zone-based optical intra-vehicle backbone net-
work architecture with dynamic slot scheduling.
Optical Switching and Networking p 100753

[5] Ando T, Yatsu H, Kong W, et al
(2013) Formalization and model check-
ing of SysML state machine diagrams
by csp#. In: Computational Science and
Its Applications (ICCSA), p 114–127,
https://doi.org/10.1007/978-3-642-39646-5 9

[6] Apvrille L, de Saqui-Sannes P (2013) Analysis
Techniques to Verify Mutual Exclusion Situ-
ations within SysML Models. In: SDL 2013:
Model-Driven Dependability Engineering. SDL
2013. Lecture Notes in Computer Science, vol
7916. Springer, Berlin, Heidelberg, https://doi.
org/10.1007/978-3-642-38911-5 6

[7] Apvrille L, Courtiat JP, Lohr C, et al (2004)
TURTLE: A real-time UML profile supported by
a formal validation toolkit. IEEE Transactions on
Software Engineering 30(7):473–487

[8] Apvrille L, de Saqui-Sannes P, Hotescu O, et al
(2022) SysML Models Verification Relying on
Dependency Graphs. In: 10th International Con-
ference on Model-Driven Engineering and Soft-
ware Development, Vienna, Austria, https://doi.
org/10.5220/0010792900003119, URL https://
hal.telecom-paris.fr/hal-03575960

[9] Apvrille L, Sultan B, Hotescu O, et al (2023)
Mutation of Formally Verified SysML Mod-
els. In: 11th internationl conference on Model-
Based Software and Systems Engineering (Mod-
elsward’2023)

[10] Bougacha R, Laleau R, Collart-Dutilleul S,
et al (2022) Extending SysML with Refine-
ment and Decomposition Mechanisms to Gen-
erate Event-B Specifications. In: TASE 2022:
Theoretical Aspects of Software Engineering,
Lecture Notes in Computer Science, vol 13299.
Springer, pp 256–273, https://doi.org/10.1007/

29

https://doi.org/10.1007/s11334-018-0318-5
https://doi.org/10.1007/s11334-018-0318-5
https://doi.org/10.1007/978-3-642-39646-5_9
https://doi.org/10.1007/978-3-642-38911-5_6
https://doi.org/10.1007/978-3-642-38911-5_6
https://doi.org/10.5220/0010792900003119
https://doi.org/10.5220/0010792900003119
https://hal.telecom-paris.fr/hal-03575960
https://hal.telecom-paris.fr/hal-03575960
https://doi.org/10.1007/978-3-540-88387-6

978-3-540-88387-6

[11] Calvino AT, Apvrille L (2021) Direct model-
checking of SysML models. In: Proceedings
of the 9th International Conference on Model-
Driven Engineering and Software Development
(Modelsward’2021), Vienna, Autrichia (online)

[12] Carrillo O, Chouali S, Mountassir H (2014)
Incremental Modeling of System Architecture
Satisfying SysML Functional Requirements. In:
Fiadeiro JL, Liu Z, Xue J (eds) Formal Aspects
of Component Software (FACS 2013. Springer,
Lecture Notes in Computer Science, pp 79–99

[13] Delatour J, Paludetto M (1998) UML/PNO:
A way to merge UML and Petri net objects
for the analysis of real-time systems. In:
Oriented Technology: ECOOP’98 Workshop
Reader, p 511–514, https://doi.org/10.1007/
3-540-49255-0 169

[14] Fisman D, Pnueli A (2001) Beyond regular
model checking. 21st conference on Founda-
tions of Software Technology and Theoretical
Computer Science LNCS 2245

[15] Horváth B, Molnár V, Graics B, et al
(2023) Pragmatic verification and val-
idation of industrial executable sysml
models. Systems Engineering 1(22):1–22.
https://doi.org/10.1002/sys21679

[16] Huang E, McGinnis L, Mitchell S (2019) Verify-
ing sysml activity diagrams using formal trans-
formation to Petri nets. Systems Engineering
23(1):118–135

[17] IEEE (2018) 802.1Q - IEEE Standard for Local
and Metropolitan Area Networks—Bridges and
Bridged Networks. ” https://standardsieeeorg/
standard/802 1Q-2018html

[18] Kausch1 M, Pfeiffer1, Raco1 D, et al (2021)
Model-based design of correct safety-critical
systems using dataflow languages on the exam-
ple of SysML architecture and behavior dia-
grams. In: AVIOSE’2021, Software Engineering
2021 Satellite Events, Bonn, Germany (virtual),
Lecture Notes in Informatics (LNI), Gesellschaft
für Informatik, pp 1–22

[19] Mahani M, Rizzo D, Paredis C, et al (2021)
Automatic formal verification of SysML state
machine diagrams for vehicular control system.
SAE Technical Paper https://doi.org/doi.org/10.
4271/2021-01-0260

[20] Neumann R (2014) Using Promela in a Fully
Verified Executable LTL Model Checker. In:
Working Conference on Verified Software: The-
ories, Tools, and Experiments, Springer, pp 105–
114

[21] OMG (2017) OMG Systems Modeling
Language. Object Management Group,
https://www.omg.org/spec/SysML/1.5

[22] Ouchani S, Ait Mohamed O, Debbabi M (2014)
A formal verification framework for SysML
activity diagrams. Expert Systems with Applica-
tions 41(6). https://doi.org/10.1016/j.eswa.2013.
10.064

[23] Park C, Park S (2023) Performance evaluation of
zone-based in-vehicle network architecture for
autonomous vehicles. Sensors 23(2):669

[24] Rahim M, Hammad A, Ioualalen M (2017) A
methodology for verifying SysML requirements
using activity diagrams. Innovations in Systems
and Software Engineering 13:19–33

[25] Rahim M, Boukala-Loualalen M, Hammad A
(2020) Hierarchical colored Petri nets for the
verification of SysML designs - activity-based
slicing approach. In: 4th Conf. on Computing
Systems and Appli. (CSA 2020), Algiers, Alge-
ria, pp 131–142, URL https://publiweb.femto-st.
fr/tntnet/entries/17274/documents/author/data

[26] de Saqui-Sannes P, Vingerhoeds R, Apvrille
L (2018) Early checking of SysML models
applied to protocols. In: 12th International Con-
ference on Modeling, Optimisation and Simula-
tion (Mosim 2018), Toulouse, France, pp 1–8

[27] de Saqui-Sannes P, Apvrille L, Vingerhoeds RA
(2021) Checking SysML Models against Safety
and Security Properties. Journal of Aerospace
Information Systems pp 1–13

[28] de Saqui-Sannes P, Vingerhoeds RA, Gar-
ion C, et al (2022) A taxonomy of MBSE

30

https://doi.org/10.1007/978-3-540-88387-6
https://doi.org/10.1007/978-3-540-88387-6
https://doi.org/10.1007/3-540-49255-0_169
https://doi.org/10.1007/3-540-49255-0_169
https://doi.org/10.1002/sys21679
https://doi.org/doi.org/10.4271/2021-01-0260
https://doi.org/doi.org/10.4271/2021-01-0260
https://doi.org/10.1016/j.eswa.2013.10.064
https://doi.org/10.1016/j.eswa.2013.10.064
https://publiweb.femto-st.fr/tntnet/entries/17274/documents/author/data
https://publiweb.femto-st.fr/tntnet/entries/17274/documents/author/data

approaches by languages, tools and methods.
IEEE Access 10:120936–120950. https://doi.
org/10.1109/ACCESS.2022.3222387

[29] Schafer T, Knapp A, Merz S (2001) Model
checking UML state machines and collabora-
tions. Electronic Notes in Theoretical Com-
puter Science 55:357–369. https://doi.org/10.
1016/S1571-0661(04)00262-2

[30] Rey de Souza FG, Hirata CM, Nadjm-
Tehrani S (2022) Synthesis of a controller
algorithm for safety-critical systems.
IEEE Access 10:76351–76375. https:
//doi.org/10.1109/ACCESS.2022.3192436

[31] Staskal O, Simac J, Swayne L, et al (2022)
Translating sysml activity diagrams for nuxmv
verification of an autonomous pancreas. In:
SESS22), pp 1–6

[32] Sultan B, Apvrille L, Jaillon P, et al (2021)
W-Sec: a Model-Based Formal Method for
Assessing the Impacts of Security Countermea-
sures. In: International Conference on Model-
Driven Engineering and Software Development,
Springer, pp 203–229

[33] Sultan B, Frénot L, Apvrille L, et al (2023)
AMULET: a Mutation Language Enabling Auto-
matic Enrichment of SysML Models. ACM

Transactions on Embedded Computing Systems

[34] Szmuc W, Szmuc T (2018) Towards embed-
ded systems formal verification translation from
SysML into Petri nets. In: 25th International
Conference Mixed Design of Integrated Circuits
and System (MIXDES), pp 420–423, https://doi.
org/10.23919/MIXDES.2018.843687

[35] TTool (2022) https://ttool.telecom-paris.fr/.
Retrieved May 11, 2022

[36] Von Neumann J, Burks AW, et al (1966) Theory
of self-reproducing automata. IEEE Transactions
on Neural Networks 5(1):3–14

[37] Wang H, Zhong D, Zhao T, et al
(2019) Integrating model checking with
sysml in complex system safety anal-
ysis. IEEE Access 7:16561–16571.
https://doi.org/10.1109/ACCESS.2019.2892745

[38] Xie J, Tan W, Yang Z, et al (2022) Sysml-based
compositional verification and safety analysis for
safety-critical cyber-physical systems. Connec-
tion Science 34(1):911–941. https://doi.org/10.
1080/09540091.2021.2017853

31

https://doi.org/10.1109/ACCESS.2022.3222387
https://doi.org/10.1109/ACCESS.2022.3222387
https://doi.org/10.1016/S1571-0661(04)00262-2
https://doi.org/10.1016/S1571-0661(04)00262-2
https://doi.org/10.1109/ACCESS.2022.3192436
https://doi.org/10.1109/ACCESS.2022.3192436
https://doi.org/10.23919/MIXDES.2018.843687
https://doi.org/10.23919/MIXDES.2018.843687
https://doi.org/10.1109/ACCESS.2019.2892745
https://doi.org/10.1080/09540091.2021.2017853
https://doi.org/10.1080/09540091.2021.2017853

	Introduction
	Problem formalization
	Running example: an autonomous automotive system
	A first SysML model
	State Machine Diagram
	Design mutation
	Architectural mutations
	Behavioral mutations

	Problem statement and illustration
	Problem statement: reachability
	Dependency graphs
	Updating the system
	Verification after a system update

	Incremental verification: algorithms
	Global Approach
	splitGraph Overview
	Labelling and Propagation
	Labelling and Chained Propagations
	Propagation Algorithm

	Computing PO, DGO and DGN
	Neighbourhood in Dependency Graphs:
	Some Tools: addAllEdges, Nexts
	Initial Labelling: #blocking
	Identifying paths: #path,#pathI,#pathM
	Identifying old local liveness: #live
	Computing Output PO: #PO
	Identifying ways: #way
	Computing Output DGO
	Computing Output DGN

	Application to our use case
	A first mutation m1
	Applying a second mutation m2
	m2 then m1

	Discussion
	Subtractive mutations
	Handling more additive mutations by enhancing the Nexts function
	Complexity and Methodology
	Other Properties

	Related Work
	Formal Verification of SysML Models
	Incremental Modeling and verification
	Model Mutation
	Differential Positioning of the Contribution

	Conclusions

