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Abstract

The objective of the EVITA project is to design, verify, and prototype an architecture for
automotive on-board networks where security-relevant components are protected against
tampering, and sensitive data are protected against compromise. Thus, EVITA will pro-
vide a basis for the secure deployment of electronic safety aids based on vehicle-to-vehicle
and vehicle-to-infrastructure communication.

The most important tests, as specified in D4.4.1, based on a draft design of the security
framework of the EVITA system were performed on the components actually integrated
in the WP5000 prototype. These tests aim at controlling the security of the framework,
both statically and dynamically. Some are more specifically safety-oriented in order to
assess platform compromise risks while others are more security design-oriented and aim
at detecting specific flaws in the design of security mechanisms that may have escaped
previous analyses. This document describes the results of those tests.
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1 Introduction

This deliverable gives a summary of the results of the tests conducted in the EVITA
project and of their impact on the developments performed in other activities.

1.1 Test Objectives

The tests we performed in EVITA have two essential objectives: vulnerability testing and
evaluating the correct implementation of the security design.

First and foremost, the first objective is to capture potential safety or security vul-
nerabilities that may put the developed security framework at risk of a compromise from
an attacker, a rather challenging task even for specialists. We decided to focus on the
exposed Application Programming Interface (API)s to account for the logical attack sce-
nario put forward in EVITA, and in particular Car to External Entities (C2X) scenarios
discussed in Task T2300. We also combined automated tests with manual code reviews to
pin down faster potential weaknesses. The main difficulty of this objective in the EVITA
architecture lies in the distributed nature of the embedded system and the number of
components whose behaviors have been assessed together.

The second objective is to evaluate whether the implementation from Task T4000
shares the properties of the system defined in Task T3000. To this end, we essentially
combined static code reviews with dynamic monitoring. The latter should intervene
during runtime and we designed and implemented the log that supports this monitoring
and traffic filters that assess the behavior of components. Code validation here means
determining a normal profile that has to be fed to the filters, and evaluating the response
of the filters themselves.

1.2 Results Interpretation

We have highlighted and corrected a few minor bugs in the framework implementation
as well as discrepancies between the models proven in Task T3400 and the actual imple-
mentation. Those discrepancies essentially resulted from a change in the communication
model, with the introduction of the EMVY Remote Procedure Call (RPC) which com-
plicated the protocol stack design in the EVITA security framework. We have also put
forward an integrated monitoring approach whose functionalities were validated on spe-
cific use cases.

The results of these tests should be taken with the usual word of caution about code
validation: it is not meant to be exhaustive contrary to approaches conducted based on
formal methods, which it actually complements with respect to areas where a formal proof
would be overly complex to implement. Although we tried our best to identify interesting
series of tests and validations with respect to our security objectives, it is not possible to
evaluate all potential executions of the software in all deployment contexts.

1.3 Deliverable outline

We first describe tests performed on the Hardware Security Module (HSM) and on its
integration with the Electronic Control Unit (ECU) in Section 2. We in particular discuss
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there issues arising from the need to automate tests performed on different interfaces in
different execution environments. We then move on to examining security tests performed
about communication protocols and their implementations in Section 3 through a combi-
nation of unit testing and manual code reviews. We finally discuss integration issues in
Section 4, through both static and dynamic approaches, including at runtime.
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2 HSM Testing

We discuss in this section our tests of the HSM functionalities from a security point of
view. We undertook a combination of manual code reviews and fuzzing tests. The latter
aims at establishing a more generic and automated testing approach, and is more original
from a research perspective. Indeed, such tools are generally not used to validate the
absence of flaws after designing a given architecture but rather as an attack tool. Those
tests come in addition to basic unit tests, which we ran by hand from August 2011 on
the HSM or Tricore platforms and whose major difficulty lies in the need to cross-compile
rather than in the tests themselves. On the contrary, the distributed static security-
related tests that we are focusing on in Task 4400 bring an interesting issue in that they
involve testing complex and distributed embedded system that might trigger failures in
different - and potentially deeply nested - software components.

The hardness of this assessment stems from the fact that one needs to evaluate the
behavior of the complete chain consisting of the sender ECU, the EMVY stack on the
recipient ECU, the protocol between the two EMVY stacks and application RPCs, the
protocol between the Tricore board and the PowerPC on the Xilinx board in the recip-
ient ECU, the firmware in the Xilinx board and finally the Field Programmable Gate
Array (FPGA) on the Xilinx board. It is hard to do without such system-wide testing:
our manual inspections of the code reveal that the Low Level Driver (LLD) software layer
in the Tricore may constitute a threat for some data protected through the HSM/FPGA
concept for instance. The use of the complete chain is here mandatory to be able to
investigate all the idiosyncrasies of the implementation at hand. It is in particular ex-
tremely important to determine where vulnerabilities may lie in such a complex system
and out of which component interactions they may arise. Since the complete chain is
not implemented in the prototype (in particular while AUTOSAR and the LLDs where
demonstrated separately, EMVY was not integrated into AUTOSAR), we focus on testing
from the LLD drivers up to the FPGA implemented functions. Our tests consist in two
parts: the first part is to be run on the HSM’s PowerPC and performs random checks on
the HSM API. The working combinations of parameters are then passed to the second
part of the test in which those combinations are again tested on the Tricore to evaluate
potential vulnerabilities in the LLDs or HSM communication stack.

The section is structured as follows: the rationale in subsection 2.1 places HSM Driver
within the whole EVITA prototype architecture, justifies and briefly describes targeted
tests. The scope and objectives of the work are precised in subsection 2.2. Right after, in
subsection 2.3, an overview of the proposed testing environment is introduced. Subsection
2.4 summarizes the progress in tests and results. To ease description, the summary is
split in general - for the overall Driver - and particular issues - for standalone Driver
components. Finally, preliminary conclusions are presented in subsection 2.5.

2.1 Rationale

The Driver of the EVITA prototype specified in [6], is the tie between middleware ap-
plications, like EMVY and AUTOSAR, and lower HW layers, more specifically the In-
fineon Tricore board TC1797. Thus, the Driver provides an API to interact with the
HSM [7]. From a security perspective, the Driver determines a first border between the
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EVITA security anchor - the HSM -, and higher EVITA software components. Since
that border is assumed within a trusted domain, the Driver grants many privileges to
applications directly running on the top, e.g., full access to HSM buffers and cyphering
keys handling. Consequently, the Driver is a security-sensitive component that should be
preferably tested within its context, that is performing Integration and, in a second step,
System Tests (see Deliverable [12]). As a mandatory stage, the basic functionality is first
targeted, i.e., the mechanisms for passing data from top applications towards the HSM
(named Driver Requests), and conversely (named HSM Callbacks). Later test stages go
in depth by performing more elaborated testing, mostly based on Dynamic SW Analysis
and Behavior Based Testing approaches, as described in [12]. Experimenting with Pene-
tration Tests can also be an option, e.g., to evaluate the impact of malicious applications
directly running on the top of the Driver. The scope and pursued objectives are better
precised in next subsection.

2.2 Scope and Objectives

Amongst others, testing activities are intended to ensure that Driver behavior is pre-
dictable and secure: predictable means that responses from functions are as specified,
i.e, according to the given stimuli. Secure means that behavior is free of weaknesses or
issues that may lead to misuse or attack scenarios. Rather than being exhaustive, tests
provide evidence of Driver operability, strengths and weaknesses, what helps to increase
its reliability and also security. However, the assessment of Driver features is also part
of WP4200 tasks, in which Driver modeling and formal verification were conducted [11].
Thus, Driver testing complements previous work by targetting dynamical features. Due to
its nature, dynamical testing mostly depends upon SW operability, i.e., SW functionality.
Hence, the exploration is conducted at three levels of abstraction as described below:

Coarse Level: Targets a standalone SW functionality or component - e.g., an API func-
tion - by using fixed parameters inside specification. Tests evaluation analyzes
stimuli/response relationship and is limited to determine the final status of the SW
component. More precisely, the EVITA codes returned by the function under test -
e.g., evitaResponseOk, evitaNotAvailable, etc. - help to determine the final sta-
tus of the function. The return codes obtained at LLD side are based upon ASN.1
specification. Consequently, the codes should correspond with the respective ones
originally returned by the HSM. If no response at all is obtained after a given delay,
the component is not operational. Even if some of these delays are not part of the
EVITA specification, the response time of other functions was taken as reference.
Coarse level tests are mainly performed during implementation of Driver.

Fine-grained Level: Targets one or more operable SW functions or components - e.g.,
execution of chained functions - by exploring the domain of parameter values ac-
cepted by the function(s). Evaluation of stimuli/response relationships is made by
comparing expected and returned values. Indeed, once testing parameters are set-
tled, an oracle is consulted to compute returned values, required in evaluations. In
the EVITA prototype architecture, the HSM plays oracle’s role. This level is suited
to perform Data Monitoring as defined in [12].
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Overall Level: Targets not only the operability of a set of SW functions or components,
but their overall features with respect to a given scenario, e.g., wrong parameters
injection. The domain of parameter values accepted by targetted SW components
can be explored. Thus, along with stimuli/response relationships and an oracle, test
case evaluations may require a set of criteria, defined along with the test scenario.
Suitable testing categories at this level are: Monitoring, Blackbox Fault Injection
and Penetration Testing [12].

According to previous descriptions, next objectives are settled:

1. Perform EVITA Driver testing in order to provide evidence about its operability,
strongness and vulnerability, i.e., reliability and security

2. Rely on Coarse, Fine-grained and Overall tests to provide expected evidence

3. Settle and implement a Driver testing environment compliant with assessed testing
levels

4. Design test cases within and outside the domain of accepted parameters

5. Achieve exploration of parameter domains

6. Design and automatically perform safety and security oriented tests cases

7. Achieve testing of the whole EVITA Driver API

8. Inform results and respective feedback

2.3 Driver Testing Environment

To achieve objectives stated in previous subsection (2.2), a testing environment is specified
and implemented. More precisely, this environment contains two main applications (see
figure 1):

HSM Fuzzer: This application directly interacts with the HSM API and thus is com-
piled for the PowerPC on the FPGA board, using the ELDK environment [2]. The
HSM Fuzzer allows the execution of tests at three levels of abstraction, as they are
defined in previous subsection. The test routines are intended to stress the HSM.
Before performing a HSM call, the parameters of the respective API function are
randomly chosen (fuzzing). Afterwards, the call is performed and the stimuli/re-
sponse values are finally written in a file - referred as C file. More precisely, every
line in the file makes the assignation of input/output values to array registers, using
the C syntax. Stimuli/response instances constitute a base for comparisons which
makes the HSM playing the role of oracle.

LLD Fuzzer: This application runs directly on the top of the Driver and thus is compiled
with EB-Tresos [1] and Altium/VX-toolset [4] environments. The stimuli/response
C file, generated at HSM side, is taken as a source. Indeed, for each stimuli/response
instance, a LLD request is created using the same stimuli parameters. The request
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Figure 1 Driver Tests Approach

is afterwards sent to the LLD. Once obtained, the response is compared with the
respective values from the reference C file. The evaluation of HSM vs. LLD instances
is automatically conducted by setting breakpoints at corresponding comparisons
whenever LLD and HSM values do not match. Finally, exchanges between Tricore
and FPGA boards via Serial Peripheral Interface (SPI), are monitored and stored
in a log file for further test case analysis.

The nominal execution of a testing routine is as follows: The defined test case may
target one or more HSM API functions. Each parameter within a function call is fuzzed
by generating a random value from a seed. To cover both inside and outside specifica-
tion testing, random values can be mapped to predefined intervals, using for instance the
modulus function. Once set, call parameters are written into a C file and the request is
sent to the HSM. Eventually, returned values are also written in the C file, thus defining
a stimuli/response instance. Once the test case is finished on HSM side, one or more C
files are generated and integrated as part of the LLD Fuzzer. Indeed, after compilation
and flashing on the Tricore - using the HiTOP debugger [3] -, the LLD Fuzzer executes a
set of LLD requests thus reproducing the test case. A comparison between HSM and LLD
responses is right after performed. Relying on the HiTOP debugger, breakpoints are set
at unsatisfied comparisons what automatically points out differences between HSM and
LLD responses. Test case analysis is complemented by monitoring HSM behavior during
LLD Fuzzer execution.

As shown in figure 2, the testing implementation relies on a blackbox approach: the
targetted components receive certain stimuli and return a response. To conduct eval-
uation of test results, stimuli/response instances are characterized with respect to next
parameters:
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Figure 2 System under blackbox testing

SIS: Stimuli Inside of Specification

SOS: Stimuli Outside of Specification

SR: System Response

Next definitions are adopted for evaluation of system response with respect to provided
stimuli:

System Correctness: Both the stimuli provided to the target system and the corre-
sponding response are as specified.

System Inconsistency: The target system receives a stimuli inside specification (SIS)
but the response is not as specified.

System Robustness: When a stimuli outside of specification (SOS) is received, the
system continues its nominal operation on other requests.

Finally, next assumptions have been taken into account for a correct evaluation of
results in our testing framework:

A1: The Evita HSM API and related architecture can play the role of the oracle.

A2: Tool chain for compilation of HSM implementations is bug free.

A3: Microcontroller Abstraction Layer (MCAL) Drivers on Tricore, SPI communication
(Tricore< − >HSM) and other EVITA architecture components are bug free and
are configured according to specification [7].

A4: Tool chain for compilation and flashing of LLD implementations is bug free, i.e.,
Tresos [1], VX-toolset [4], HiTOP [3].

2.4 Tests and Results

Next subsections describe the results that have been obtained using the previously defined
testing environment.
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2.4.1 Test Cases Description

Initially and during Driver implementation, the Driver API was tested at a coarse level,
i.e., to determine its operability. Along with that, further overall tests have been semi-
automatically conducted. Thus, performed tests are as follows:

Sequential Requests: A sequence of requests is sent to the same Driver function using
different Abstract Syntax Notation One (ASN.1) parameters. There is no delay be-
tween each request. Also, both received calls and returned responses are monitored
at HSM side. Sequential calls prove that access to shared buffers is mutually exclu-
sive, e.g., in the Request Queue, Request List, and Communication buffers (HOST
Buffer).

Chained Requests: Sequences of chained requests such as MacInit(), MacUpdate()

and MacFinish() are targetted. As specified in [16] and [7], a session is opened
by the HSM during processing of chained requests. The behavior of mechanisms
managing linked requests is explored, e.g., non-closed HSM sessions. Both received
calls and returned responses are monitored at HSM side.

Faulty Parameter Requests: Driver API functions are called using parameters out of
HSM specification, e.g., wrong HSM sessions, nonexisting or wrong key handles,
etc. Parameters outside of Driver specification are also used, e.g., wrong EVITA
enumerations or structures. The whole Driver API is thus targetted. Both received
calls and returned responses are monitored at HSM side.

HSM and LLD Fuzzing: The engines for fuzzing the chained API functions CipherInit(),
CipherProcess() and CipherUpdate(), have been implemented on HSM and LLD
sides. The engines for fuzzing the whole API functions are still in progress. Fuzzing
is a technique that can combine all test patterns described above.

2.4.2 Results: General Issues

According to tests results, next general issues have been identified in the overall behavior.
Testing is based upon final versions of EVITA Driver code - released without version
number - and HSM firmware - version v0.6.5.

1. Sequential requests may be overwritten in Driver buffers, i.e, the Driver is, up to
now, unable to grant mutually exclusive access to shared buffers. This LLD weakness
is identified by performing sequential tests and monitoring at HSM side, and directly
proved with the fuzzing tester.

2. Previous issue lead us to statically analyze the code. From that analysis, we could
conclude that the Request Queue is the only buffer protected with access locks.
However, the mechanisms for mutual exclusive access are not yet defined.

3. The static analysis of code also demonstrated that a mutual exclusive access is also
required in the following shared buffers:

(a) Request List
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(b) Serializing/deserializing local buffers (HOST Buffer)

(c) Globally defined variables, e.g., buffer level counters

4. As a consequence of previous points, the Driver does not properly implement the
multiple user session approach: user sessions are managed via a transaction ID that
is sent within LLD calls and callbacks. However, the leakage in protection of shared
buffers, may lead to wrong user session management, e.g., by overwriting an entry
in the Request List.

5. The sequence of session handles, generated by the HSM to control chained requests,
is repeated when the HSM is re-started, what increases the chance for guessing a
valid session handle. This was observed both during sequential and chained requests
tests, since the HSM must be manually re-started when the maximum number of
sessions is reached.

6. If the maximum number of HSM sessions is reached, no more requests are accepted
by the HSM, even if some HSM sessions remain open. This issue was initially
identified in sequential and chained requests tests and afterwards proved in the
fuzzing approach.

7. If a Driver request for finishing a chained sequence is corrupted or overwritten, the
respective HSM session remains open forever. This may be observed by running
fuzzing routines with a huge number of calls.

8. The Driver mainly targets functional issues related with the prototype implemen-
tation and in regard to show cases.

9. All applications directly running on top of the Driver are allowed to use the whole
LLD API, and privileged access to HSM API.

10. Every application running on top of the Driver can use HSM session handles: there
is no association between requesting applications and HSM session handles. This is
concluded after an analysis of stimuli/response instances in chained requests tests.

11. Relying on the overall test results and analyses, we came to the conclusion that
there is no mechanism in the Driver to react in case of:

(a) Full Request Queue

(b) Full Request List

(c) Long delays of HSM responses

(d) Unanswered Driver requests (LLD livelocks)

(e) Unclosed HSM sessions (HSM livelocks)

(f) No available sessions on the HSM (Denial of Service)

(g) Re-initialization of the HSM
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2.4.3 Results: Particular Issues

Table 1 presents results of tests conducted at a coarse level (see subsection 2.2). Each
row includes a reference to a Driver API function, respective result and comments. More
precisely, return codes within second column are obtained using parameters inside of spec-
ification. Thus for instance, the evitaReturnOk code indicates that the call was accepted
and successfully processed by the HSM. Every Driver API function was individually tested
with all algorithm identifiers defined in EVITA-ASN.1. However, by the time this report
is written, some of those algorithms are not fully implemented on the HSM. Many values
outside of specification were also used. The use of parameters outside of specification
stresses the API function and the whole LLD/HSM implementations. Thus, it is proved
whether the LLD and HSM can properly deal with wrong input values, i.e., by correctly
identifying and signaling the respective error(s) relying on specified EVITA-ASN.1 return
codes (error handling). Along with that, the LLD and HSM should continue their nor-
mal operations on other requests, what proves LLD/HSM robustness for the test routine.
Since the HSM provides a maximum number of sessions for chained functions, this maxi-
mum is some times reached during test routines, mainly when an initial chained function
is called many times, e.g., with 5000 calls. In such case, only invalid session handles can
be used afterwards. Of course, tests with randomly generated session handles prove LLD
behavior beyond the maximum allowed by the HSM. Moreover, random session handles
test the multiuser approach by adding calls that might match with an already opened
HSM session, thus impersonating the original caller. Finally, all the tests were conducted
based upon final versions of EVITA Driver code - released without version - and HSM
firmware - version v0.6.5.

Table 1 Results of coarse level Driver tests

Driver Request Return Code Comments

CipherInit() evitaReturnOk The request was tested with all algorithm
identifiers defined in ASN.1 specification.
10 HSM sessions are available

CipherProcess() evitaReturnOk The function was tested with randomly
generated application identifiers and in-
valid HSM sessions. The values of max -
chunk size and chunk block size set by Ci-
pherInit() are not mandatory and can be
modified

CipherFinish() evitaReturnOk The function was tested with randomly
generated application identifiers and in-
valid HSM session handles. The HSM ses-
sion can be closed before message cipher-
ing is completed

MacInit() evitaReturnOk Several parameters were tested according
to ASN.1 specification

Continued on next page
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Table 1 Results of coarse level Driver tests – continued from previous page

Driver Request Return Code Comments

MacUpdate() evitaReturnOk The function was tested with randomly
generated application IDs and invalid
HSM session handles. The values of
max chunk size and chunk block size set by
MacInit() are not mandatory and can be
changed

MacFinish() evitaReturnOk The function was tested with randomly
generated application IDs and invalid
HSM session handles. The HSM session
can be closed before message mac compu-
tation is completed

HashInit() evitaReturnOk Several parameters were tested according
to ASN.1 specification

HashUpdate() evitaReturnOk The function was tested with invalid ses-
sion handles. The HSM session handle can
be known and used by all applications run-
ning on top of the Driver. The values of
max chunk size and chunk block size set by
HashInit() are not mandatory and can be
changed

HashFinish() evitaReturnOk The function was tested with invalid ses-
sion handles. The HSM session can be fin-
ished even before message hashing is com-
pleted

HashFinishAndExtend() Not tested yet

SignInit() evitaReturnOk All algorithm identifiers were tested

SignUpdate() evitaReturnOk The function was tested with invalid ses-
sion handles. The HSM session handle can
be known and used by all applications run-
ning on top of the Driver. The values of
max chunk size and chunk block size set by
SignInit() are not mandatory and can be
changed

SignFinish() evitaReturnOk The function was tested with invalid ses-
sion handles. The HSM session can be
finished before message signature is com-
pleted

VerifyInit() evitaReturnOk Several parameters were used for testing
according to ASN.1 specification

VerifyUpdate() evitaReturnOk The function was tested with invalid ses-
sion handles. The HSM session handle can
be known and used by all applications run-
ning on top of the Driver

Continued on next page
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Table 1 Results of coarse level Driver tests – continued from previous page

Driver Request Return Code Comments

VerifyFinish() evitaReturnOk The function was tested with invalid ses-
sion handles. The HSM session can be
closed before message verification is fin-
ished

RngGetRandom() evitaReturnOk The function was tested for several data
sizes. Only 1 pseudo random algorithm is
implemented

CreateCounter() evitaReturnOk A maximum number of counters is estab-
lished (currently only 2)

ReadCounter() evitaReturnOk The function was tested with sequential
calls and invalid counter IDs.

IncrementCounter() evitaReturnOk highWord and lowWord attributes in the
counter are never modified

DeleteCounter() evitaReturnOk The function was tested with invalid
counter IDs

ModuleStatus() No response at all Several parameters were used according to
ASN.1 specification. The HSM never re-
ceives the request

SelfTest() evitaNotAvailable The function was tested using all algo-
rithm identifiers according to ASN.1 spec-
ification

CreateRandomKey() evitaReturnOk Several parameters were used according to
ASN.1 specification

CreateDhKey() evitaNotAvailable Several parameters were used according to
ASN.1 specification

KeyExport() evitaReturnOk Tests targeting several exportable keys
were performed

KeyImport() evitaReturnOk The KeyImport() requests can be re-
played. The same key can be imported
several times but with different session
handles

KeyRemove() No response at all Symmetric and asymmetric keys were tar-
geted. The HSM never receives the re-
quest

KeyStatus() evitaReturnOk Symmetric and asymmetric keys were
tested

ExtendEcr() evitaReturnOk Several ECU configuration registers were
extended

RetrieveEcr() asnTypeConversion-
Error

Several ECU configuration register in-
dexes were targeted

PresetEcr() escWhirlpoolUpdate
Error

Several ECU configuration register values
were used

CompareEcr() evitaReturnOk Several parameters were used

CreateTimeStamp() evitaClockNot Syn-
chronized

Several parameters were used. Synchro-
nization is required

Continued on next page
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Table 1 Results of coarse level Driver tests – continued from previous page

Driver Request Return Code Comments

CheckTimeStamp() evitaClockNot Syn-
chronized

Several parameters were used. Synchro-
nization is required

GetTimeSyncChallenge() evitaReturnOk

SetUtcTime() evitaUtc Synchroniza-
tionFailed

Several parameters were used. A proce-
dure for synchronization should be exe-
cuted

GetUtcTime() evitaUtc Synchroniza-
tionFailed

Several parameters were used. A proce-
dure for synchronization should be exe-
cuted

GetTickCount() evitaReturnOk

2.5 Conclusions

An approach for testing EVITA prototype Driver has been presented. The approach aims
to provide evidence of Driver operability, strongness, weaknesses and thus, about its re-
liability and security. Dynamical tests target SW components and are defined at three
levels of abstraction: Coarse, Fine-grained and Overall. Tests at Coarse and Fine-grained
levels mainly target behavior of standalone Driver components, whilst tests at Overall
level target more abstract features, e.g., Driver security. Relying upon declared levels, a
Testing Environment was envisaged. The environment is intended to automatically per-
form tests and evaluate results by interacting with the EVITA prototype architecture, in
which the HSM plays a role of oracle. The engines for fuzzing three chained API func-
tions have been coded and successfully implemented on HSM and LLD sides. Even if the
testing environment is still work in progress, several tests have been already conducted,
mainly at Coarse and Overall levels. According to results and despite identified issues,
the EVITA Driver is ready for showing purposes, i.e., it is suitable for prototype demon-
strations. However, in our opinion, it is mandatory to consider identified issues for
improving operability, reliability and security of EVITA Driver. Further tests
should be conducted in order to go in depth with exploration of parameter domains and
other interesting test cases. Thus, the Testing Environment should be finished to cover
the whole HSM and LLD APIs and to automatically execute and evaluate more complex
routines and cases.
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3 Protocols Assessment

We performed code validation on two different types of protocols: purely on-board pro-
tocols and car-to-infrastructure protocols that are required in order to configure the car
and more specifically its security policy.

On-board protocols are all defined on top of the RPC like interface defined in EMVY,
contrary to the original design we described in Deliverable D3.3 [14] This means that the
security of the design and implementation of the RPC, which was not studied in formal
method based reviews is quite crucial here. We essentially undertook code reviews on
the RPC and its integration with various components that unearthed a design problem
regarding cross-layering that was subsequently corrected in the framework implementation
as well as various bugs.

Regarding the second type of protocol, we performed more usual tests of the protocol
including manual fuzzing of the inputs. This already highlighted some weaknesses in the
integration of the ASN.1 parser in the EVITA framework in particular, which should be
addressed in order to prevent potential vulnerabilities (which we did not find) or plain
denial of service attacks.

3.1 RPC Security Integration

Th EMVY RPC library allows applications to use functionality on the client itself and
also to access higher-level security functionality through the master node. This is achieved
using an RPC layer by encapsulating function requests in specially crafted ASN.1 encoded
request and response packets. The EMVY RPC Layer is based on several underlying
security components (i.e., CCM, EAM, PDM, KMM, etc.). These security components
are necessary for a client to securely communicate itself to a service, and vice versa, in
each call and reply message. The specified RPC model allows EMVY clients to invoke
several security services (i.e., login, logoff, security event notice, etc.) from client to server
as part of the RPC invocation. The EMVY server can then discover the client’s identity
and authorization credentials, and determine what access to authorize. However, some
permissions relate to operations offered by clients through the RPC mechanisms (including
EVITA communication and security mechanisms). The need to authorize operations
based on RPCs from EMVY/EVITA together with the fact that only channels, not RPC
messages are authenticated has forced us to piggyback the transport-level authentication
on internal framework calls from components like the CCM up to the application layer.

3.1.1 RPC Security Challenges

This section describes an example of an actual exploitation of the weaknesses in EMVY
RPC design as described above. Conceptually variant of attacks are possible including
denial of service (particularly logoff other entities) and impostering valid users. This
example describes a login/logoff attack. The attack is accomplished by using the EMVY_-

logoff_entity() service provided by EMVY RPC. This is used to logoff the already
authenticated entity so that the intruding entity could stop all the services provided/ac-
cessed by an entity. Disabling any ECU while services are running may cause safety
critical problems, depending on the function ECU is responsible for. In our RPC level as-
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sessment setup we have created two entities. The client 1 is used to login to the machine.
The second entity is given a client 2 as an identifier which acts as an intruder entity. The
transcript in Figure 3 shows the use of the two RPC request from client 1 to infiltrate
EMVY RPC level security in order to logoff() client 2.

1 Entity (const EMVY:: String & description ,

2 const EMVY:: String & identifier ,

3 const EMVY:: String & issuerIdentifier );

Listing 1 EMVY Entity data structure

In the first step, RPC request is sent from client 2 for authentication and invocation
of RPC EMVY_login_entity() service. After successful authentication, the intruder may
generates a EMVY_logoff_entity() request with a fake entity data structure (as shown
in List 1) that looks like client 1 and sends it to the EMVY master node. This requires
that the intruding entity (client 1) be in the network, may have knowledge about other
entities, or have capabilities for scanning all connected entities in the network. Since
authentication is only performed at the transport layer and not further considered at the
RPC level, client 1 or any other intruder entity on a network could easily create a fake
RPC message simply by pretending to be client 2. Whereas, master node only verifies
that client 1 is in its ”EntityAuthenticationList”. If its so, it removes the client 1 from
EntityAuthenticationList and close the connection with client 1.

EMVY Client 1 EMVY Master Node EMVY Client 2

EMVY_login_entity(client1, pwdAuth, 0x03)

Return_True (login Successful)

EMVY_login_entity(client2, pwdAuth, 0x03)

Return_True (login_Successful)

EMVY_logoff(client1)

Return_True (logoff Successful)

Figure 3 RPC Login-Logoff Attack Scenario

The security problems that result are due to the semantic meaning of the RPC services.
For instance, the RPC service EMVY_logoff_entity(const Entity* entity) only re-
quire Entity as a parameter.

3.1.2 RPC Security Fixes

An obvious solution to this problem would be to change the signature of logoff RPC ser-
vice, by adding authentication ticket parameter (EMVY_logoff_entity(const Entity*
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entity, AuthenticationTicket* authentication_ticket1) ) in the method. How-
ever this brings about an implementation design restrictions. Under current systems we
believe this can only be accomplished by binding transport layer authentication and using
these authentication tickets at the RPC layer. This would allow EMVY layers to bind
RPC services invocation with transport layer authentication. An authentication ticket
obtained through transport layer should be used when logoff() RPC service is called.
We used an attribute-value-assertion (AVA) list as a data structure to convey this in-
formation (see List 2). This proved to be a flexible and modular way to bind with the
existing EMVY layers.

1 SecurityObject *ava = new AVAList(client ->getRemoteEntity (),object ->

getObjectDescription (), object ->getObjectIdentifier (), ctx);

Listing 2 Attribute-Value-Assertion (AVA) Integration

Another modification introduced by enforcing RPC level access control that defines
and restricts the behavior of the RPC in EMVY/EVITA master and clients. Such access
control aims in particular at controlling stateful operations like a login, a logoff, setting the
security policy, etc. As mentioned above, operations are granted based on the access rights
defined for each EMVY client and based on the contextual/environmental information
stored in the AVA list (see List 3). This could be applied in varying degrees.

1 switch ( rpc_req ->getPayloadCommandPR () ) {

2 case Asn1EmvyRpcInterface__payload__emvylibCommand_PR_emvyLoginEntity

: {

3 SharedPtr <Entity > entity = rpc_req ->getEntity ();

4 enum EAMAuthenticationPluginTypes method = rpc_req ->getMethod ();

5 SharedPtr <AuthenticationTicket > authenticationTicket = rpc_req ->

getAuthenticationTicket ();

6 LoginContext ctx = rpc_req ->getLoginContext ();

7 SecurityObject *object = new SecurityObject("logIn", 0x10000000 );

8 SecurityObject *ava = new AVAList(client ->getRemoteEntity (),object ->

getObjectDescription (), object ->getObjectIdentifier (), ctx);

9 SecurityOperationSet *operation = new SecurityOperationSet (1) ;

10 SharedPtr < ReturnCode > ret = emvylib.EMVY_request_authorization (

entity , ava , *operation , NULL);

11 if(ret ->getCode () == 0)

12 {

13 EMVY_DEBUG <<"Login Operation Authorized"<<std::endl;

14 } else {

15 EMVY_DEBUG <<"Operation Not Authorized"<<std::endl;

16 }

17 break

Listing 3 Attribute-Value-Assertion (AVA) Integration

3.2 Security Policy Distribution Protocol

Security policies constitute an important part in the EVITA security framework in that
they constitute a description of an interface with the vehicular network behavior for

1Generated once the entity is successfully login().
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security administrators at the different stakeholders. In particular, a security policy will
be defined and will evolve with the on-board network features. Assuring the correctness of
security policies is becoming an important and challenging task. Identifying discrepancies
between security policies and correct enforcement by EVITA security framework is based
on the premises that the policy specification and encoding is done correctly. To evaluate
the correctness of the security policy specification and policy distribution protocol, we
have applied several existing test approaches.

Errors in policy specifications may be discovered by leveraging existing techniques for
software testing such as mutation testing, which involves modifying security policies in
small ways. Mutation testing which is a specific form of fault injection that consists in
creating faulty versions of policy by making small semantic or syntactic changes. These so-
called mutations, are based on well-defined mutation operators that either mimic typical
encoding errors such as, specifying the wrong length, using the wrong ASN1 TYPE oper-
ator or involving incorrect use of the XACML logical constructs. Based on the mutation
testing approach, we analyzed and verified whether a security policy, during serialization
(at the backend system) and deserialization process (in the vehicle), is resistant against
such fault injections.

• Using ASN.1 compiler for (de)serializing policies, one can exploit the bug to cause
an out-of-bounds read operation, most likely resulting in a denial of service. A
malformed or unusual ASN.1 tag value can trigger this issue.

• Invalid ASN.1 encodings that are rejected by the parser may potentially trigger a
memory-management error.

• Incorrect logical construct include policy or rule combining algorithms, policy eval-
uation order, rule evaluation order and various functions found in conditions.

3.3 Conclusion

We have presented the results of the security test for security policy distribution protocol
and RPC level security assessment. We showed how different parts of policy distribution
protocol can be vulnerable to attacks. These vulnerabilities are mostly due to the hard
assumptions made on the underlying asn.1 compilers. Thus, we assume that proper ex-
ception handling mechanisms should be considered during implementation of asn.1 based
security policy protocols. Furthermore, we have identified several design flaws during pro-
tocol assessment. We essentially undertook code reviews on the RPC and its integration
with various components that unearthed a design problem regarding cross-layering that
was subsequently corrected in the framework implementation as well as various bugs.
We have presented several solution for fixing these vulnerabilities and implementation
bugs such as, we showed how low level authentication can sensibly be linked with specific
authorization at upper layers, in order to protect system from performing unauthorized
operations.
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4 System Level Validations

4.1 Performance Measurements

Despite the absence of a full-fledged deployment in a car, we used simulations in order
to gain some understanding about the stress imposed by our communication security
mechanisms on the bus systems. In order to provide real world results for message trans-
fer times of messages that include Message Authentication Code (MAC)s on standard
automotive CAN buses, we modeled three nodes on a CAN bus in TrueTIME 2.0 [5],
a Matlab-Simulink toolkit, which supports the simulation of CAN networks. One node
generates high-priority background noise at 60%, which will always be prioritized over
our payload (which might be considered a pessimistic assumption).

The framework allows to attach custom nodes onto a simulated network (the CAN
bus in our case). We used the networked simulation setup in Simulink (depicted in Fig.
4). We have implemented the transport protocol including a MAC truncation mechanism
and measured the real-world latency computed by the simulation environment.

Figure 4 Simulink setup with the TrueTime toolbox to simulate CAN bus. The
interference node is used to generate bus load. The transport protocol
simulation including message segmentation is implemented between the
controller node and the sensor/actuator node.

We have conducted a number of tests at different bus payloads, in order to show the
protocol feasibility even on halfway saturated buses. The results can be seen in Figure 5.

Our measurements for end-to-end message latency at 60% payload can be found in
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Table 2. As the behavior of a busy CAN bus is rather non-deterministic, we included
the minimum, maximum, and average delays, that we measured over 100 probes for each
MAC length given. It can be seen that our security header does not significantly impact
the end-to-end latency.

0"
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0,01"

0,015"

0,02"

0,025"

32" 64" 128" 256" 512"

60%"Bus"Load"

30%"Bus"load"

0%"Bus"Load"

Figure 5 End-to-end latency for truncated MACs

4.2 Bootstrap

As we previously mentioned, the bootstrap is a pivotal function for enabling security in
the vehicle and would need to be tested in order to ascertain that the overall on-board
network does not incorporate untrusted components and that the platform has not been
tampered with. It consists in two components. The secure boot sequence occurs at ev-
ery ECU and involves interactions between the local CPU and the local flash memory;
it would be the target of attackers having physical access to an ECU. In contrast, the
trusted boot process relies on communication between the ECUs and would be the target
of attackers able to perform a remote compromise on an ECU, this latter scenario being
the one assumed in EVITA. We finally were not able to test this process as the secure
boot demonstration and EMVY based communication demonstration were implemented
separately. Yet we reiterate our recommendation that this particular bootstrap func-
tion would mandatorily need to be tested in any product deployed based on
a similar architecture.

MAC/bits 0 32 64 128 256 512
Minimum 0.0004 0.0007 0.0011 0.0016 0.0027 0.0059
Average 0.0011 0.0018 0.0021 0.0030 0.0041 0.0073
Maximum 0.0030 0.0041 0.0043 0.0050 0.0060 0.0090

Table 2 Latency of CTP CAN packets with eight bytes payload in seconds. Bus is
at 60% load with higher priority traffic.

19



4.3 Security Policy

We applied the structural coverage criteria approach proposed in [8] to identify conflicts
in security policies. Following this approach, we observed the generation of authorization
tickets, their configuration, and the evaluation of different elements of such authorization
tickets during the processing of authorization request and response. For instance, if any
request is not evaluated against an authorization ticket during testing, then potential
errors in that ticket cannot be identified. The tool distributed by the authors generates
XACML requests and cannot therefore be used for testing our ASN.1 encoded requests.
Given the small number of policy rules defined in the demonstrator, we instead followed
this method manually to produce our tests.

• Authorization Ticket coverage: An authorization ticket is covered by a request
if the authorization ticket is applicable to the request and the authorization ticket
contributes to the decision. Authorization ticket coverage is the number of covered
ticket divided by the number of total tickets loaded into the PDM. We further
evaluate the authorization ticket by evaluating different elements defined in the
authorization ticket.

– Subject Coverage: A subject for an authorization ticket is covered by an entity
(EMVY entity) authorization request if the subject is also applicable to the
entity request and the authorization ticket contributes to the decision; in other
words, the authorization ticket is applicable to the request and all the condi-
tions (i.e, subject attribute values) in the subject are satisfied by the request
and the PDM has yet to fully resolve the decision for the given request. Sub-
ject coverage is the number of covered EMVY entities divided by the number
of total subjects.

– Resource Coverage: A Resource for an authorization ticket is covered by an
object (EMVY object) authorization request if the resource is also applicable
to the object request and the authorization ticket contributes to the decision.
Resource coverage is the number of covered EMVY Objects divided by the
number of total resources.

– Action coverage: An action for an authorization ticket is covered by an oper-
ation (EMVY SecurityOperation) authorization request if the resource is also
applicable to the operation request and the authorization ticket contributes
to the decision. Action coverage is the number of covered EMVY Security
Operations divided by the number of total actions.

– Rule Coverage: The evaluation of the condition for a rule has two outcomes:
true or false. A true condition for a rule is covered by a request if the rule
is covered by the request and the condition is evaluated to be true. A false
condition for a rule is covered by a request if the rule is covered by the request
and the condition is evaluated to be false. Condition coverage is the number
of covered true conditions and covered false conditions divided by twice of the
number of total conditions.

The final architecture of the demonstration was substantially changed with respect to
our original expectations and finally did not include any gateway incorporating the PDM
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(and security policy engine) as a filtering device (whereas policies might describe such a
filtering). We instead performed unit testing on the policy engine which led to only a few
bug fixes.

4.4 Requirements Validation on Code

Security requirement validation is recognized as a necessary condition for security assur-
ance of the system. Requirement validation is part of requirement traceability property.
Thus, we define requirement traceability if (i) the origin of each of its requirements is
apparent and if (ii) it facilitates the referencing of each security requirement in different
phases of software development life cycle. In our proposed methodology [9, 13], security
requirements are described in a way that relates to use cases, attacks and to models of the
system. Therefore, we provide a way to trace security requirements w.r.t. other system
elements. Security requirements also contain observers (as shown in figure 6), which may
be seen as test cases meant to be used for the formal verification, or simulation, or during
system testing (code validation) phase.

Figure 6 SysML Security Requirements with Security Observers

Observers may additionally be seen as a means to document requirements. This set
of requirements and observers altogether provides a conceptual model of the security
expectations of the system, abstracted from the literary description of use cases. Re-
quirements testing based on the definition of the observers corresponds to the verification
of software or system design security patterns and their enforcement, i.e., verification
that components or traffic are properly authenticated, that rules regarding data produc-
ers are correctly enforced, etc. Those rules were essentially extracted from the use case
specifications. In order to trace security requirements for a system we considered sev-
eral requirement testing and validation approaches [12]. However, due to the EMVY
implementation and design specification we are limited to employ only a restricted set of
these approaches. Currently, this is achieved mainly through the manual code inspection
approach. Based on our analysis, we identified the following security requirements (see
Figure 7) which are enforced or partially considered during implementation phase.

• Controlled Access Control: Standard protocols and security policies are used when-
ever appropriate. A controlled access property is enforced to a set of actions and/or
information and a set of authorized entities. The property guaranteed that the
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specified entities are the only entities that can perform the actions or access the
information. The property is further detailed with other constraints (i.e., session
duration, login interfaces, etc.) on the period of authorization. Controlled access
ensures that EMVY entities only have access to information and functions that they
are authorized to access as appropriate to their expected activities.

• Integrity of Messages: It is important to protect sensitive information as it is being
passed from a remote client to a remote server and back. In the current EMVY
implementation stack, message integrity is enforced by either using signatures or
message authentication code mechanisms. Given the fact that basic security can
already protect most applications and that bandwidth is a scarce resource on au-
tomotive buses, we decided to allow MAC truncation. i.e. use of only fractions of
a calculated MAC. According to NIST and FIPS recommendations cryptographic
authentication codes should have a minimal length of 64 bits, when no additional
measures to limit the validation rate are taken.

• Message Freshness: A message freshness requirement is partially enforced by the
EMVY. The property is satisfied during random key generation by the HSM which
implicates the key validity period and includes time stamp during session key cre-
ation. This session key is used for secure communication between EMVY entities
which implicitly indicates that messages are fresh in a given session.

• Authentication Message Sources: Authenticity is considered in a multi-step fashion.
First, during establishing secure channel between EMVY entities are authenticated
using EAM (the required messages are exchanged using the yet unprotected chan-
nel offered by the CCM network stack). Upon successful authentication, an EMVY
authentication ticket is issued to the entity, the channel is added to the active chan-
nels and messages may be exchanged securely. In the later steps, this authentication
ticket is used for upper layer authentications. For instance, the need to authorize
operations based on RPCs from EMVY/EVITA together with the fact that only
channels, not RPC messages are authenticated. In particular, the expression of low
level authentication is linked with specific authorization at upper layers.

Figure 7 Active Brake Security requirements
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The results of the requirement validation is collated over all of the EMVY imple-
mentation stack, with respect to active brake implementation, that are considered and
summarized in terms of security mechanisms. In particular, requirement validation on
code provides us a way to build the relationship with abstract security requirements,
security building blocks, and enforcement of security mechanisms.

4.5 Dynamic Tests: Intrusion Detection

Dynamic testing has been based on the introduction of a reference monitor logging abnor-
mal events or behaviors coming from an application or an ECU and that may constitute
the signature of an intrusion. Dynamically testing the overall system against intrusions is
important to address denial of service attacks in particular, as well as making the system
more robust against runtime attacks that might result from uncaught vulnerabilities in the
implementation or even design weaknesses. The detection of any abnormal behavior may
then enable the system to put itself into a failsafe mode restricting its communication
capabilities but protecting the normal operation of safety-critical onboard systems. In
this respect the Security Watchdog Module (SWD) complements the cryptography based
protection mechanisms.

We approached this problem through the introduction of specific support for dis-
tributed probing and the development of a centralized logging facility into the EMVY/E-
VITA communication framework. We also developed specific event filters that make it
possible to assess the overall behavior of different buses of the onboard system.

The Security Watchdog (SWD) is an intrusion detection component, that is deployed
in a multi-centered and distributed fashion. This means that one or more EMVY-Master
nodes can receive data from several different EMVY-client instances.

The SWD features a pluggable interface in order to react on events. With this interface,
a plugin may subscribe to certain event types and evaluate the data at its sole discretion.
This means that the interface is not limited to basic signature-based or behavior-based
checks, but allows all kinds of abstract action and filter classes in order to foresee any kind
of input data. We have validated our concept on behavior based examples. As of now,
signature based detection is not yet relevant since known attack patterns do not exist in
the automotive domain.

4.5.1 Architecture

The security watchdog is monitoring the system via distributed probes or sensors that may
report system-intrinsic or environment events. The sensors should be able to send events
to the central watchdog instance via EVITA communication to assure the authenticity,
integrity, and confidentiality of the messages. The central watchdog gathers these events
in a log and notifies registered listeners about newly-received events. Event listeners may
themselves generate new events, or generate other actions in the system. For example,
the watchdog may change the network policy from a more restricted one to a looser one
if the number of sockets connected is constantly high, thus avoiding a denial of resources,
while at the same time generating a warning message for the user. Or it may limit
communication to only entities crucial for the car’s operation, effectively preventing a
denial of service.
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The EMVY Framework The EMVY framework is written in C (emvylib-remote) and
C++ (EMVY-master). The C part is implemented in a library, so that all sensors and
actors of the system can make use of EVITA/EMVY functions in order to send probe
data, or take appropriate reaction on detected attacks. For us, the most important part
of the infrastructure is the communication stack, that currently implements a TCP/IP
communication module and a CAN interface based on socket communication. It provides
a facility to reliably send a data buffer and receive a response over a connection that can
be encrypted and authenticated. This connection is used for the SWD communication.

EMVY’s Remote Procedure Call architecture On the EMVY-Master control unit
in the vehicle architecture, the entry point to transform the SWD calls the singleton
accessor to the SWD. Based on a configuration file flag, either a stub singleton which
forwards all event notices to the actual SWD instance, or the actual SWD implementation
is returned. The stub is responsible for opening a secure communication channel upon its
creation, thus implementing the multi-centered approach, and sending the given security
event notices over this channel to a server. The server needs to be implemented as a
special EMVY module and must accept connections to an EVITA server port on the
socket address specified in the configuration file.

In addition, EMVY clients will communicate to the SWD interface of one of the EVITA
master servers through the RPC interface (as described in [16, 15]). The clients may act
as probes, supplying the SWD with information, or as actors, that will take action on
certain pre-aggregated security events.

4.5.2 Usage and Integration in EMVY

In EMVY, the so-called SecurityEventNotice provides a data structure in order to
transfer probe data among the SWD system. As an abstract data class, it only provides
data fields for

• The SecurityEventType: such data describes the type of probe data (an enumer-
ation)

• A timestamp

• An issuing entity identifier, including address information

• A description field.

This means that the description string will be used as a container for SWD payload, so
that all values that should be contained in this probe message need to be serialized into a
string before they can be sent. This can be done either by translating values into strings
by hand, or by means of some serialization framework. For the sake of simplicity we chose
to concentrate on encoding single values in a string, which is done by the Serializer

methods of each class, that are evaluated by the SerializationManager when needed.
The receiving SWD then deserializes the events through the SerializationManager and
the appropriate deserialize-methods. It extracts the values through the DataAccessor

methods, and passes them on to the filter. The filter itself can then evaluate or pre-
aggregate data for further processing and/or taking actions.
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Figure 8 UML Architecture of Generic Filter.

4.6 Proof of concept

In order to show the effectiveness of the integration of intrusion detection into the frame-
work, we have implemented a proof of concept filter and probe application that will take
reaction on an atypically increasing number of network connections.

4.6.1 The Probes

A specialized probe-collector has been crafted in order to obtain the network connection
number and type from Unix-compatible systems that served as proof of concept (tested
on Linux, MacOS X, cygwin-windows). The number of currently open TCP connections
is serialized and sent upstream to the SWD framework. A sample is taken every second.

4.6.2 The Filters

In contrast to the probe, we have crafted the filter in a way that it can be applied to
multiple types of automotive sensor data. For example, stream processing using a timed
window is a common approach in order to detect malfunction of vehicle components: for
instance, such systems rely on rules like ”if the gasoline level of the tank drops by more
than 20% within half an hour, one should raise an alert”.

Consequently, we have designed a generic derivate filter as well as a classic limit-
ing event filter: the LimitEventFilter can be parameterized with minimum and max-
imum allowed values (also commonly used for vehicle diagnosis: for instance, cooling-
water temperature shall not exceed 120◦ C.). To allow a more fine-grained decision, the
FirstDerivateFilter uses the actual differences between measurements and can be pa-
rameterized with a maximum (negative or positive) gradient (e.g., if the temperature rises
by more than 20◦ C in one minute).

We have implemented these filters with some of the intrusion detection techniques
described by Müter et al. [10] in mind. These authors categorized possible intrusions

25



Figure 9 Absolute amount of open network (TCP) connections at a time. Samples
are taken every second.

Figure 10 Relative amount of opening and closing network (TCP) connections per
second (first derivative). The time between adjunct data points is one
second.

detection layers as packet-level, network-level, and application level. Our sensor can be
used to generate probe data for all these layers. Our example in the following section
can be applied to the following types as defined by Müter et al.: Formality, Compliance,
Frequency.

4.6.3 Experimenta Data

We have recorded data with a Probe and the FirstDerivate filter in place. You can see
the number of open TCP connections on the computer in Figure 9. The corresponding
derivate plot is shown in Figure 10. You can clearly see how an absolute and a derivate
filter can be engaged at certain thresholds, e.g., the amount of total open connections
could be limited at 25 (LimitEventFilter) or at 1.5 additional connections per second
(FirstDerivateFilter).
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5 Conclusions and Future Work

We discussed the results of the security-minded tests and code validations that were ap-
plied to the EVITA system, in particular during the software development of the EVITA
framework. In this respect, our results were rather useful since we found several poten-
tial vulnerabilities, some of which were corrected. The tests and validations run after
software development highlight some potential areas of improvement, mostly in terms
of safety (thread synchronization most notably) on some components that should be se-
riously reconsidered for a commercial exploitation of the existing code base. We also
described our approaches to testing on a vehicular on-board system comprising mutiple
ECUs, both statically and dynamically. We believe that such approaches might be suc-
cessfully reproduced in the framework of other similar systems. We are still in the process
of developing tools to automate model-based tests and static analyses, as well as to in-
strument binary code for testing, in particular with respect to the integration of multiple
components but their design is still clearly an open research problem.

We should finally emphasize the fact that the EVITA software framework and demon-
strator - which we are validating - is by no means a commercial and polished product
but instead a research prototype that cannot be directly integrated into production ve-
hicles in its current state. Additional code validations - e.g. using formal verification
or testing techniques - would need to be performed when the HSM related software or
EMVY framework are integrated with a particular industrial bus. Vulnerabilities should
of course be sought in the final implementation - in which interactions between previously
independent software components might then occur.

Disclaimer: We performed tests of individual EVITA components and —to some extent—
of the system design and integration. Despite this, for every deployment target, additional
adequate security measures should be taken (e.g., non-executable and randomized stack
configurations for x86 kernels). The security of such deployment targets must be indi-
vidually assessed by security analyses and penetration tests. While this is beyond this
document’s scope and only necessary for industrial deployment, we would like to stress
the fact, that such analyses are equally important to the soundness of the EVITA system
itself and essential for system security.
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