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Abstract—Critical embedded systems - e.g., automotive systems
- are now commonly distributed, thus exposing their commu-
nication links to attackers. The design of those systems shall
therefore handle new security threats whilst maintaining a high
level of safety. To address that issue, the paper introduces
a SysML-based environment named AVATAR. AVATAR can
capture both safety and security related elements in the same
SysML model. TTool [1], an open-source UML toolkit, provides
AVATAR editing capabilities, and offers a press-button approach
for property proof. Indeed, after having modeled an abstract
representation of the system and given a description of the safety
and security properties, the designer may formally and directly
verify those properties with the well established UPPAAL and
ProVerif toolkits, respectively. The applicability of our approach
is highlighted with a realistic embedded automotive system taken
from an ongoing joint project of academia and industry called
EVITA [2].

I. INTRODUCTION

The ever increasing prevalence of distributed systems has

triggered the necessity to examine their resistance to security

threats, in addition to safety issues. The extensive need for

data exchange between system entities is satisfied by dedi-

cated physical devices like field buses, or shared media like

networks. Even if it is sometimes possible to physically protect

dedicated links from malicious access, bets are off when

wireless communication comes into play. Thus, the sophis-

ticated communication patterns required by today’s embedded

systems open the door to new kind of attacks. Security flaws

in systems may for instance compromise the confidentiality

of messages or the privacy of users. Moreover, many of

these embedded systems are safety critical, i.e., failures may

not only have a severe economic impact but also endanger

human beings. Examples are systems used in the field of

transportation, energy generation and distribution, medical

appliances, etc. In this paper, an automotive application serves

as a representative of this class of systems. Indeed, while

being critical, car systems are soon expected to offer advanced

communications with other external systems, e.g., with road

sign units, or with other cars [2].

A lot of work is concerned with modeling environments

capturing safety properties during all development stages,

including requirements engineering and design. To reduce

verification complexity, formal proofs at design stage are

usually applied to high-level models, or to subparts of more

detailed designs. Unfortunately, current approaches are mostly

dedicated to safety properties. And so, the developer has

to come up with additional models relying on different for-

malisms amenable to security proofs. Additional effort has

therefore to be spent on the creation and maintenance of two

models - one for safety issues, and one for security ones -

instead of one, and also on model consistency.

To overcome this limitation, we have introduced a SysML

environment called AVATAR based on insights obtained from

previous formally defined UML profiles [3] [4] [5]. AVATAR

models are able to express both safety and security prop-

erties and provide means for their verification. The major

contribution is that proofs can be conducted from the same

model, and at the push of a button. Safety and security

requirements are expressed in terms of SysML Requirement

Diagrams, whereas the static and the behavioral aspects of the

system are represented with Block and State Machine Dia-

grams respectively. Safety properties are further refined within

Parametric Diagrams, and security properties are described

within specific pragmas of Block Diagrams. Finally, safety

and security proofs are accomplished by first transforming

the SysML model to the respective domain specific language:

UPPAAL for safety proofs, and ProVerif for security proofs.

Modeling features and translators are implemented in TTool

[1], an open-source UML toolkit supporting several profiles in

addition to AVATAR.

Safety properties modeling and verification in AVATAR has

been already introduced in [6]. This paper covers security

issues only. The case study is taken from the European EVITA

project [2], which focuses on security and safety matters of

embedded automotive systems.

The paper is organized as follows. Section II reviews environ-

ments for modeling and proving safety or security properties.

Section III introduces the AVATAR SysML environment, as

published in [6]. The next section (section IV) explains how

AVATAR can be efficiently extended to support security prop-

erties. The semantics of AVATAR for security is described in

section V. A case study (section VI) illustrates the modeling

and proof of security properties with AVATAR, based on an

example extracted from the EVITA project. At last, section

VII concludes the paper.



II. RELATED WORK

A. Safety Properties

The following graphical environments offer a high level

front-end for formal languages, and are mostly based on UML

or SysML. In addition to the shortcoming of not addressing

security features, the main differences to the AVATAR envi-

ronment consist in the expressiveness of the respective profile,

the underlying formal language, to what extent details of the

latter are masked to the designer and the model transformation

which may be more or less automated.

[7] relies on timed automata to model and analyze timeliness

properties of embedded systems. The UPPAAL model checker

is used to evaluate the automata which must be created

manually. There is no automated translation routine from

a high level language (UML,...) and thus the creation of

the automata turns out to be error prone, and cannot easily

be integrated into a wider-ranger methodology, including for

example requirements capture and tracing.

[8] provides means for formal and simulation based evaluation

of UML/SysML models for performance analysis of SoCs.

UML Sequence diagrams constitute the starting point for the

functional description. They are subsequently transformed into

so called communication dependency graphs (CDGs) which

capture the control flow, synchronization dependencies and

timing information. CDGs are in turn amenable to static

analysis in order to determine key performance parameters

like BCRT and WCRT 1, and also I/O data rates. A drawback

of this approach is that data flow independence has to be kept,

thus preventing more sophisticated control flow structures to

be modeled.

[9] advocates a nice graphical notation to formally capture

requirements. System executions are expressed in the form

of time line diagrams discriminating optional, mandatory,

fail events and related constraints. As for other trace based

approaches, conditional or varying system behavior cannot

easily be expressed. Moreover, the approach does not address

real-time or performance requirements.

The MARTE profile embraces VSL [10] which aims at

specifying the values of constraints, properties and stereotype

attributes particularly related to non-functional aspects. Even

when used in combination with sequence diagrams, VSL

makes it cumbersome if not impossible to specify complex

sets of sequential behaviors.

The Rhapsody tool used by [11] similarly enables formal

verification of SysML diagrams using UPPAAL. Unlike TTool,

Rhapsody does not distinguish between requirements and

properties. Nor it supports a property expression language

- such as TEPE [6] - and computation operators in state

machines. In terms of user-friendliness, TTool allows one to

right-click on an action symbol and automatically verify the

reachability of that action. In the same situation, the user of

Rhapsody is obliged to manually enter a logic formula. The

OMEGA2 environment [12] also has strong connections with

1Best Case Response Time, Worst Case Response Time

Rhapsody for it implements the same semantics. OMEGA2

supports requirement diagrams as defined in SysML. Con-

versely ARTISAN [13] extends SysML to cope with con-

tinuous flows. ARTISAN models may contain probabilities

and interruptible regions, two concepts not yet supported by

AVATAR. The open-source environment Topcased also enables

requirement modeling in a SysML fashion [14].

Electronic System Level (ESL), which is an emerging elec-

tronic design methodology, has stimulated research work on

joint use of SysML and formal languages supported by sim-

ulation tools. Several papers discuss solutions where a model

is designed in SysML and translated into VHDL-AMS [15] or

Simulink [16]. Mechanical engineering is another area where

SysML is combined with already existing domain specific

languages, such as Modelica or bond graphs.

B. Security Properties

A wide range of methodologies and tools has been proposed

for modeling and verifying security in embedded systems.

[17] proposes to verify cryptographic protocols with a proba-

bilistic analysis approach. Protocols are represented as trees

whose nodes capture knowledge whilst edges are assigned

with transition probabilities. Although these trees could in-

clude malicious agents in order to model attacks and threats,

security properties are nonetheless not explicitly represented.

Moreover, for threat analysis, attacks should be explicitly

expressed and manually solved. [18] defines a formal basic

set of security services for accomplishing security goals.

In this approach, security properties analysis strongly relies

on designer’s experience. Moreover, threat assessment is not

easily feasible.

In more recent efforts, temporal logic languages are used

for expressing security properties. For instance, [19] embeds

a first order Linear Temporal Logic (LTL) in the theorem

prover Isabelle/HOL, making it possible to model both a

system and its security properties. Although this is a rigorous

approach, security properties and goals can be built upon

security concepts, unfortunately leading to non-easily reusable

specific models. Another example of temporal logic based

verification is presented in [20]. In that approach the designer

has to establish assumptions, knowledge and communication

axioms, and represent them in a temporal logic language, and

so specialized skills are definitely necessary. Additionally, the

proposal only targets authenticity and is protocol oriented.

Evaluating both security and performance is tackled in [21].

If the methodology aims to offer a good trade-off between

Quality of Service (QoS) and Security, it nonetheless requires

a qualitative evaluation of security leaks. Indeed, when security

flaws are detected, the designer must decide to use a new

security mechanism - and so to degrade performance - or to

keep the leak, in case the designer assumes that it is of low

importance in the system. As a consequence, this approach

strongly relies on designer skills and experience.

Assessment of security in embedded systems mostly relies on

formal approaches. However, [22] mixes formal and informal

security properties. The authors argue that unified security



approaches won’t provide enough flexibility to cope with

highly heterogeneous requirements of distributed scenarios.

Thus, the framework allows a user to define his own security

properties and create dependencies between them, making the

model probably difficult to reuse. Furthermore, the overall

verification process is not completely automated, again re-

quiring specific skills. Analogously, the Software Architec-

ture Modeling (SAM) framework [23] aims to bridge the

gap between informal security requirements and their formal

representation and verification. Indeed, SAM uses formal and

informal security techniques to accomplish defined goals and

mitigate flaws. Thus, liveness and deadlock-freedom properties

can be verified on LTL models relying on the Symbolic Model

Verifier (SMV). Even if SAM relies on a well established

toolkit - SMV - and considers a threat model, the ”security

properties to proof” process is not yet automated.

UMLsec [24] defines how to integrate security design ele-

ments, and security properties in a UML methodology. How-

ever, design elements and security properties are mixed on

the same diagrams, as well as functional and non functional

requirements. Also, UMLsec is not formally defined nor it

covers threat analysis (e.g., attack trees).

As a conclusion, all these solutions usually make a trade-off

between rigorousness and simplicity. On the one hand, security

in embedded systems obviously requires rigorousness in the

formal verification process. On the other hand, the complexity

and diversity of systems and requirements, along with time-

to-market and software-engineering criteria advocate for user-

oriented tools with automated and simplified verification.

AVATAR positively answers that need: it is based on a popular

and friendly language (SysML), it is supported by an open-

source toolkit (TTool) which relies on a recognized security

verification toolkit (ProVerif). AVATAR further supports threat

analyses and code generation, therefore supporting all secure

system development phases: analysis, design, formal proof and

code generation. On the contrary, other tools such as ST-

Tool [25] and STA [26] are dedicated to one given system

development phase, and based on non-reusable models.

III. THE AVATAR SYSML ENVIRONMENT

A. Basics

The AVATAR environment reuses eight of the SysML

diagrams (Package diagrams are not supported). It further

structures Sequence Diagrams using an Interaction Overview

Diagram (a diagram defined in UML2, not by SysML). The

AVATAR profile is syntactically and semantically defined by a

meta-model. Besides a syntax, a semantics and a tool support,

a profile is also characterized by a methodology.

B. Methodology

The AVATAR methodology comprises the following stages:

1) Requirement capture. Requirements and properties are

structured using AVATAR Requirement Diagrams. At

this step, properties are just defined with a specific label

as test cases.

2) System analysis. A system may be analyzed using usual

UML diagrams, such as Use Case Diagrams, Interaction

Overview Diagrams and Sequence Diagrams.

3) System design. The system is designed in terms of

communicating SysML blocks described in an AVATAR

Block Diagram, and in terms of behaviors described with

AVATAR State Machines.

4) Property modeling. The formal semantics of properties

is defined within TEPE [6] Parametric Diagrams (PDs).

Since TEPE PDs involve elements defined during the

system design phase (e.g, a given integer attribute of

a block), TEPE PDs may be defined only after a first

system design has been performed.

5) Formal verification of safety properties can finally be

conducted over the system design, and for each test case.

Once all properties are proved to hold, requirements, system

analysis and design, as well as properties may be further

refined. Thereafter, and similarly to most UML profiles for

embedded systems, the AVATAR methodological stages are

reiterated. Having reached a certain level of detail, refined

models may not be amenable to formal verification any more.

Therefore the generation of prototyping code may become the

only realistic option.

C. Block and State Machine Diagrams

Apart from their formal semantics, AVATAR Block and

State Machine Diagrams only have a few characteristics which

differ from the SysML ones.

An AVATAR block defines a list of attributes, methods and

signals. Signals can be sent over synchronous or asynchronous

channels. Channels are defined using connectors between

ports. Those connectors contain a list of signal associations.

A block defining a data structure merely contains attributes.

On the contrary, a block defined to model a sub-behavior of

the system must define an AVATAR State Machine.

AVATAR State Machine Diagrams are built upon SysML

State Machines, including hierarchical states. AVATAR State

Machines further enhance the SysML ones with temporal

operators:

• Delay: after(tmin, tmax). It models a variable delay

during which the activity of the block is suspended,

waiting for a delay between tmin and tmax to expire.

• Complexity: computeFor(tmin, tmax). It models a time

during which the activity of the block actively executes

instructions, before transiting to the next state: that com-

putation may last from tmin to tmax units of time.

The combination of complexity operators (computeFor()),
delay operators, as well as the support of hierarchical states -

and the possibility to suspend an ongoing activity of a substate

- endows AVATAR with main features for supporting real-time

system schedulability analysis.

IV. EXPRESSING SECURITY IN AVATAR

A. Current limitations of AVATAR for security

Let’s consider the following Alice and Bob system, in which

Alice wants to send a confidential data to Bob, using a pre-



Fig. 1. Example 1: Block diagram of the Alice and Bob system

shared symmetric key, and relying on an authentic message

containing the ciphered confidential data of Alice. Figure 1

presents the SysML internal block diagram of this Alice and

Bob system.

Several limitations make it difficult to prove confidentiality

and authenticity properties in this toy system:

• Initial knowledge: AVATAR provides no way to pre-

share data, i.e., make data common to several blocks

before the system starts.

• Cryptographic functions: Cryptographic systems com-

monly rely on a set of well-known functions (symmetric

cipher and decipher, compute MAC, etc.) that are not

defined in AVATAR, and have thus to be explicitly

modeled by a designer.

• Communication architecture: AVATAR channels cannot

be listened by an external Block, i.e., a network on

which an attacker could listen packets has to be explicitly

modeled.

• Attacker model: AVATAR does not include any attacker

model. Having a default attacker model, e.g., based on

Dolev-Yao [27], would avoid users of AVATAR to have

to model by hand an attacker model.

• Security properties: Security properties cannot be de-

fined in AVATAR Requirement Diagrams, nor in TEPE,

nor at Block Diagram level.

B. Extending AVATAR for security purpose

We now show how we have addressed all aforementioned

limitations in AVATAR.

• Initial knowledge

SysML offers several ways to share data between classes,

using for example block attributes, or using a dedicated

block storing that shared knowledge. Unfortunately, those two

solutions suffer two drawbacks:

1) The sharing is not really explicit, i.e., it is not clear

which block intends to use a given block attribute, or

given data of a dedicated block.

2) The sharing is defined for the entire system execution:

in security, we are interested by the pre sharing of

information, not by the sharing of this information

during the entire system execution.

To overcome those two limitations, we propose to use specific
directives - or pragmas - in notes of Block Diagrams. The
pragma is as follows:

Fig. 2. Example 2: Block diagram of the Alice and Bob system

♯ InitialCommonKnowledge BlockID.attribute

[BlockID.attribute]*

Figure 2 contains the internal block diagram of the Alice and
Bob system enhanced with AVATAR extensions for security.
Similarly to the first design, the new design has two blocks
(Alice and Bob), and declares two data structures (Key and
Message). A note now declares that sk is a pre-shared data (a
key) between Alice and Bob:

♯ InitialCommonKnowledge Alice.sk Bob.sk

• Cryptographic functions

AVATAR includes the definition of a specific block called

cryptographic block. That block defines a set of cryptographic

functions that can be used as usual methods by the state

machine of these blocks (some methods are visible in Figure

2). For example, Alice and Bob declare a set of cryptographic

methods. A few examples of cryptographic functions we have

defined:

• encrypt(Message msg,Key k) and

decrypt(Message msg,Key k), for encrypting and

decrypting messages with asymmetric keys, respectively.

• sencrypt(Message msg,Key k) and

sdecrypt(Message msg,Key k), for encrypting and

decrypting messages with symmetric keys, respectively.

• MAC(Message msg,Key k) and

verifyMAC(Message msg,Key k,Message macm),
for computing the MAC of a message, and verifying the

MAC of a message, respectively.

For instance, the behavior of Alice and Bob is provided within

two respective State Machine Diagrams (see Figures 3-a and 3-

b, respectively). Alice first puts its secretData into a message

m.data = secretData, then encrypts this message m1 =
sencrypt(m, sk) with the symmetric encryption function, and

finally sends the resulting message on the broadcast channel

chout(m1). Bob waits for a message on the broadcast channel

chin(m2). Then, Bob tries to decrypt the received message

m = sdecrypt(m2, sk) and then extracts from the message

the secretData sent by Alice: receivedData = m.data.

• Communication architecture

AVATAR communications were firstly based upon unidirec-

tional one-to-one synchronous or asynchronous communica-

tions. We now assume that each block has two special signals:

chout and chin, which can be respectively used for sending

and receiving purpose respectively. No channels need to be

declared for using those signals, which are considered to



a – Alice b – Bob

Fig. 3. Example 2: State Machine Diagrams of the Alice and Bob system

be sent on / received from a public broadcast asynchronous

channel common to all blocks. This public broadcast channel

is particularly interesting for modeling messages that can be

probed by an attacker.

• Attacker model

In AVATAR, the attacker model is implicit, i.e., there is no

need to model an attacker either at Block Diagram level, or at

State Machine Diagram level. More precisely, AVATAR relies

on the attacker model of ProVerif, see section V-B.

• Security properties

Security properties are modeled in two different stages of

the AVATAR methodology (see section III): at requirement

capture stage, and at property modeling stage.

1) Security-oriented requirements: We have already pub-

lished an extension of SysML Requirement Diagrams sup-

porting security requirements [28]. Basically, our contribution

relies on the identification of attacks represented within attack

trees in a SysML Parametric Diagram, on the use of a

security-domain identifier (e.g., confidentiality, authenticity,

privacy, etc.) added to SysML requirements, and on a precise

methodology applied to identify these security requirements,

based on use cases, attack trees, and a very first design of

system functions.

2) Security properties: TEPE [6] has already been

proposed for modeling safety-related properties in AVATAR.

However, safety properties are commonly complex to express.

Indeed, they generally involve several attributes and signals

of blocks, as explained in [6] on an elevator system. On the

contrary, security properties can be usually defined with a

type (e.g., confidentiality), and with elements related to that

kind (e.g., the confidentiality of the attribute of a block).

This simplicity advocates for a simple modeling solution, not

based on a different diagram. Finally, our solution relies on

pragmas provided in notes of Block Diagrams: confidentiality

and authenticity can be directly expressed at this level.

Confidentiality
Confidentiality in AVATAR can be modeled as a simple

pragma provided in the note of a Block Diagram. The con-
fidentiality must be specified as the confidentiality of an
attribute of a block:

♯ Confidentiality block.attribute

Coming back to the example provided in Figure 2, the
following statement models that the attribute secretData of
Alice shall remain confidential i.e., never accessible to an
attacker:

♯ Confidentiality Alice.secretData

Authenticity
Authenticity in AVATAR is also modeled as a pragma. An

authenticity pragma states that a message m2 received by a
block block2 was necessarily sent before in a message m1 by a
block block1. The authenticity pragma specifies two states: one
of the sender block, i.e. one state s1 of block1, and one state
s2 of block2. Also, in the state machine diagram of block1,
s1 corresponds to the state right before the sending of m1.
Analogously, s2 corresponds to the state right after message
m2 has been received and accepted as authentic. Finally, the
authenticity pragma is as follows:

♯ Authenticity block1.s1.m1 block2.s2.m2

For example, in Figure 2, the authenticity pragma states that
all messages m1 sent by Alice after state sendingMessage
shall be authentic for Bob receiving it into a message named
m2 before its state messageDecrypted.

♯ Authenticity Alice.sendingMessage.m1

Bob.messageDecrypted.m2

V. SEMANTICS OF AVATAR

A. General approach

Previous section has emphasized several particularities of

AVATAR which obviously have to be taken into account by the

underlying proof mechanism. Just to mention a few of these

particularities: AVATAR assumes public broadcast channels

between blocks that can be listened up by an attacker. AVATAR

also assumes a Dolev-Yao attacker model [27].

Several environments target the proof of security properties,

e.g., SHVT [29], AVISPA [30], and ProVerif [31]. Proofs

within the SHVT environment cannot be automatically con-

ducted: so, it was excluded. In AVISPA, the tool is system

dependent, and really focused on cryptographic protocols,

which is not the case of AVATAR which targets embedded

systems in general. ProVerif is based on process algebra, and

is therefore well suited for modeling communicating entities as

found in embedded systems. Also, to our experience, ProVerif

nicely solves the trade-off between expressiveness, complexity

and automation of formal approaches.

B. ProVerif

ProVerif [31] is a toolkit that relies on Horn clauses

resolution for the automated analysis of security properties

over cryptographic protocols. ProVerif takes as input a set

of Horn Clauses, or a specification in pi-calculus (a process

algebra) and a set of queries. ProVerif outputs whether each

query is satisfied or not. In the latter case, ProVerif tries to

identify a trace explaining how it came to the conclusion that

a query is not satisfied.

In ProVerif, a specification takes the form of a system repre-

sented as spi-calculus processes and properties represented as

queries.



• Processes are themselves composed of a declaration part,

of a definition of a set of sub-processes, and the definition

of a main process.

The declaration part can be used to declare global terms,

including channels. Functions and functions reduction can

also be declared.

Main process constructs are summarized in Table I,

the semantics of which is explained informally and in

pi-calculus. [32] offers a complete specification of the

ProVerif grammar.

TABLE I
MAIN PROVERIF PROCESS CONSTRUCTS

Construct Semantics

out(c,M);

P

Sending of M in channel c, and execution of
process P , i.e., c̄〈M〉.P .

in(c,

M);P

Receiving of Message M from channel c, and
execution of process P , i.e., c(M).P .

new a;

P

Definition of a new term a, and subsequent
execution of process P , i.e., (νa)P .

begin(M);

P

Execution of an event, and subsequent execu-
tion of process P , i.e., begin(M).P .

!P Replication of process P , i.e., an infinite num-
ber of instances of P are executed.

P|Q Parallel composition between processes P and
Q.

... ... other pi-calculus constructs, such as if then
constructs, etc.

• Properties are represented with ProVerif queries. Queries

are formal clauses in which the left hand side of the

implication is a set of facts that should be accomplished

whilst the right hand side includes the hypotheses to be

verified. Queries can be used to express confidentiality

[33] and authenticity requirements [31].

Confidentiality queries directly express which data shall

not be accessible to the attacker, e.g., that a private key

shall not be accessible to an attacker:

query attacker:myKey.

Authenticity of messages relies on ProVerif events. When-
ever a message m sent by a process A to a process B
shall be authenticated, one event shall be included in each
process: one shall be included in A before the sending of
m (e.g., eventSendM), and one after the receiving of m
(e.g., eventReceiveM). Since the attacker is not allowed
to execute events, it suffices to prove that to each receiving
event of m corresponds exactly one sending of m. Finally, an
injective query is used to model authenticity:

query evinj:eventReceiveM(x) ==>

evinj:eventSendM(x).

Important note: ProVerif also makes it possible to study

the reachability of events, based on queries. And so, ProVerif

may also be used for proving safety properties. Reachability

is always studied on the system augmented with the attacker.

ProVerif integrates its own attacker model, which is itself

a process implementing a Dolev-Yao approach [27]. This

process acts like an adversary relying upon a set of known

names, variables and terms which is referred to as knowledge.

Attacker knowledge increase relies on public channel probing

and execution of functions non prohibited to the attacker.

Finally, ProVerif is not intended to perform computational

attacks nor proves, but CryptoVerif [34] could be used for

that purpose.

To verify a query, ProVerif implements a resolution

algorithm [31], [35] [36] that first translates the complete

pi-process specification to Horn Clauses [31]. To verify a

query, the resolution algorithm determines, based upon a set

of inference rules, if the attacker reasoning is able to derive a

trace that contradicts the query, thus proving that the query is

false. Otherwise, if the attacker is unable to find such a trace,

then the property is satisfied. Additionally, if facts on which

the query is based upon are not reachable, the algorithm

informs that the query can not be proved.

C. Translation

The translation process takes as parameter an AVATAR

design, including its sets of pragmas (as defined in section

IV), and outputs a ProVerif specification.

Briefly, the translation process is as follows:

Definition 1: AVATAR translation process

Let T the translation process that takes as input a Block

Diagram BD, and a set of pragmas P , and Pr the resulting

ProVerif specification:

Pr = T (BD,P ).

• A BD is composed by three graphical entities named <<
block >>, << datatype >> and << pragmas >>.

A block contains a set of attributes, a set of functions,

a set of signals and a reference to a State Machine

Diagram (SMD). << datatype >> can be ignored for

the translation process since they can easily be removed.

• An SMD is a set of interconnected logical operators:

start states, stop states, transitions - with attribute settings

and function calls -, choices, states, sending in a channel,

receiving from a channel.

• The type of a pragma in P is either

InitialCommonKnowledge, Confidentiality, or

Authenticity.

T applies the following set of rules:

1) For each block b ∈ BD, a “first” process fp is

generated. Then, for each state s of the State Machine

Diagram smd of b, another process ps is generated.

2) fp instantiates all attributes that are not listed

in InitialCommonKnowledge or Confidentiality
pragmas: ‘new attr;’. Then, fp makes a call to the

ps process corresponding to the start state of smd.

3) Each ps is created as follows. An event is first

called for tracing the reachability of states ‘event

entering_state_nameofs();’. Then, each branch

of logical operators linked from s is considered until

another state is reached on that branch:



• Sending on a channel c of a message m is translated

as an ‘out(c, m);’.

• Receiving on a channel c of a message m is trans-

lated as an ‘in(c, m);’.

• The assignment of a variable is translated using a

‘let’ operator, e.g.:

‘let m1.data = (m2.data, m3.data);’.

• The call of a cryptographic function is translated

with a ProVerif cryptographic function and a ‘let’

operator:

‘let mac = MAC(msg1.data, Key.data);’.

• The call of a non-cryptographic function is trans-

lated with a simple call to an event having the

name of the corresponding function, and with the

same parameters, e.g., ‘event function(par0,

par1);’.

• The various branches starting from state s are se-

lected using the ‘if...else’ ProVerif statement.

4) The main process mp of the ProVerif

specification instantiates all attributes listed in

InitialCommonKnowledge pragmas. Then,

it instantiates in parallel, and for an infinite

number of sessions, all fp processes, e.g.,

‘(!fp1)|(!fp2)|...|(!fpn)’.

5) Confidentiality pragmas referencing a block b and an

attribute attr of b are translated as a declaration of attr
as follows: ‘private free attr.’ and with a query

of the following form:

‘query attacker:attr.’

6) Authenticity pragmas of the form

b1.state1.attr1b2.state2.attr2 are translated

using statements of the following form:

‘query evinj:b2_state2(attr2) ==>

evinj:b1_state1(attr1).’.

Additionally, in the process ps where s = s1, a call

to ‘event b1_state1(attr1);’ is added at the

beginning of the process. Similarly, a call to ‘event

b2_state2(attr2);’ is added at the beginning of the

process ps where s = s2.

A few of these translations rules are presented in tables II

and III. Even if AVATAR supports algebraic integer operations

(+, −, /) in SMD transitions, those operations have no

meaning at ProVerif level and so, they are translated as a new

variable instantiation using the ‘new <variable_name>;’

statement. Similarly, only basic boolean expressions of guards

can be directly converted into ProVerif (e.g., comparison

between two variables).

D. Toolkit support

TTool [1] fully supports AVATAR, including the security

extensions presented in this paper: TTool therefore implements

a press-button approach for verifying confidentiality and au-

thenticity security properties from AVATAR models: TTool

executes T , then it makes a call to ProVerif, and outputs the

following results:

TABLE II
A FEW AVATAR BLOCK DIAGRAM → PROVERIF TRANSLATION RULES

AVATAR ProVerif Semantics

Block declaration let

myBlock0=

Block declaration with
name myBlock. The ini-
tial process myBlock0 is
declared

Block data types new

data1;

Integer attribute named
data1

Block input signal free

ch1.
Declaration of input
channel ch1. Quite
similar rule for output
or private channel

Common knowledge
val in blocks {Bi}

new

val;

The static variable val
preshared by {Blocki},
i=1...n, has the same
initial value

Confidentiality pragma query

attacker:

data.

data is defined as confi-
dential

TABLE III
A FEW AVATAR STATE MACHINE DIAGRAM → PROVERIF TRANSLATION

RULES

AVATAR ProVerif Semantics

State declaration let

myBlocki=

event

myBlock_State

j();

(myBlocki+1

|...|

myBlocki+n).

The state Statej
with n outgoing
transitions. Each sub-
process myBlocki+k

corresponds to a
single transition

Guard declaration if var1=var2

then

myBlocki.

Transition with con-
dition var1 equals to
var2

Simple assignation let

var1=var2

in myBlocki.

Transition with assig-
nation of var2 to var1

Assign predefined
function

let var1 =

encrypt(m,k)

in myBlocki.

Transition with as-
signment of var1 to
result of pre-defined
AVATAR method en-
crypt

Assign non prede-
fined function

event

ready(m);

new var1;

Transition with ready
being a non prede-
fined AVATAR func-
tion

Input signal in(ch1,Data); Reads a signal from
channel ch1, and
stores its content in
Data

Stop state 0. The end of a process
branch

• For each Confidential pragma, TTool indicates whether

data provided in the pragma was proved to be secret, or

not.



Fig. 4. Example of verification results as displayed by TTool

• For each Authenticity pragma, TTool indicates whether

the authenticity holds, or not.

• For each state s of each smd, TTool indicates whether s
is reachable, or not. Reachability is studied for both the

system and the attacker model running together, which

means that a given state of the system may be reachable

because of the attacker.

• Each query that could not be proved is also listed. An

option makes it possible to obtain the trace leading to

the query violation.

Figure 4 shows the results provided by TTool when applying

the verification on the Alice-Bob example.

VI. CASE STUDY

A. Keying Protocol Description

This protocol was verified in the scope of the EVITA project

[37]. Its specification is provided in [38].

The Keying Protocol with Key Master aims to securely dis-

tribute a randomly generated key among the members of a

group of in-car Electronic Control Units (ECUs). The key

to be distributed is referred to as Session Key (SesK). In

our description, the ECU that creates the SesK is referred as

generator (ECU1). The generator creates the SesK and sends

it to the Key Master ECU (ECU-KM) for group distribution

(see Figure 5). Since the Key Master owns the Pre-shared

Symmetric Key (PSK) of every ECU in the group, the gen-

erator encrypts the SesK with its PSK. Further, this message

includes a time stamp and is protected with a MAC (Message

1). After reception, the Key Master verifies Message 1 (See

Figure 5) and in case of a valid request, the SesK is imported

into an internal module named Hardware Security Module

(HSM) [39]. From this point, the Key Master is responsible

for SesK distribution. Consequently, the SesK is protected with

the PSK of the respective target ECU (ECUN). Again, this

message is time stamped and MAC protected (Message 2).

After reception of Message 2, the target ECU first verifies its

validity and then imports the new SesK into its local HSM.

Finally, a message including an acknowledgement flag (ACK)

is sent by the target ECU to the Key Master thus informing

SesK acceptance (Message 3). Message 3 also includes a time

stamp and is MAC protected. The Key Master receives the

acknowledgement and a security check is performed. The Key

Master has to repeat Messages 2 and 3 for every ECU in the

group (different from the generator). After SesK distribution,

the Key Master informs the generator about the result: partial

or total accomplishment. The message includes the respective

ACK code, the time stamp and is MAC protected (Message

4). Finally, the generator verifies Message 4.

Once distributed, the SesK key allows for confidential and au-

thentic unidirectional communications between the generator

and the rest of the group.

B. Protocol Modeling in AVATAR

This quite complex cryptographic protocol is modeled in

AVATAR as follows (see Figure 6):

• One AVATAR block is used for ECU1, one for the Key

Master, and for each ECU of the group (ECUN).

• Pre-shared keys are modeled using InitialCommonKnowl-

edge pragmas.

• Symmetric and MAC cryptographic functions are used

by the states machines of each block. The State Machine

Diagram of the Key Master contains around 15 states.

• Only one public common channel is used for the commu-

nication between ECUs. We thus assume that an attacker

can listen to all communications between ECUs. We

also assume that communications between internal ECU

components (e.g. CPU and HSM [39]) cannot be listened

up by an attacker, as stated in [38].

Two confidentiality properties and one authenticity property

have been modeled for the sake of this case study: the

confidentiality of SesK states that an attacker shall never be

able to obtain this key. The attacker shall also never be able to

retrieve a confidential data that ECU1 sends after the protocol

run, and using SesK. An authenticity property states that an

attacker shall never send an authentic message Message1 to

the key Master ECU-KM, i.e., the first message of the protocol

sent to the Key Master cannot be forged by an attacker. Other

authenticity properties of the protocol can obviously be proved

the same way.
This is an excerpt of the verification results as displayed by

TTool, and computed by ProVerif in a transparent way.

Non reachable states:

enteringState__ECU1__NotAnACK

Confidential Data:

confData

SesK__data

Satisfied Authenticity:

KM__decipherOK__msgauth__data

The three properties are satisfied. Moreover, all states of the

system are reachable, apart from one: that state corresponds to

the acceptance by ECU1 of a message with a non valid MAC.



Fig. 5. Sequence Diagram of the Keying Protocol

Fig. 6. AVATAR Block Diagram for the Key Master protocol

VII. CONCLUSIONS AND FUTURE WORK

AVATAR is a SysML based environment targeting the

modeling and formal verification of distributed, real-time and

embedded systems. While safety properties have already been

discussed in a previous contribution [6], security properties

can now be modeled and proved from an AVATAR model. For

security proofs, AVATAR relies on ProVerif which provides

a formal framework for security proofs, based on Horn

clauses resolution. TTool fully supports AVATAR, including

its security extensions. No or little knowledge of ProVerif is

necessary to perform security proofs.

Even if ProVerif is a strong formal approach, it only targets

verification of confidentiality and authenticity properties

thus limiting AVATAR security proof capabilities. To our

knowledge, richer notion of attackers are indeed required

to address other security properties, e.g. message freshness.

Additionally, ProVerif attacker and semantics are not yet

suitable for temporal analyses. Thus, we are currently working

in two different but complementary directions. First, we would

like to extend security properties that ProVerif can handle:

integrity and freshness properties. The second direction

is to enhance AVATAR with the new security properties

that ProVerif could handle. For example, when ProVerif

will support freshness properties, it will probably become

necessary to enhance the AVATAR-to-Proverif translation

process, so as to handle differently the temporal operators of

AVATAR.

Following techniques proposed in [40], code generation

preserving security properties is also one of our next research

topics. As shown and explained in [41], maintainability of the

automatically generated code shall subsequently be addressed.
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