
Journal of Computer Virology and Hacking Techniques manuscript No.
(will be inserted by the editor)

SherlockDroid: a Research Assistant to Spot Unknown Malware in
Android Marketplaces

Axelle Apvrille · Ludovic Apvrille

Received: date / Accepted: date

Abstract With over 1,400,000 Android applications in Goo-
gle Play alone, and dozens of different marketplaces, An-
droid malware unfortunately have no difficulty to sneak in
and silently spread. Known malware and their variants are
nowadays quite well detected by anti-virus scanners. Nev-
ertheless, the fundamentally new and unknown malware
remain an issue.

To assist research teams in the discovery of such new
malware, we built an infrastructure, named SherlockDroid,
whose goal is to filter out the mass of applications and only
keep those which are the most likely to be malicious for
future inspection by Anti-virus teams.

SherlockDroid consists of marketplace crawlers, code-
level property extractors and a classification tool named
Alligator which decides whether the sample looks mali-
cious or not, based on some prior learning.

In our tests, we extracted properties and classified over
480K applications. During two crawling campaigns in July
2014 and October 2014, SherlockDroid crawled over 120K
applications with the detection of one new malware, An-
droid/Odpa.A!tr.spy, and two new riskware. With previ-
ous findings, this increases SherlockDroid and Alligator’s

Axelle Apvrille
FortiGuard Labs, Fortinet,
120 rue Albert Caquot, 06410 Biot, France
Tel.: +33-(0)4-89-87-05-42
E-mail: aapvrille@fortinet.com

Ludovic Apvrille
Institut Mines-Telecom, Telecom ParisTech, CNRS/LTCI, Biot,
France
Tel.: +33-(0)4-93-00-84-06 Fax.: +33-(0)4-93-00-82-00
E-mail: ludovic.apvrille@telecom-paristech.fr

“Hall of Shame” to 8 malware and potentially unwanted
applications.

Keywords Android, malware, classification, static
analysis, security

1 Introduction

With the plethora of new Android applications (between
20K and 40K monthly according to AppBrain) malware
authors can easily sneak in malicious applications.

Some of these are fortunately filtered by Anti-Virus
products. Detecting known malware, in particular, is eas-
ily done by matching a hash (called a ’signature’ in the AV
world) on parts of its code. Variants can also be detected
using more or less complex ’generic signatures’ i.e. pat-
terns that match several samples at a time [17]. Neverthe-
less, all anti-virus scanners face difficulties when it comes
to detecting truly new malware (new families, 0-days...),
i.e. a malicious sample which does not look like anything
before.

On PC and Mac desktops, AV vendors tackle this issue
by complementing their traditional scanners with heuristic
engines, machine learning or sandboxes. However, those
mechanisms are by nature imperfect. We remind that [13]
proved that there is no algorithm capable of perfectly de-
ciding whether a program is malicious or not. In practice,
AV vendors only use heuristics and sandboxes for report-
ing (gathering information on potential new malware) or
user warning (raising an alert), but never for detection be-
cause of the inherent risk of False Positives. Indeed, False
Positives (clean samples detected as malicious) is what AV

2 Axelle Apvrille, Ludovic Apvrille

vendors fear the most, because of the immediate surge in
customer requests and bad press [22] [30] [25]. On mobile
devices, the situation is even more complicated. The device
does not have the resources to run a sandbox. Vendors typ-
ically ask end-users to send their applications for remote
analysis in their “cloud”. Once again, this is a convenient
mechanism to gather statistics and/or raise alarms on sus-
picious applications, but it is not directly used for malware
detection for fear of False Positives. As for heuristic ap-
proaches and behavior analysis mechanisms, they are yet
in their early days [14] [34] [10] and have not been eval-
uated over large volumes of malware, as further explained
in Section 2.

Thus AV analysts have to find truly new mobile mal-
ware themselves, manually inspect suspicious samples and
update signature databases as quickly as possible: a task
which is even harder than finding a needle in a haystack.

To address this problem, we suggest to assist analysts
with a tool that will automatically inspect the haystack
for them, and only output a handful of suspicious items
it finds. This tool is named SherlockDroid. We highlight
it is not an anti-virus scanner: it aims at finding only new
malware and will completely ignore already detected mal-
ware. SherlockDroid outputs only a few applications: a set
small enough for analysts and researchers to manually in-
spect. Its strength resides in selecting the most suspicious
applications in that small set to analyze, so that, at least,
time shall not be wasted on clean applications. While it is
true that SherlockDroid will miss several new malware in
the wild, we argue that, without SherlockDroid, even more
malware remain undetected.

SherlockDroid relies on the automated combination of
marketplace crawlers, filtering and property extraction tools,
and classifiers. It is meant to process a large quantity of ap-
plications, filter out applications which are either clean or
known malware, and finally keep a very small set of sus-
picious samples. The contribution of this paper focuses on
issues encountered during implementation of marketplace
crawlers, property extraction and the tuning of Alligator to
minimize False Positives. Another contribution of the pa-
per consists in the evaluation of our approach on a huge
dataset (480K clusters).

This paper is organized as follows. First, section 2 com-
pares SherlockDroid with other similar heuristic-based ap-
proaches. Then, we describe SherlockDroid’s architecture
(section 3), and detail implementation issues for crawlers,
static analysis property extraction in sections 4 and 5. Fi-
nally, we focus on classification results (section 6) and dis-
covered malware (section 7).

2 Related work

2.1 Assisting the discovery of unknown malware

Nearly all research work we are aware of are tested on
known malware datasets. They consequently confirm ma-
liciousness of known malware, but do not spot unknown
malware like new families or 0-days. In some cases, it is
simply not their goal [21] [2] [15] [33]. In other cases,
the frameworks were never tested in a real environment
or with too few samples to get the chance to discover any
new malware (e.g., [35] [14] [34] [7]). Some research work
crafted artificial, i.e. self written malware [8] [31] [10]. Be-
sides the dangerosity of such a technique, detecting such a
malware is not the same as detecting unknown malware
because the malware authors are also the designers of the
defense system, which seriously biases the study. Drebin
[6], although it has not discovered any new malware, is at
least evaluated against unknown malware, where it obtains
detection rates between 50 and 75%. This is far lower than
with SherlockDroid: over 98% - see section 7). AppsPlay-
ground [26] does not detect new unknown malware either,
but succeeds at pin-pointing undetected privacy exposure.

DroidRanger [37] is the only previous public work which
discovered two new malicious families. It is however lim-
ited by design to detecting (i) variants of known malware
families or (ii) unknown malware that dynamically load
untrusted code, via the implementation of only two heuris-
tics. SherlockDroid relies on a far larger set of heuristics
(see Section 5), and leads to the discovery of two new mal-
ware and six potentially unwanted applications.

2.2 Scalability to Android marketplaces

Few studies have been experimented on large scale. Sev-
eral systems have not been designed to crawl marketplaces
at all (e.g., [34] [31] [35] [8] [27] [14] [15]) or their ap-
plicability in practice for the anti-virus industry is still to
demonstrate. Six systems only have been tested over 100K
applications: AndRadar [21], Andrubis [2], Drebin [6], Dr-
oidRanger [37], PlayDrone [33] and SherlockDroid.

We discussed Drebin and DroidRanger previously. The
other three have different goals from SherlockDroid. An-
dRadar focuses on tracking distribution of known malware
among various marketplaces. Andrubis is an Android sand-
box, i.e. researchers use it to run an application and get
security-related logs and traces. PlayDrone gathers statis-
tics on Google Play applications. It is not the first Google
Play store crawler (see [3] in 2012), but the first statistical

SherlockDroid: a Research Assistant to Spot Unknown Malware in Android Marketplaces 3

study on crawled applications. Its crawlers are nonetheless
interesting to compare to SherlockDroid’s:

– PlayDrone uses Amazon EC2 cloud services to lever-
age computation power. We re-used old unused desk-
tops, which is less efficient, but less expensive.

– So as not to get their IP addresses banned during Google
accounts creation, PlayDrone proxied their request thr-
ough third party service providers. In SherlockDroid,
we initiate a different Tor connection for each request.

– PlayDrone had other users create Google accounts for
them, via Amazon’s Mechanical Turk1. We automated
the creation of Android IDs using an open source toolkit
[1].

Although it makes sense to entirely crawl Google Play for
statistical goals, but in our case, for malware detection, this
is over-kill. For instance, applications which do not con-
nect to Internet, do not make calls and do not send SMS are
less likely to be be malicious. According to [18], Trojan-
SMS represent 57.08% of mobile malware, and at least Ad-
ware, Trojan-Bankers and Trojan-Downloaders (9.85%) re-
quire Internet.

2.3 Machine learning

Machine learning and classification are a common solution
to classifying Android applications as clean or malicious
(see Table 1).

Mast [11] relies on correlations between 208 features.
MADAM [14] uses the k-NearestNeighbor algorithm for
classification. This algorithm is similar to Alligator’s prox-
imity algorithm. Andromaly [31] has been tested with sev-
eral classification algorithms, including k-Means. It selects
the most accurate classification algorithm for a series of
input data (clean, malware). Similarly, the PUMA [28] ap-
proach compares the accuracy of several classification al-
gorithms (e.g., randomforest, SVM, decision trees, etc.)
in order to detect malware from application permissions.
They conclude that decision trees is the best classifica-
tion algorithms for their features (best True Positive Ratio:
0.92). Yet, SherlockDroid is the only one that combines
classification algorithms. The training phase computes a
weight for each supported algorithm, e.g., k-NearestNeigh-
bor, correlations, SVM.

Other contributions, such as RobotDroid [36], customize
classification algorithms (e.g., SVM) to improve results. In

1 Mechanical Turk is a web service where registered users get paid
to carry out simple tasks.

our case, we have large datasets, but they are strongly un-
balanced (few clean, many malware). Thus, Alligator has
specific options to handle that issue, and is very efficient to
correctly handle large and unbalanced datasets, with an in-
creased computation cost since - in the general case, it has
to execute several classification algorithms, and not only
one. Classification accuracy and computation time are fur-
ther discussed in section 7 (”Results”).

Project name Classification algorithms
MAST Correlation-based
RobotDroid SVM
Drebin SVM
pBMDS Hidden Markov Model
Andromaly k-Means, Logistic Regression, Histograms,

Decision Tree, Bayesian Networks, Nave
Bayes

Crowdroid k-Means
PUMA SimpleLogistic, NaiveBayes, BayesNet,

SMO, IBK, J48, RandomTree, RandomForest
Permission-
based frame-
work [7]

k-Means

SherlockDroid Combination of any: standard deviation, sev-
eral variants of k-NNs, correlations, probabil-
ities, ε-clusters, SVM

Table 1: Classification approaches of similar approaches vs. Sher-
lockDroid

3 Overview of SherlockDroid

3.1 Main components of SherlockDroid

SherlockDroid is the name given to the entire platform il-
lustrated at Figure 1. The 3-step methodology associated
to this platform is as follows:

A/ Crawling. Crawlers download samples from vari-
ous marketplaces. Currently, we have crawlers for the Play
Store, APKTop, AppsApk, SlideME, Nduoa2 and a generic
crawler which recursively parses a URL for Android appli-
cations. See Section 4 for more details.

B/ Analysis. First, a pre-filtering stage prunes sam-
ples which are not likely to be interesting to analyzed are
pruned. Those are:

– Already detected by an AV engine
– Already analyzed by SherlockDroid

2 Respectively http://www.papktop.com/,
http://www.appsapk.com, http://slideme.org/ and
http://www.nduoa.com.

4 Axelle Apvrille, Ludovic Apvrille

C
ra

w
lin

g

Google Play APKTop slideME ...
...

A
na

ly
si

s

Already analyzed? SMS or Internet? AV scanning Bad Rating?
Prune sample

Property extractor (DroidLysis)
Encrypt Reflection POST

C
la

ss
ifi

ca
tio

n

Machine learning (Alligator)Suspicious Clean

Database

Fig. 1: SherlockDroid Architecture

– Neither INTERNET nor SMS permission3

Some forms of pre-filtering may also be implemented within
the crawlers itself. For example, our Google Play crawler
selects unpopular applications, hoping that end-users com-
plain for a good reason (e.g., “not working” may indicate
the application is fake - a mobile trojan).

Then, we extract information from the sample. We per-
form static analysis of 289 different properties. This work
is handled by a tool named DroidLysis - see Section 5.

C/ Classification. The collected information is sent to
an open source learning and classification tool named Al-
ligator. It classifies the sample as suspicious or not. See
section 6.

Samples and current SherlockDroid steps are regulated
in a SQL database. For each sample, the database keeps
track of parameters such as origin, hash, date, status.

3.2 SherlockDroid is not an Anti-Virus scanner

The architecture of SherlockDroid highlights an important
point: SherlockDroid is not an AV scanner. Indeed:

1. Its goal is not to detect any malware, but new unknown
(undetected) malware, where this comprises unknown
variants and, as much as possible, strongly different
malware. As a matter of fact, all downloaded samples
are scanned by an AV engine, and known malware are
ignored by SherlockDroid.

3 Note this is purely a customizable implementation choice. We
might change it in the future if we notice malware commonly bypass
those permissions.

2. SherlockDroid is not able to say for sure that a sample
is clean or malicious. It only says a sample looks clean
or not. In practice, it outputs a score of resemblance to
the cluster of clean samples and a score of resemblance
to the cluster of malicious samples. When the score is
higher with the cluster of clean samples, the sample is
believed to be clean. Based on score differences, we
are furthermore able to classify the sample as light /
medium / strong clean or malware.

3. From an implementation point of view, SherlockDroid
does not use any signature mechanism to detect mal-
ware, like common AV engines do on PC or mobile
devices. On the contrary, it extracts properties from
the sample, and then classifies it. This design is rather
comparable to heuristics, which often complement AV
products [17].

4 Crawlers

An Android marketplace crawler is a program that system-
atically browses a marketplace to download applications
it contains. As most marketplaces hide or provide indirect
access to Android application packages, implementing a
crawler starts with the reverse engineering of the download
protocol. Depending on cases, this is more or less difficult.
We faced the following issues:

(i) Blocked user agents. In an attempt to block au-
tomated downloads, some marketplaces restrict possible
browser user agents.

SherlockDroid: a Research Assistant to Spot Unknown Malware in Android Marketplaces 5

(ii) Download limit per IP address. Some market-
places (e.g., Google Play, AppsApk) are known to ban IP
addresses [33] when they suspect “illicit activity”. We by-
pass the measure by using a different Tor connection for
each download. However, downloads from Tor are appar-
ently banned on some marketplaces (e.g., SlideMe).

(iii) Download limit per account. Google’s Play store
returns at most 500 applications per search, and bans ac-
counts with suspicious activity. To prevent this, we have
created multiple fake Google accounts and iterate the list
for downloads. Actually, the creation of Google accounts
itself is cumbersome, in particular the generation of a valid
Android ID, so we used [1] to automate it.

(iV) Restricted application searches. On Google Play,
the list of returned applications is different depending on
your search, location and device [3]. We cope with this
limitation by simulating searches on a pre-defined list of
keywords. Like [33], we could have searched from an ex-
haustive list of dictionary words of different languages, but
this would mean wasting time on searching for redundant
words (e.g., ’operator’ and ’operators’) or useless words
(e.g., ’the’, ’a’, ’an’...).

5 Property extraction (DroidLysis)

5.1 Property definition and categories

In SherlockDroid, a property is a characteristic of an An-
droid application, whether clean or malicious. Taken alone,
a single property is always insufficient to determine its ma-
liciousness, but their combination yields information.

DroidLysis properties fall in 4 different categories:

1. File properties (54/289). They correspond to charac-
teristics found in 4 important files of applications: the
package file itself (e.g., its size), the manifest (e.g.,
permissions requested, number of services ...), the cer-
tificate (issuer, algorithm, date...) and the Dalvik Exe-
cutable (e.g., magic, correct hash).

2. Dalvik code properties (70/289). They are extracted
from the Dalvik executable inside the Android pack-
age. For example, there are properties to detect certain
APIs (e.g., sendTextMessage), actions (e.g., AC-
TION CALL), intents (e.g., EXTRA SUBJECT), con-
stants (e.g., POST), Dalvik opcodes (e.g., nop, junk
bytecode constructions such as [23]). We also detect
implementation techniques such as JNI (e.g., use of
jmethodID, jfieldID...), encryption (e.g., use of classes

KeySpec, SecretKey...) or reflection (e.g., use of Class.-
forName(), Method.invoke()...). We detect some
forms of obfuscation by analyzing the names of classes
and methods (e.g., presence of classes and methods
named a, b, c...).

3. Assets, libraries and resources properties (22/289).
In these files, we pay particular attention to native code
like identifying deliberate or hidden ARM executables
in those paths and parsing those executables for poten-
tial exploits or risky system calls (su, mount, execve,
chmod...). We are not aware of any other research work
detecting such attempts. We also look for JavaScript,
URLs, phone numbers that might be mentioned in con-
figuration files, layouts or resources.

4. Third party kits properties (143/289). Android ap-
plications embed third party code for numerous rea-
sons like advertisement, statistics or error reporting.
DroidLysis detects the presence of those kits for rea-
sons that we detail further in Section 5.4.

5.2 Property extraction

In DroidLysis, all properties are extracted statically. We
use static analysis because it is particularly fast and values
are easy to extract from Android application’s file format.

Reciprocally, we do not use dynamic analysis because
it slows down performances (time to install, launch and
run the application) and because history of malware on
PC shows that sooner or later malware authors implement
techniques to behave differently when run in emulators,
hypervisors or sandboxes.

As much as possible and for ease of manipulation, we
choose to extract properties as strings. For Dalvik prop-
erties, this is possible because the Dalvik bytecode refer-
ences each constant, field, method, class as a string. So,
we can spot pieces of code which call a given method or
perform a given action. Hence, we are able to extract prop-
erties on the application’s features and behavior without
actually having to run it.

Note that detecting API calls is more reliable than rely-
ing on the presence of specific permissions, because a per-
mission may be requested and not used, or not requested
and bypassed. It is true however that we might detect code
which is never called: unless we build call graphs, static
analysis fails on this point. Dynamic analysis has other
drawbacks: it misses calls when code coverage is incom-
plete.

6 Axelle Apvrille, Ludovic Apvrille

Third-party kit properties are extracted from the names-
paces present in the Smali output. We discuss this more in
detail in Section 5.4.

Resource properties are also extracted from strings as
many of them are scripts or XML files, and thus human
readable. When they include binary executables, we run
the Unix strings command on them to spot particu-
lar calls (e.g., pm install) or system properties (e.g.,
ro.kernel.qemu). This has the advantage of letting us
inspect executables without having to disassemble them.

The property extraction source code is unfortunately
not public, to prevent malware authors from easily building
evasion techniques around them[20].

5.3 Property relevance

We select interesting properties to extract manually, based
on our experience of reverse engineering known mobile
malware. We identify the mechanisms that enable them to
conduct their malicious deeds, and extract corresponding
properties.

As an illustration, we list below three examples of how
malicious mechanisms were mapped to properties:

– Mobile spyware commonly intercept SMS messages
and forward them to another recipient. To do so, they
typically register themselves as high priority receivers
(to receive SMS before other applications) and then
delete the message so that the victim does not get any
notification. We track this technique by (i) checking re-
ceivers in the manifest, and (ii) spotting calls to abort-
Broadcast() - the method use to delete a message
from a queue.

– Mobile spyware are also interested in personal assets.
We try to detect each time they access something which
might be sensitive. For example, we track calls to re-
trieve the IMSI (getSubscriberId()), calls which
list recently accessed URLs (getAllVisitedUrls-
()) etc.

– In several cases, e.g., Android/DrdDream, mobile tro-
jans’ graal is root access on the device. This can be
achieved by different means, like using a root exploit
(rage in the cage, mempodroid ...) or attempting to is-
sue the Unix command ’su’. As some exploits are based
on changing the wifi state of the phone to invoke a root
shell, we detect CHANGE WIFI STATE permission.
We also detect attempts to re-mount the system par-
tition in read-write mode. As for the ’su’ command,
we detect attempts via calls to APIs like Runtime-

>exec(), ProcessBuilder->start() or cre-
ateSubprocess().

This empirical methodology has its obvious limits, but
it has the advantage of generating properties which are well
tuned to SherlockDroid’s goal. Additionally, each property
having a practical meaning, it helps us tune and debug in-
correct classifications.

5.4 Handling advertisement kits

The amount of advertisement kits (68 different kits iden-
tified by [9]) and their high usage is an issue to property
extraction for two reasons.

First, the same code will be parsed multiple times where
a single extraction would suffice in theory. For example, a
given version of AdMob will be found in numerous sam-
ples, and it is a waste of time to extract its properties at
each occurrence.

Second, advertisement kits typically raise flags on prop-
erties retrieving geographical location, IMEI, country etc
[24]. While any abuse should be reported, whether it is
found in an adkit or not, properties found in adkits blur
the application’s real intent. The problem is the same for
other third party kits such as statistics kits, licensing kits,
gaming platforms or development kits (reporting crashes
for example).

To cope with this issue, we separate properties found
in the application’s code from those found in third party
code. We identify 143 third party kits, analyze them man-
ually, and then, in future instances, only consider proper-
ties outside those kits. This enables us to tell the difference
between an application which has given properties and an
application using a third party kit that uses the same prop-
erties.

This mechanism however goes with a drawback cur-
rently because third party kits are identified based on their
namespace. So, malware trojaning third party kits can evade
detection. For example, we have encountered this in An-
droid/RuSMS.AO[16]. The malware hides within Adobe
AIR’s namespace (com.adobe.air). In such a case, we can
ask DroidLysis to scan the entire application, but this is a
manual option.

SherlockDroid: a Research Assistant to Spot Unknown Malware in Android Marketplaces 7

6 Classification (Alligator)

6.1 Purpose of classification

Classification relies on extracted properties in order to de-
cide whether unknown samples are more likely to be clean
or suspicious samples. Ideally, we expect the classification
to lower as much as possible the False Positive Rate. Also,
a score on clean / suspicious is preferable over a simple
boolean, because it conveys the degress of suspiciousness
and helps prioritize which samples should be inspected
first.

6.2 Classifying with Alligator

Alligator is an open-source tool for classification [4]. Its
algorithms and specificities have been published in [5]. It
is agnostic of the anti-virus world and meant to decide
whether a given sample looks more like samples in a given
set or another. The sets are called clusters, and Alligator
can virtually be used to classify anything: fruits / vegeta-
bles, male / female, clean / malware etc. In the case of
SherlockDroid, we use Alligator to decide between clean
(regular cluster) and malware (malware cluster). In a first
initialization step, Alligator needs to be trained. This is also
called the learning phase, where we provide examples of
typical clean files (learning regular cluster) and examples
of malware (learning malware cluster). This phase may be
long (see Table 3) and is only meant to be done once in a
while.

SVM [12] and Adaboost [29] are among the most well-
known classifiers, especially for the classification of mal-
ware and images. Yet, we have selected the Alligator clas-
sification engine for the following reasons:

1. Classification performance. Most classification tools
rely on one given distance metric (e.g., Euclidean, Pear-
son correlation, etc.), e.g., SVM. Alligator relies on
several classification algorithms whose importance for
correct identification is automatically computed dur-
ing the learning phase. Adaboost also combines mul-
tiple classification algorithms (or the same algorithm
with different parameters), but Alligator associates the
weight to classification algorithms considering all clas-
sification algorithms at the same time, while Adaboost
relies on an iterative approach to compute the weights
of classification algorithms. Just like for Adaboost, Al-
ligator provides an efficient automated help to select
classification algorithms.

We have compared Alligator with Adaboost and SVM
for different kinds of clusters, e.g., for classifying clean
/ malware applications, and images (e.g., male/female
identification, make-up/non make-up, etc.). For clean
/ malware classification, comparisons with SVM are
provided in the result section (section 7). Several com-
parisons with images are provided in [19]. Basically,
Alligator demonstrates an improvement of 9% when
compared to SVM for the make up/non-make up cate-
gories, and for publicly available sets of images (FCB
database).

2. Favor a cluster over another. During the learning phase,
we are able to tell Alligator the importance we give to
correct classification in a cluster compared to the other.
In the case of SherlockDroid, we tune the learning to
minimize False Positives. False Negatives are impor-
tant too, but only come as a second priority in our case.

3. Lightweight and simplicity. Alligator is a stand-alone
Java program. Its learning is highly customizable, but
still quite easy: the user just has to select the classifica-
tion algorithms - and their parameters - he/she would
like to experiment with.

7 Results

7.1 Performance

We have tested the performance of each step of Sherlock-
Droid (crawling, pre-filtering, property extraction and clas-
sification) taken individually (see Table 2). Each perfor-
mance test was run alone on a Xen virtual machine with
an Intel(R) Xeon(R) CPU E5-2403 at 1.80GHz and 2GB
RAM (this is not a very performant host nowadays). The
results show that the slowest task in our case is crawling,
but our bandwidth impacts crawling.

SherlockDroid
step

Nb of
samples
processed

Total Time
(seconds)

Rate (sam-
ple per
second)

Crawlers 2,605 22,925 0.11
Pre-filtering 3,576 4,145 0.86
Prop. extraction 24, 126 4,380 5.51
Classification 4,574 34 134.53

Table 2: Individual performance measurements of each component of
SherlockDroid

Alligator classifies 134 samples per second (see Table
2). The performance of Alligator’s training and classifi-

8 Axelle Apvrille, Ludovic Apvrille

cation is depicted at Figure 2. The results depend on the
number of samples in the learning clusters. As expected,
the learning phase is much longer than the classification
phase.

The training time is always better with Alligator than
with SVM4, but the classification time is lower for SVM.
With clusters of 50K samples, Alligator training phase is
almost 4 times faster than the one of SVM (Alligator: 1200
sec., SVM: 4400 sec.), but that gap tends to reduce when
clusters get bigger. On the opposite, SVM is faster than
Alligator during the classification stage, because SVM can
prepare a classification model during the learning phase
(the vector values), which is not possible for several algo-
rithms of Alligator, e.g., for k-NN. Yet, the classification
time remains reasonable, and is really low with regards to
the learning time, even for very large learning clusters. For
example, the classification of guess clusters takes around 6
minutes with 480 K learning clusters, and with 50 K clus-
ters, it takes 7.5 ms per guess sample (see the curve at Fig-
ure 2).

As we however discuss in the next subsection, Alli-
gator performs much better in terms of classification ef-
ficiency, in particular for the False Positive Rate.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000
 0

 200

 400

 600

 800

 1000

Le
ar

ni
ng

 ti
m

e
(in

 s
ec

on
ds

)

C
la

ss
ifi

ca
tio

n
tim

e
(in

 s
ec

on
ds

)

Number of samples in the learning clusters

Alligator vs. SVM - Learning and classification time depending on the learning cluster size

Regular cluster size Mawalre cluster size

Alligator learning time
Alligator classification time
SVM Learning time
SVM Classification time

Fig. 2: Learning and classification time for Alligator and SVM.

4 We compared with jlibsvm [32]

7.2 False Positive and False Negative Rates

7.2.1 Test bed

The accuracy of the classification stage (performed with
Alligator) is evaluated as follows:

– Alligator is provided with two learning clusters: 12,368
known clean files and 486,890 known malware, gath-
ered before end of June 2014. Clean applications have
been gathered either after manual analysis or from what
we have assumed to be trusted sources, e.g., open-source
applications for which we can check the code, or top
developers/companies. The known malware cluster con-
sists in Android samples detected by Fortinet and shared
to or from other AV vendors.
At the end of its training, Alligator parses both clusters
(clean and malware). For each sample, it pretends not
to know from which cluster it comes from and guesses
whether it is clean or not. Then, knowing the cluster
the sample belongs to, it evaluates the achieved cor-
rectness.
We obtained excellent recognition rates (99.9%). We
also evaluate the learning time during this step.

– Then, Alligator is asked to classify two guess clusters
it does not know of at training phase, i.e. those guess
clusters are made of samples which are not in the learn-
ing clusters.
The guess clusters are actually made of samples which
were downloaded at much later dates, i.e. after Septem-
ber 2014.
We choose such guess clusters so as not to bias results.
We know which samples are clean and which ones are
malicious, but Alligator does not. There are 1,512 clean
samples and 3,062 malicious ones.
We thus ask Alligator to classify the samples automat-
ically, and check how well it performed in terms of
recognition rate.

– We compare the training and classification results with
SVM in terms of recognition rate.

7.2.2 Classification results

Figure 3 depicts the classification performance in terms of
overall classification efficiency, and of False Positive and
False Negative Rates, and for both Alligator and SVM. A
low False Positive Rate is our prime interest. Indeed, as
we stated before, AV labs do not want to bother with the
manual analysis of clean samples. On the contrary, missing

SherlockDroid: a Research Assistant to Spot Unknown Malware in Android Marketplaces 9

malware is not so important, since so many are already not
identified. . .

The curve shows that Alligator, whatever cluster size,
always performs better than SVM for the False Positive
Rate. SVM’s FP rate is heavily impacted by cluster size:
65% of FP with 480K clusters. Alligator is far less im-
pacted: 1% with 60K clusters and 1.78% with 480K.

Moreover, the average recognition rate is almost al-
ways better with Alligator. For 50k samples, precise results
are given in Table 3.

Actually, more than just classifying as clean or suspi-
cious, Alligator is able to say how clean or suspicious a
sample looks to it. Does it look slightly suspicious (”light
malware”), or very suspicious (”strong malware”)? etc. Ta-
ble 4 shows the detailed classification of our guess clusters.
In particular, we note that all False Positives (clean sam-
ples wrongly classified as malware) are classified as light
malware, i.e. samples on which Alligator has doubts.

7.3 SherlockDroid in Operations

SherlockDroid is running on a research server of Fortinet’s
FortiGuard Labs since July 2013. However, due to several
external factors (upgrades of DroidLysis or Alligator, sys-
tem maintenance etc) it has only been up sporadically a few
days in a row during 3 different campaigns: July-August
2013 , July 2014 and part of October 2014. We intend to
run it full time as soon as possible.

Since July 2013, we have processed over 120,000 ap-
plications. However, as many of these applications were
downloaded for various tests, there are many duplicates in
that count and there are only 47,917 different applications
in the database.

Details from the SherlockDroid database (see Table 5)
also show that 6,530 samples were pruned because they
did not ask for either the SMS or the Internet permission,
and that 423 were found to be known malware or Poten-
tially Unwanted Applications (PUA). So, a total amount
of 83,119 were filtered out (duplicates, no SMS/internet,
known malware) during the pre-filtering stage.

We tried to extract properties from the remaining 40,964
samples. This extraction failed in 330 cases because the
sample was empty or damaged. The other 40,634 sam-
ples were classified by Alligator, and 65 applications were
flagged as suspicious. We confirmed 5 of these to be ma-
licious: 1 being Android/Odpa.A!tr.spy, another one be-
ing Riskware/Flexion!Android and 3 being different ver-
sions of Riskware/Blued!Android. The different findings
of SherlockDroid are detailed in the next subsection.

7.4 Spotting unknown malware

SherlockDroid detected two new unknown malware: An-
droid/MisoSMS.A!tr.spy (December 2013) and Android/-
Odpa.A!tr.spy (July 2014). See http://blog.forti-
net.com/Clean-for-the-phone-but-not-cl-
ean-in-the-code/. It has also discovered 6 poten-
tially unwanted applications: Adware/Geyser and riskware
SmsControlSpy, Zdchial, SmsCred, Blued and Flexion. PUA
can be seen as borderline cases which are neither fully
clean nor really malicious. Geyser was sending the vic-
tim’s GPS coordinates in clear text. Zdchial leaks the IMEI
and IMSI to a remote server, and SmsCred sends login
and password credentials in clear text. See http://blog.
fortinet.com/Alligator-detects-GPS-leaking-ad\

-ware and http://blog.fortinet.com/Alligator-at\
--GreHack.

From those discoveries, we note that SherlockDroid
seems particularly successful at spotting spyware. We at-
tribute this to the fact that spyware often raise several boolean
properties at extraction (sending SMS, listening to SMS,
placing calls, leaking IMEI, IMSI etc) which helps Alliga-
tor identify their eccentricity.

7.5 Typical badly filtered samples

The most common cases where SherlockDroid fails to cor-
rectly classify (False Positive) a sample usually fall among
one of these two categories:

1. Applications sending e-mails or SMS for bug reports.
Those applications may even query system logs and
multiple system properties to fill out the bug report.
Doing so, they set several boolean properties as true,
and mislead Alligator in thinking the application is ma-
lignant. Manual study of the context reveals the case is
not malicious.

2. UI or system tweaking applications or SMS manage-
ment tools. Those tools require lots of low level tweaks
(su, busybox, system commands...) which, once again,
trigger false alarms for SherlockDroid.

We are currently contemplating solutions to solve those
issues, such as extracting the call stack or other contextual
information for each property.

Other classification failures are due to implementation
errors or missing properties (e.g., a missing property de-
tecting a genuine third party kit). So far, the analysis of
SherlockDroid’s errors has always been extremely helpful

10 Axelle Apvrille, Ludovic Apvrille

 0

 5

 10

 15

 20

 25

 0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

P
er

ce
nt

ag
e

Number of samples in the learning clusters

Alligator vs. SVM - False Positive and False Negative rates depending on learning cluster size

Regular cluster size Mawalre cluster size

Alligator FP
Alligator FN
Alligator FP+FN
SVM FP
SVM FN
SVM FP+FN

Fig. 3: FP and FN Rates for Alligator and SVM

Regular cluster size Malware cluster size Time False Positives False Negatives
For Alligator:
Learning on samples collected
before end of June, 2014

12,368 50,000 20 min 0% 1.55%

Guess on new samples on sam-
ples collected in September 2014

1,512 3,062 34 sec. 0.72 2.09

For SVM:
Learning on samples collected
before end of June, 2014

12,368 50,000 1 h 15 min - -

Guess on new samples on sam-
ples collected in September 2014

1,512 3,062 21sec. 5.48 0.65

Table 3: Learning and classification results of Alligator

Samples Regular Malware
Strong Medium Light Light Medium Strong

Clean 0 % 83 % 16.3
%

0.7
%

0 % 0 %

Malicious 0 % 0.4 % 1.7
%

83.9
%

0 % 14
%

Table 4: Detailed classification results of Alligator for samples col-
lected after June 14, 2014

to improve it. As we remarked in Section 5, this is for in-
stance how we got the idea to identify third party kits and
rule them out.

Crawling: Number of samples crawled 124,083
Pre-filtering
Duplicates 76,166
No SMS, no Internet 6,530
Known malware 423
Total number of samples pruned 83,119
Property extraction and classification
Damaged samples 330
Suspects 65
Confirmed new malware or PUA (since July 2014
- note others were identified with SherlockDroid
before that date and are not listed here)

5

Table 5: Details of samples processed by SherlockDroid during the
July 2014 campaign

SherlockDroid: a Research Assistant to Spot Unknown Malware in Android Marketplaces 11

8 Conclusion - Future Work

Spotting really new Android malware in the wild is partic-
ularly difficult given the size and number of marketplaces.
We therefore designed an automated framework Sherlock-
Droid to assist researchers in finding them with market-
place crawlers, property extractors and a classification en-
gine.

We found two new malware and six potentially un-
wanted applications by crawling over 120,000 applications
within five different marketplaces. Though, to be fair, those
samples are not among the most malicious or advanced
malware, all of them do expose a more or less reprehen-
sible behavior and were unknown to the Anti Virus com-
munity before SherlockDroid spotted them. Compared to
prior research work, this is SherlockDroid’s main achieve-
ment: we are not aware of any other system spotting un-
known malware in the wild, apart from DroidRanger which
detected two new families. Numerous research projects have
only been tested on a few known malware or artificial mal-
ware. Working on known malware is easier because we
know what we are looking for. As for artificial malware,
they are created to test the system and hence raise ethical
issues (how to ensure the malware does not spread), do not
necessarily reflect malware in the wild and, in addition, are
implemented by the same people who design the detection
framework, hence introducing a serious bias.

We plan several improvements for SherlockDroid. In
particular, we need to add other marketplace crawlers for
a better coverage of Android applications. As for property
extraction, we contemplate the use of contextual informa-
tion in correlation of each property. Contextual informa-
tion could be data like the call stack of the property. This
would help us differentiate benign from malicious cases.
For example, if we consider the “send email” property, it
is quite different in terms of analysis if that email is sent
to report bugs, or if it sneaks out information to a C&C.
We would also like to work on differences between PUA
and malware. This is difficult because there is no obvious
property to tell the difference, and perhaps Alligator could
help by introducing multi-class classification: a cluster for
clean samples, a cluster for PUA and a cluster for malware.

Finally, we look forward to running SherlockDroid full
time on operational servers and thus investigate bottlenecks
and performance issues.

Acknowledgements

We wish to thank Ruchna Nigam, for her help on Sherlock-
Droid.

References

1. Akdeniz: Google play crawler java api. https://github.
com/Akdeniz/google-play-crawler

2. et al., M.L.: Andrubis - 1,000,000 apps later: A view on current
android malware behaviors. In: Proceedings of the the 3rd Inter-
national Workshop on Building Analysis Datasets and Gathering
Experience Returns for Security (BADGERS) (2014)

3. Apvrille, A., Strazzere, T.: Reducing the Window of Opportu-
nity for Android Malware. Gotta catch’em all. In: Journal in
Computer Virology, vol. 8, pp. 61–71 (2012)

4. Apvrille, L.: Alligator: AnaLyzing maLware wIth par-
titioninG and probAbiliTy-based algORithms (2014).
http://http://perso.telecom-paristech.
fr/˜apvrille/alligator.html

5. Apvrille, L., Apvrille, A.: Pre-filtering Mobile Malware with
Heuristic Techniques. In: GreHack, pp. 43–59 (2013). Grenoble,
France

6. Arp, Daniel and Spreitzenbarth, Michael and Habner, Malte and
Gascon, Hugo and Rieck, Konrad: Drebin: Efficient and Ex-
plainable Detection of Android Malware in Your Pocket. In:
Proceedings of the 17th Network and Distributed System Secu-
rity Symposium (NDSS) (2014)

7. Aung, Z., Zaw, W.: ”permission-based android malware detec-
tion”. International Journal of Scientific and Technology reseach
2 (2013)

8. Bläsing, T., Schmidt, A.D., Batyuk, L., Camtepe, S.A., Al-
bayrak, S.: An Android Application Sandbox System for Sus-
picious Software Detection. In: 5th International Conference on
Malicious and Unwanted Software (MALWARE’2010). Nancy,
France, (2010)

9. Book, T., Pridgen, A., Wallach, D.S.: Longitudinal analysis of
android ad library permissions. CoRR abs/1303.0857 (2013)

10. Burguera, I., Zurutuza, U., Nadjm-Tehrani, S.: Crowdroid:
Behavior-based malware detection system for android. In: Pro-
ceedings of the 1st ACM Workshop on Security and Privacy in
Smartphones and Mobile Devices, SPSM ’11, pp. 15–26. ACM,
New York, NY, USA (2011)

11. Chakradeo, S., Reaves, B., Traynor, P., Enck, W.: MAST: Triage
for Market-scale Mobile Malware Analysis. In: Proc. 6th WiSec
(2013)

12. Chang, C.C., Lin, C.J.: LIBSVM: A library for support vec-
tor machines. ACM Transactions on Intelligent Systems and
Technology 2, 27:1–27:27 (2011). Software available at http:
//www.csie.ntu.edu.tw/˜cjlin/libsvm

13. Cohen, F.: Computer viruses - theory and experiments. Com-
puter and Security 6, 22–35 (1987)

14. Dini, G., Martinelli, F., Saracino, A., Sgandurra, D.: Madam:
A multi-level anomaly detector for android malware. In: Com-
puter Network Security - 6th International Conference on Math-
ematical Methods, Models and Architectures for Computer Net-
work Security, MMM-ACNS, Lecture Notes in Computer Sci-
ence, vol. 7531, pp. 240–253. Springer, St. Petersburg, Russia
(2012)

12 Axelle Apvrille, Ludovic Apvrille

15. Enck, W., Gilbert, P., Chun, B.G., Cox, L.P., Jung, J., McDaniel,
P., Sheth, A.N.: Taintdroid: An information-flow tracking sys-
tem for realtime privacy monitoring on smartphones. In: Pro-
ceedings of the 9th USENIX Conference on Operating Systems
Design and Implementation, OSDI’10, pp. 1–6. USENIX Asso-
ciation, Berkeley, CA, USA (2010). URL http://dl.acm.
org/citation.cfm?id=1924943.1924971

16. Fortiguard Center: Android/RuSMS.AO (2013). Forti-
guard Encyclopedia, http://www.fortiguard.com/
encyclopedia/virus/#id=5897642

17. Harley, D., Lee, A.: Heuristic Analysis - Detecting Unknown
Viruses (2007)

18. INTERPOL, Lab, K.: 60% of android attacks use financial
malware. http://www.kaspersky.com/about/
news/virus/2014/sixty-per-cent-of-An\
-droid-attacks-use-financial-malware

19. Kose, N., Apvrille, L., Dugelay, J.L.: Facial Makeup Detection
Technique Based on Texture and Shape Analysis . In: 11th IEEE
International Conference on Automatic Face and Gesture Recog-
nition (FG 2015) (2015)

20. Lindorfer, M., Kolbitsch, C., Milani Comparetti, P.:
Detecting environment-sensitive malware. In: Pro-
ceedings of the 14th International Conference on Re-
cent Advances in Intrusion Detection, RAID’11, pp.
338–357. Springer-Verlag, Berlin, Heidelberg (2011).
DOI 10.1007/978-3-642-23644-0 18. URL http:
//dx.doi.org/10.1007/978-3-642-23644-0_18

21. Lindorfer, M.e.a.: AndRadar: fast discovery of android applica-
tions in alternative markets. In: Proceedings of the 11th Con-
ference on Detection of Intrusions and Malware & Vulnerability
Assessment (DIMVA) (2014)

22. Mills, E.: Users upset after CA anti-virus detects Windows sys-
tem file as virus (2009). http://www.cnet.com/news/
users-upset-after-ca-anti-virus-detects\
--windows-system-file-as-virus/

23. Patrick Schulz: Dalvik Bytecode Obfuscation on An-
droid (2012). http://www.dexlabs.org/blog/
bytecode-obfuscation

24. de Pontevès, K., Apvrille, A.: Analysis of android in-app adver-
tisement kits. In: The 23rd Virus Bulletin International Confer-
ence, pp. 157–162 (2013)

25. Popa, B.: AVG Anti-Virus Breaks Down Win-
dows XP Due To False Positive (2013).
http://news.softpedia.com/news/
AVG-Anti-Virus-Breaks-Down-Windows-XP-Due-\
-to-False-Positive-337395.shtml

26. Rastogi, V., Chen, Y., Enck, W.: Appsplayground: Automatic se-
curity analysis of smartphone applications. In: Proceedings of
the Third ACM Conference on Data and Application Security
and Privacy, CODASPY ’13, pp. 209–220. ACM, New York,
NY, USA (2013)

27. Reina, A., Fattori, A., Cavallaro, L.: A system call-centric anal-
ysis and stimulation technique to automatically reconstruct an-
droid malware behaviors. In: Proceedings of the 6th Euro-
pean Workshop on System Security (EUROSEC 2013). Prague,
Czech Republic (2013)

28. Sanz, B., Santos, I., Laorden, C., Ugarte-Pedrero, X., Bringas,
P.G., Maranon, G.A.: Puma: Permission usage to detect mal-
ware in android. In: A. Herrero, V. Snasel, A. Abraham,
I. Zelinka, B. Baruque, H. Quintian-Pardo, J.L. Calvo-
Rolle, J. Sedano, E. Corchado (eds.) CISIS/ICEUTE/SOCO

Special Sessions, Advances in Intelligent Systems and Com-
puting, vol. 189, pp. 289–298. Springer (2012). URL
http://dblp.uni-trier.de/db/conf/softcomp/
soco2012s.html#SanzSLUBA12

29. Schapire, R.E., Singer, Y.: Improved boosting algorithms using
confidence-rated predictions. In: Machine Learning, pp. 80–91
(1999)

30. Seltzer, L.: Lessons of the McAfee False Positive Fiasco (2010).
http://securitywatch.pcmag.com/malware/
283982-lessons-of-the-mcafee-false-posi\
-tive-fiasco

31. Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C., Weiss, Y.: ”an-
dromaly”: a behavioral malware detection framework for an-
droid devices. J. Intell. Inf. Syst. 38(1), 161–190 (2012). DOI
10.1007/s10844-010-0148-x. URL http://dx.doi.org/
10.1007/s10844-010-0148-x

32. Soergel, D.: Efficient training of support vector machines in
java (2014). https://github.com/davidsoergel/
jlibsvm

33. Viennot, N., Garcia, E., Nieh, J.: A measurement study of google
play. In: The 2014 ACM International Conference on Measure-
ment and Modeling of Computer Systems, SIGMETRICS ’14,
pp. 221–233. ACM, New York, NY, USA (2014)

34. Xie, L., Zhang, X., Seifert, J.P., Zhu, S.: pBMDS: a behavior-
based malware detection system for cellphone devices. In: Pro-
ceedings of the third ACM conference on Wireless network se-
curity, WiSec ’10, pp. 37–48. ACM, New York, NY, USA (2010)

35. Yan, L.K., Yin, H.: Droidscope: Seamlessly reconstructing the os
and dalvik semantic views for dynamic android malware analy-
sis. In: USENIX Security Symposium, pp. 569–584 (2012)

36. Zhao, M., Zhang, T., Ge, F., Yuan, Z.: Robotdroid:
A lightweight malware detection framework on smart-
phones. Journal of Networks 7(4) (2012). URL
http://ojs.academypublisher.com/index.
php/jnw/article/view/jnw0704715722

37. Zhou, Y., Wang, Z., Zhou, W., Jiang, X.: Hey, you, get off of
my market: Detecting malicious apps in official and alternative
android markets. In: Proceedings of the 19th Network and Dis-
tributed System Security Symposium (NDSS 2012). San Diego,
CA, USA (2012)

