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Abstract: We introduce SysML-Sec, a new SysML environment aimed at making secu-
rity experts collaborate with system designers at all methodological stages of the design
and development of an embedded system. SysML-Sec is also meant to support the assess-
ment of the impact of security over safety. Security and safety concerns are captured in
extended SysML diagrams elaborated according to an iterative process centered around the
software/hardware partitioning of the architecture. The requirements captured are derived
into security and cryptographic mechanisms as well as into security properties that can be
formally verified.
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1 Introduction

Most contributions around Model Driven Engineering (MDE) now offer appropriate method-
ologies and modeling environments for designing safe, complex, distributed, and real-time
embedded systems. The analysis of timing constraints, scheduling, resource allocation,
and concurrency are commonly handled by these environments. In contrast, security has
long been considered only in retrospect, especially after serious flaws are discovered. Secu-
rity issues have in particular only recently become a major concern in embedded systems.
However, the size, heterogeneity, and communication features of modern embedded sys-
tems make it compelling to develop a suitable engineering environment to more explicitly
define security objectives and threats and to implement countermeasures. The system
complexity also makes it worthwhile verifying that requirements are consistent with and
satisfied by a candidate design before any commitment to a particular implementation is
made.

Contributions in the field of security-aware MDE commonly address one specific method-
ological stage (e.g., requirements [NNY10], verification [Tou93|), or one specific application
domain (e.g., proofs over cryptographic protocols [ABBT05] [ORR00]), or are focused on
the immediate modeling of security mechanisms [Jir02] rather than the definition of these
mechanisms based on a clearly defined methodology.

This paper introduces SysML-Sec, a new SysML environment with a more holistic
approach, which introduces both customized SysML diagrams for security matters and
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an associated methodology. We intend SysML-Sec to make it possible for security ex-
perts to intervene on the design and development of an embedded system together with
system designers. The SysML-Sec methodology and diagrams have been developed and
experimented in the scope of the FP7 European project EVITA. EVITA defines a secure
architecture for automotive embedded systems. The definition, design and validation of
this architecture was performed with the methodology which is presented in this paper.
Thus, more than 20 use cases (notably an emergency braking case) were taken into ac-
count for that purpose, and the diagrams in this paper are directly excerpted from this
case study.

2 Hardware / Software partitioning in embedded systems

Software-centric systems are commonly designed with a V-cycle, with building stages (re-
quirements, analysis, design, implementation) followed with verification stages (e.g., tests,
formal proofs). For embedded systems, the V-cycle can obviously start only once func-
tions have been partitioned into software and hardware. System partitioning usually relies
on the Y-chart approach [BWH™03]. The result of this process is an optimal hardware
/ software architecture with regards to criteria at stake for that particular system (e.g.,
cost, performance, etc.) and comprising:

1. Applications are first described as abstract communicating tasks: tasks represent
functions independently from their implementation form.

2. Hardware architectures are described as a set of abstract execution nodes (e.g.,
CPU with operating systems and middleware, hardware accelerators), communi-
cation nodes (e.g., buses), and storage nodes (e.g., memories).

3. A mapping model defines how tasks and communications between tasks are assigned
to computation and communication / storage elements, respectively. For example, a
task mapped on a hardware accelerator is a hardware-implemented function whereas
a task mapped over a CPU is a software implemented function.

We have already defined several MDE-based environment to support the develop-
ment of embedded systems (the DIPLODOCUS UML profile [AMABT06], the AVATAR
[ADSS11] SysML environment, and the TEPE [KAD11] environment). All those envi-
ronments are implemented within the free software TTool [Apv13]. TTool automates the
formal verification and simulation of models and provides live feedback to UML diagrams.
SysML can be used with those environments and tooling to describe the partitioning issues
discussed above together with performance and safety requirements.

Security issues are however not addressed by these profiles. We designed the SysML-Sec
environment in order to make it possible to describe such issues together with partitioning
requirements, as further discussed in [RIAI13]. In particular, our extensions bridge the
gap between goal-oriented descriptions of security requirements and attacks, and the fine-
grained representation of assets based on the software / hardware architecture (and their
model-driven analysis).
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3  The SysML-Sec approach

An increasing number of embedded systems have become communicating artifacts, feature
new interactions with their immediate environment or with backend systems, and are thus
exposed to criminals. For example, attacks have been shown to be possible on set-top boxes
like Microsoft’s XBox [Hua02] or ADSL routers [Ass12], mobile appliances [Ess11], avionics
[Tes13], or automotive systems [HKD11] to cite but a few. Many of these security issues
reflect either the exploitation of low-level vulnerabilities, which might often be addressed
with appropriate programming practices and specific component tests, or design flaws due
to an insufficient understanding of the mapping of functional or security logical components
to the hardware architecture. We claim that the SysML-Sec Model-Driven Engineering
approach makes it possible to perform an appropriate system analysis in both directions,
and to describe both security threats and security objectives by:

e Guiding and increasing the collaboration between system engineers and security
experts throughout the entire embedded system lifecycle. This has been the reason
for our adoption of the OMG standards, and more specifically SysML, which are
quite widespread in the embedded system world today.

e Providing detailed representations of the security threats and security requirements
compatible with the MDE methodology used and making it possible to adopt a
stepwise refinement approach to the definition of both the functional and the security
architecture. This refinement should also make it possible to bridge the gap between
initial high-level requirements and the definition of precise and detailed security
mechanisms.

e Combining software/hardware codesign together with the handling of security con-
cerns. We contend that this particular design objective is a key in the embedded
system domain.

The SysML-Sec methodology adopts a three-phase approach that first deals with the
system analysis, then with software design, and finally with system validation, as described
in the following sections.

4 System requirement engineering and analysis

The security requirement and threat analysis is mostly regarded as a preamble to risk
analysis in IT systems. This process is generally meant to decide whether to introduce
security countermeasures into the system, which means additional costs. In the case of
embedded systems, we contend that the security analysis also has a strong impact on the
system architecture and its realtime performance: the security requirements and threat
analysis should thus be performed along the partitioning iterative process. We also claim
that the security analysis should play an important role with respect to convincing the
designer of increasingly complex embedded systems of the consistency and exhaustivity
of his security architecture, at least with respect to the threats identified and to the risk
model.
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4.1 lterative security/system codesign process

System partitioning, security requirements, and threats are progressively refined based on
one or several typical use cases. The following phases, which thus start with an initial
architecture, are iterated in order to reach a satisfactory level of refinement:

Initial architecture mapping. The functionalities of the system highlighted in
these use cases are first modeled as tasks. Exchanges between functions are modeled with
information and event flows. Event-based communications is also captured in order to
control the Information Flow. Tasks and communications can then be mapped to a draft
architecture of the system. The designer’s experience plays a key role for determining the
first draft of the architecture.

Architecture analysis System assets are identified among architectural elements
(processors, pieces of software, sensors, hardware accelerators, communication channels)
and will first refer to generic components, like for example: “all system buses”. When the
architecture gets more detailed, assets are more likely to be refined into specific elements.
The hardware/software partitioning and the function mapping adopted play a key role
here in defining the type of asset at hand (and later on its vulnerabilities).

Security concern identification. Threats and security vulnerabilities of the selected
assets should as much as possible describe the capabilities that an attacker should meet or
exceed and the origin of attacks (local, remote, through a specific interface). The SysML-
Sec environment supports the assessment of risks following the approach described in more
detail in the EVITA case study [Rea09, HAFT|. We also implemented automated checks
of the threat coverage by security objectives. Based on the risk analysis, one should also
identify and prioritize security objectives that are mapped to a threat. Security objectives
might originate (1) from security standards or properties expected from the system, or
(2) from unaddressed threats or attacks on assets, or (3) from the refinement of another
security objective when the process is iterated and the level of detail of the architecture
has changed. In further iterations, one may need to update security objectives deprecated
by changes in the architecture.

Architecture refinement. The architecture refinement originates from a more de-
tailed description of the architecture components as the system and its usage become more
precisely known (e.g., new communication channels, refinement of an execution environ-
ment into OS/middleware/application layers, etc.). It may also result from transitively
mapping requirements to system information flows, which are often distributed among
multiple hardware elements. The refinement phase may fail if the architecture and secu-
rity requirements are incompatible, for instance, if the performance overhead of security
mechanisms is too high. Consistency checks should also be performed to ensure that a
security objective does not conflict with another requirement expressed over the same as-
set. A failure is the sign that the analysis should be backtracked to the previous stage of
refinement.

4.2 Diagrams

In our proposed framework, the partitioning is given using the allocations of tasks over
hardware nodes. Tasks and hardware nodes are modeled using SysML blocks. Allocations
are modeled with the SysML "allocate" relationship.

Security requirements are modeled in SysML Requirement Diagrams (RD). The main
operators of RDs are Requirement Containment and Derive Dependency formalisms used
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to define relationships between requirements. The containment relationship depicts sub-
requirements in terms of hierarchy and enables a complex requirement to be decomposed
into its containing child requirements whereas deriveReqt determines the multiple derived
requirements that support a source requirement. These requirements normally present the
next level in the requirement hierarchy. A Security Requirement stereotype is introduced
to make a clear distinction between functional requirements and security requirements
of the system, yet modeling both functional and non-functional requirements in a single
environment. Furthermore, a Kind parameter is defined to specify the category of the
security requirement (confidentiality, access control, integrity, freshness, etc.).

Attack trees can be modeled with slightly customized SysML Parametric Diagrams.
Attacks are modeled as values embedded into blocks representing the target of the attack.
Attacks can be linked together with logical operators like OR, AN D, as well as temporal
causality operators like AFTER, the latter which we consider as especially helpful to
describe attacks in embedded systems. Their instances in different parametric diagrams
can be linked together in order to assess the impact of a specific vulnerability and the
need to address it at the risk assessment phase. An attack can also be tagged as a root
attack, meaning that this attack is at the top of the tree. Last but not least, attacks can
be linked to requirements, thus allowing an automated check of the coverage of attacks.

An example of function mapping is given in Figure [T} made in the scope of the emer-
gency braking (or Local Danger Warning) use case. Two Electronic Control Unit sub-
domains are represented. The Chassis Safety Controller on the left, and the Body Elec-
tronic Module on the right. Each sub-domain has a main processor, a local flash memory,
a local main memory, a set of hardware accelerators, and a bridge to the main system
bus. Functions are mapped either on processors (these functions are to be software-
implemented) or on hardware accelerators (functions are to be hardware-coded). Com-
munications between tasks are also to be mapped over buses and memories, in order to
highlight data transfers.

<<BRIDGE>>
CU_to_CAN
<<BUS-RR>>
CAN

<<MEMORY>>
RAM_CSCU

<<BRIDGE>>
CSCU_to_CAN

<<MEMORY>>
Flash_CSCU

<<BUS-RR>>
CAN_CSCU

<<MEMORY>>
RAM_BEM

<<BRIDGE>>
BEM_to_CAN

<<MEMORY>>
Flash_BEM

<<BUS-RR>>
CAN_BEM

<<CPURR>>
CPU_CSCU

<<HWA>>
ChassisSensors

<<CPURR>>
CPU_BEM

<<HWA>>
BEM_Instruments

LDW-FV::SafetyCriticalinformationTracker D

LDW»FV::getVehicIeDynamicsD

LDW-FV::LocalDangerWarning D

LDW-FV::WarmngDispIayD

<<HWA>>
EnvSensors

LDW-FV::GetEnvironmentlnformationD

LDW-FV::HMI D

Fig. 1: Mapping of Local Danger Warning use case (SysML-Sec)
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5 Software design
5.1 Methodological aspects

Software design defines the architecture and behaviour of all functions mapped over pro-
cessor nodes at the partitioning stage. From a security point of view, the design intends
to precise how security requirements can be fulfilled with security-oriented software mech-
anisms executed on top of the hardware architecture defined in the partitioning stage, and
verify that requirements identified during the partitioning phase are really satisfied by
this design. Requirements expressed at partitioning are informal and refer to assets: they
therefore need to be refined until their expression directly relates to design elements (e.g.,
attributes, methods, exchanged messages, states, etc.). Once refined, they constitute the
security properties that are to be verified by the design. SysML-Sec extends SysML with
ways to explicitly model security mechanisms and properties.

5.2 Security design extensions

A SysML-Sec design is made upon SysML block and state machine diagrams, extended
with several features, and formally defined in pi-calculus (a process algebra).

In particular, we assume a Dolev-Yao attacker model, that is, only messages exchanged
between blocks can be eavesdropped, contrary to attributes of blocks. That attacker model
is enough to describe attacks on the protocols deployed between the components of the
embedded system, from outside or within the system. It however does not aim at captur-
ing physical attacks on the hardware, nor a sequence of exploitation of vulnerabilities of
several components. Since communication channels may have been mapped over secure or
non secure buses at partitioning stage, we give the possibility to tag links between blocks
with a public label if an attacker can eavesdrop, or with a private label otherwise.

Also, SysML-Sec blocks can define a set of methods corresponding to cryptographic algo-
rithms (e.g., encrypt), so as to be able to describe security mechanisms built upon these
algorithms, e.g., cryptographic protocols. Blocks can also pre-share values, a feature com-
monly needed to setup cryptographic protocols. SysML-Sec introduces specific pragmas
for that purpose (InitialSystemKnowledge and InitialSessionKnowledge).

5.3 Security properties

A dedicated language has been defined for describing the commonly complex safety prop-
erties, which is based on SysML Parametric diagrams [KAD11]. On the contrary, security
properties can usually be defined with a type (e.g., confidentiality), and with design el-
ements related to that kind (e.g., the confidentiality of the attribute of a block). This
simplicity pleads for a basic modeling solution, that is not based on complex diagrams or
operators. Our solution relies on pragmas provided in notes of Block Diagrams: confiden-
tiality and authenticity can be directly expressed at this level.

For example, an authenticity pragma states that a message m2 received by a block
block2 was necessarily sent before in a message m1l by a block blockl. The following
examples describes such a situation: § Authenticity blockl.sl.ml block2.s2.m2
This authenticity pragma specifies two states: one of the sender block, i.e. one state sl
of blockl, and one state s2 of block2. Also, in the state machine diagram of blockl, sl
corresponds to the state right before the sending of m1. Analogously, s2 corresponds to
the state right after message m2 has been received and accepted as authentic.
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Figure [2 illustrates the SysML-Sec software design of the Key Distribution protocol
defined in the EVITA architecture. This protocol distributes session keys in a group of
Electronic Control Units (ECUs) spread in the vehicle. Pragmas are given in the top left
part of the diagram: the knowledge which is pre-shared between ECUs and the Key Master
(KM), and two properties: the confidentiality of the key pre-shared with ECU1, and the
authenticity of a message sent from ECU1 to KM. The blocks underneath model the ECU
initiating the key distribution (ECU1), the Key Master, and another ECU (ECUN).

#Confidentiality ECU1.SesK <<datatype>> || <<datatype>>
#Authenticity ECU1.makingFirstMessage.SesK KM.decipherOK.msgauth | Message | Key
- data : int; - data : int;

#InitialCommonKnowledge ECU1.PSK1 KM.PSK1
#InitialCommonKnowledge ECUN.PSKN KM.PSKN
#InitialCommonKnowledge ECUN.ACK ECU1.ACK KM.ACK ‘ Channel common to all Subb'OCk}J

#InitialCommonKnowledge KM.timerexpire TimerKM.timerexpire ﬂ'
I |

<<block>>
SecuredSystem
~in chi:(Me'swsage msg) <<block>> <<block>>
- ionu‘t chout(Message msg:nsg) KM ECUN
~ out choutprivate(Message msg) - PSKN : Key; - PSKN : Key;
- PSK1 : Key; - keyOfGroup : Key;
<<block>> - msg : Message; - msg : Message;
ECU1 - msgl : Message; - msgl : Message;

- PSK1 : Key; - msg2 : Message; - msg2 : Message;

- SesK : Key; - msg3 : Message; - msg3 : Message;

- msg : Message; - msg4 : Message; - msg4 : Message;

- msgl : Message; - msg5 : Message; - msg5 : Message;

- msg2 : Message; - msg6 : Message; - msg6 : Message;

-msg3: Message: - msg7 : Message; - timestamp : int;

- msg4 - Message. - timestamp1 : int; - ACK : int;

- msg5 : Message; - timestamp2 : int; - b : bool;

- msg6  Message: - ACK: int; - secretData : int;

id:int; - b : bool;
sigroupldi:iint; i Dire - " ~ Message encrypt(Message msg, Key k)
= GlEEE 3 SO NS ~ Message decrypt(Message msg, Key k)

Fig. 2: SysML-Sec block diagram of Key Distribution Protocol

6 System validation

Validation can be performed from mapping models (e.g., performance evaluation of the
selected hardware architecture: load of CPUs and buses), from design models (proof of
safety and security properties), or from executable code automatically generated from
design models (safety and security tests). Model transformations have been defined to
transform SysML-Sec models into formal specifications. The whole process is seamlessly
implemented in TTool, i.e., a user of TTool does not need to know about underlying formal
techniques since model transformations and backtracing to models is totally automated.
Proofs can be performed from partitioning or software design models. From partitioning
models, it is possible to evaluate the impact of security mechanisms onto real-time con-
straints (e.g., latencies). From SysML-Sec designs, the formal proof relies on Pro Verif for
security properties. ProVerif [Bla09] is a toolkit that relies on Horn clauses resolution
for the automated analysis of security properties over cryptographic protocols, under the
Dolev-Yao model. ProVerif takes in input a set of Horn Clauses, or a specification in pi-
calculus and a set of queries. ProVerif outputs whether each query is satisfied or not. In
the latter case, ProVerif tries to identify a trace explaining how it came to the conclusion
that a query is not satisfied. Figure [3] depicts the successful verification in TTool of the
confidentiality and authenticity properties modeled in Figure[2] While we can specify any
security requirement, we currently only support the formal validation of those that can be
expressed with these two security properties.
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Generate code | Execute

Execution

) Execute ProVerif as

|;‘0pt;‘pr0\.rerifjprmrerif -in pi |

[] Show output of ProVerif

| »

Confidential Data:

ECULl_ SesK_ data

Non Confidential Data:

KM__decipherOK__msgauth__data
i M | [»

4

Fig. 3: TTool assistant for the formal verification of confidentiality and authenticity properties
defined at Figure

7 Related work

In [NNY10], Nhlabatsi et al. classify security requirements engineering work in software
systems according to four dimensions, namely: (1) goal-based approaches was the first such
approach to model, specify, and analyze security requirements as the organized refinement
of goals into a set of sub-goals using generic patterns. (2) Model-based approaches: in con-
trast, those methodologies focus on the mapping of security to the software architecture.
(3) problem-oriented approaches focus on the expression of attacks and on the threat-based
elicitation of security requirements (abuse frames, misuse cases). (4) Process-oriented ap-
proaches finally aim mainly at the risk analysis of an existing design and follow a rather
rigid waterfall approach to engineering, yet do not address well design exploration and re-
finement. Our approach combines a goal-based description of security requirements with
a model-driven engineering of the system architecture and validation of the soundness of
the security properties or of their innocuity with respect to safety. In that respect, it
shares some similarities with the TwinPeaks approach advocated by Nuseibeh [Nus(1],
although the latter doe not address hardware systems. Instead of a simple spiral alternat-
ing between the requirements and the architecture as TwinPeaks suggests, we alternate
between the Y-Chart modelling of software and its mapping to hardware components, the
identification of assets and threats to them, and the identification of security requirements.

UMLsec [Jiir(2], which features a model-based approach as described above, defines
how to integrate security protocol descriptions and security properties to a UML frame-
work. However, design elements and security properties are mixed on the same diagrams,
as well as functional and non functional requirements.

Assessing security in embedded systems mostly relies on formal approaches. For ex-
ample, [Tou93|] proposes to verify cryptographic protocols with a probabilistic analysis
approach. In more recent efforts, [DBTS] embeds a first order Linear Temporal Logic
(LTL) in the Isabelle/HOL theorem prover, thus making it possible to model both a sys-
tem and its security properties, but unfortunately leading to non-easily reusable specific
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models. [MPO8] mixes formal and informal security properties, but the overall verification
process is not completely automated, again requiring specific skills.

8 Conclusion and future work

The complexity of embedded systems and time-to-market and software-engineering con-
traints plead for engineering security requirements with user-oriented tools featuring au-
tomated and simplified verification. Our proposal, SysML-Sec, specifically addresses that
need at the diverse phases of system design and development. It is based on a popular
and friendly language (OMG’s SysML) and supported by an open-source toolkit (TTool)
that relies on a recognized security verification toolkit (ProVerif). We have also developed
a methodology for the use of SysML-Sec diagrams which has been experimented to define
a secure automotive embedded system.
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