
Virtual Yet Precise Prototyping: An Automotive Case Study

Daniela Genius, Sorbonne Universités, UPMC Paris 06, LIP6, CNRS UMR 7606,
daniela.genius@lip6.fr

Ludovic Apvrille, LTCI, CNRS, Telecom ParisTech, Université Paris-Saclay, IMT,
ludovic.apvrille@telecom-paristech.fr

Abstract

The paper overviews a joint framework for validating
and exploring complex embedded systems. The frame-
work indeed combines AVATAR and SocLib. AVATAR
is a Model Driven Engineering approach relying on
SysML, and SoCLib is a virtual prototyping platform.

The main contribution lies in the new possibility
to map AVATAR SysML blocks onto hardware nodes,
within a newly conceived Deployment Diagram, and
then to transform the latter into SoCLib models. At
the AVATAR level, diagrams can be formally verified
and simulated in a functional way only, that is, with-
out considering any underlying hardware execution en-
vironment. On the contrary, the SocLib models can be
simulated taking into account hardware components in
an explicit way with a cycle-accurate bit accurate ap-
proach.

An automotive system is used to present the two ab-
straction levels, and their support by the TTool toolkit.

1. Introduction

The complexity of recent systems pushes current
design techniques to their limits. While model-oriented
design of complex embedded systems is nowadays a
current practice in software development for embed-
ded systems, the hardware aspects of such systems are
less frequently designed using this kind of approach.
Hardware is described on several abstraction levels,
that are rarely represented with graphical modeling for-
malisms: TLM-DT (Transaction level with distributed
time), CABA (Cycle/Bit Accurate), and RTL (Register
Transfer Level).

The models of software components of complex
embedded systems are generally tested/executed on the
local host, and integrated on the target once the latter is
available. Even if several virtual prototyping platforms

are available for to evaluate the software in a quite re-
alistic way before the target is available purpose, they
require to re-model software elements in a different in-
put format from the one used in models or programming
languages.

AVATAR is a SysML-based environment to model
the software components of complex embedded sys-
tems [20]. It is particularly adapted to these systems
because (i) it proposes new temporal operators to bet-
ter describe the temporal constraints of these systems
and (ii) its models are formally defined, that is, formal
simulations and verifications can be performed from
the models. From AVATAR models, it is also possible
to generate executable C/POSIX code that can be exe-
cuted either on the local development platform, or on a
target. In a former contribution, we already presented
how that code can also be executed in the SoCLib vir-
tual prototyping environment [2]. Yet, the joint use of
both AVATAR and SocLib was not well integrated since
the description of the hardware execution environment
could be done only in a textual form, that is, totally out-
side of the SysML models.

Thus, we now offer a fully integrated way to model
critical software components, to model the candidate
support hardware architectures, and then to evaluate
the execution of the former onto the latter using auto-
mated model-to-soclib transformation techniques. The
automation of this process in a toolkit (TTool) paves
the way for a easy-to-used model-based approach for
design space exploration at a low-level of abstraction
(e.g., CABA simulation). Figure 1 highlights the novel
contributions among the existing AVATAR framework.
These new contributions are displayed in red and within
a red dotted line.

Section 2 presents the related work. Section 3 de-
scribes our methodology. Section 4 presents the auto-
motive case study. Section 5 explains the details of our
approach, while Section 6 discusses its limitations. The
conclusions and perspective on future work is finally
presented in Section 7.

Figure 1. Overview of model transformations for simulation, verification and code generation/exe-
cution. Bracktracing to models is not presented, but is effectively implemented in TTTool.

2. Related Work

There are several modeling environments target-
ing the evaluation/prototyping of functions mapped on
complex hardware architectures.

Ptolemy [8] proposes a modeling environment for
the integration of diverse execution models, in particu-
lar hardware and software components. If design space
exploration can be performed with Ptolemy, its first in-
tent is the simulation of the modeled systems.

In Polis [19], applications are described as a net-
work of state machines. Each element of the network
can be mapped on a hardware or a software node. This
approach is more oriented towards application model-
ing, even if hardware components are closely associ-
ated to the mapping process. Metropolis [3] is an ex-
tension of Polis. It targets heterogeneous systems and
offers various execution models. Architectural and ap-
plication constraints are closely interwoven. Metropo-
lis is based on a meta-model of a network of concurrent
objects, with a formal semantics. Applications are de-
scribed in detail and simulated with the help of instruc-
tion set simulators (ISS).

In SPADE [18], applications are modeled as Kahn
processes [16], then mapped to hardware architectural
models before being precisely simulated. SPADE is es-
sentially based on RISC processor models.

Sesame [9] proposes modeling and simulation fea-
tures at several abstraction levels. Preexisting virtual
components are combined to form a complex hardware
architecture. In contrast to Metropolis, application and
architecture are clearly separated in the modeling pro-
cess. Models’ Semantics vary according to the lev-

els of abstraction, ranging from Kahn process networks
(KPN) for application modeling, to data flow for model
refinement, and to discrete events for simulation pur-
pose. Currently, Sesame is limited to the allocation of
processing resources to application processes. It neither
models memory mapping nor the choice of the commu-
nication architecture.

The ARTEMIS [21] project originates from het-
erogeneous platforms in the context of Philips research
It addresses multimedia applications in particular, thus
justifying the acronym (ARchitecTurEs and Methods
for embedded MedIa Systems). It is strongly based
on the Y-chart approach which has a long tradition at
Philips. Simulation is done with SPADE, Sesame or a
proprietary Philips tool named TSS (Tool for System
Simulation). Application and architecture are clearly
separated: the application produces an event trace in
a file at simulation time, which is then read in by the
architecture model. However, behaviors depending on
timers and interrupts cannot be taken into account.

MARTE [26] shares many commonalities with
our approach, in terms of the capacity to sepa-
rately model communications from the pair application-
architecture. For such a purpose, MARTE proposes
Behavior Scenarios- and Steps (Communication Steps).
However, these assets are designed for performance and
timing analysis, rather than DSE. Consequently, they
intrinsically lack a separation between control aspects
and message exchanges as we proposed in Activity
and Sequence Diagrams. Even if the UML profile for
MARTE adds capabilities to model Real Time and Em-
bedded Systems, it is not specifically targeting archi-
tectural exploration: it does not offer any methodology

for that purpose, nor selected models, nor model trans-
formation for simulation or formal verification. On the
contrary, this is one important goal of our approach.

Other works based on UML/MARTE such as GAS-
PARD [12] are dedicated to both hardware and soft-
ware synthesis relying on a refinement process based on
user interaction to progressively lower the level of ab-
straction of input models. However, such a refinement
does not completely separate the application (software
synthesis) or architecture (hardware synthesis) models
from communications.

MDGen from Sodius [25] starts from Rhapsody,
which can automatically generate software, but not
hardware descriptions from SysML. SysML in Rhap-
sody is untimed and sequential. Also, timing and hard-
ware specific artifacts such as clock/reset lines are gen-
erated automatically. Yet, this approach is probably
closest to our present contribution, apart from the lack
of hardware description.

The Architecture Analysis & Design Language
(AADL [11]) is a standard from the International So-
ciety of Automotive engineer (SAE). It allows the use
of formal methods for safety-critical real-time systems
in avionics, automotive among other domains. It com-
prises a textual and a graphical representation. It does
not a priori contain tool support for code generation.
The architecture is modeled in a similar way as we
do, e.g., the description of hardware components whose
interaction is modeled by connections. Similarly to
our environment, a processor model can have different
underlying implementations and its characteristics can
easily be changed at modeling stage. In the case of our
contribution, four components are defined: processors,
memories, devices, and buses. The Deployment Dia-
grams we present in this paper proposes a much larger
variety of hardware components. Moreover, the SoClib
library, already very rich in detailed models, can easily
be enriched by additional components, e.g. with spe-
cific coprocessors or other interconnects than a bus, al-
lowing for very detailed simulation with the desired de-
gree of specificity. It does not a priori contain tool sup-
port for code generation. An approach that generates
a system implementation from models using Simulink
has recently been presented [5].

Capella [22] is relying on Arcadia, a compre-
hensive model-based engineering method. Originat-
ing from Thales and widespread in the domains of de-
fense, space and transportation within the company, it
provides architecture diagrams allocating functions to
components, allocation of Behavioral Components onto
Implementation Components (typically hardware, but
not necessarily). The basic idea is to check the feasi-
bility of customer requirements, called needs, for very

large systems. On the contrary, TTool/Soclib is ori-
ented towards co-design for a given case, like the one
deonstrated in this paper. As in AVATAR, Capella
also provides sequence diagrams and state machines.
Capella also provides advanced mechanisms to model
bit-precise data structures and relate them to Functional
Exchanges, Component or Function Ports, Interfaces,
etc. In this sense, it goes further than AVATAR which
does not model data structures in such a precise way.

3. Methodology

The methodology of our approach is now better ex-
plained (see Figure 1). It can be seen as en extended
version with regards to the one presented in [2]. New
stages are denoted with a starting "*".

1. Requirements. Both safety and security require-
ments of the system are first captured with SysML
Requirements Diagrams.

2. Design. The general structure of the software com-
ponents is modeled with SysML block Diagrams.
The behavior of each block is described by a state
machine. That behavior can range from a quite ab-
stract, to a more precise one manipulating e.g. data
types.

3. Functional simulation and formal verification.
The press-button approach of TTool makes it pos-
sible to perform simulations with model anima-
tion. Safety and security formal proofs can also be
performed directly from the design models without
prior knowledge about underlying formal verifica-
tion techniques. Safety and security proofs rely on
UPPAAL [6] and on ProVerif [7], respectively.

4. Software code generation. TTool can generate
C/POSIX code from design models. The code can
then be compiled and executed either for the lo-
calhost or for a given target. This code generation
assumes a simple hardware system (One CPU, one
memory, etc.).

5. *Hardware architecture description and map-
ping. A deployment diagram can be used to define
and interconnect hardware nodes, e.g., processors,
memories, buses/interconnects, I/O, interrupts and
timers. The execution part of software components
can be mapped onto processors. The data part of
software components can be mapped onto memory
banks.

6. *Software and hardware code generation.
TTool can now generate the virtual prototyping

code from design and deployment models. The
code contains both a SoCLib hardware description
of the mapped platform and the software code (C/-
POSIX) to be executed on that platform.

7. *Prototyping with SoCLib. The SoCLib simu-
lator can be started and the code - generated and
compiled during previous step - is loaded and exe-
cuted like on real hardware. Debugging can be per-
formed at two levels using both the GNU debug-
ger, simulation traces directly displayed by TTool.

Simulation and formal proofs are meant to be executed
during the first iterations on the system model. On the
contrary, the prototyping of the system is expected to be
performed during the last iterations, that is, on more re-
fined models. In all cases (simulation, verification and
prototyping), results are directly displayed by TTool in
a SysML fashion, therefore facilitating the identifica-
tion of problems directly on SysML models.

Our environment is built upon two existing mod-
eling and simulation environments: AVATAR, a Model
Driven Engineering approach relying on SysML, and
SoCLib, a SystemC based virtual prototyping platform.

3.1. AVATAR

The AVATAR environment [20] is a model-oriented
solution for the analysis and design of embedded soft-
ware. AVATAR relies on SysML diagrams to describe
the software aspects of the system, as well as its safety
and security properties. AVATAR is fully supported by
the free software TTool [1]. With TTool, one can edit
AVATAR models, simulate or verify them formally in
a push-button approach. At last, just like in most UML
approaches, simulation and formal verification rely on a
purely timed functional model, i.e. without considering
any hardware target (CPU, bus, etc.).

TTool implements an AVATAR-to-C/POSIX model
transformation as shown in [2]. This code generation
permits to validate the software models, but it does
not offer any facility for Hardware/Software co-design
or design space exploration. Said differently, hard-
ware considerations cannot be captured in the original
AVATAR model.

3.2. SoCLib

SoCLib [24] is a public domain library of compo-
nent models written in SystemC. SoCLib targets shared-
memory multiprocessor-on-chip system (MP-SoC) ar-
chitectures based on the Virtual Component Intercon-
nect (VCI) protocol [27] which separates the compo-
nents’ functionality from communication. SoCLib al-

lows for timed TLM and cycle-accurate bit-accurate
(CABA) simulation, so that we have a very detailed
level of simulation, using instruction set simulators [23]
and modeling cache behavior.

Design space explorations are also addressed in
the scope of SoCLib, initially in the context of video
streaming and telecommunication applications [14].
Mapping of software objects to memory banks is very
fine-grained (stack, lock, buffers can be mapped sepa-
rately if required), which is a significant improvement
over tools like SPADE [18] where only functional tasks
can be explicitly mapped.

SoCLib top cells are either hand-written, which
is a cumbersome process, or generated from a Python
specification, which are complex to describe and de-
bug. Our approach combines both readability and ease
of use, taking the latter one step further by proposing
SysML/AVATAR as input format.

Figure 2. Block diagram of the Active Braking
Use Case

4. Automotive Case Study

The AVATAR methodology is illustrated here by
the same automotive embedded system designed in the
scope of the European EVITA project [10] that was
shown in [2]. Recent on-board Intelligent Transport
(IT) architectures comprise a very heterogeneous land-
scape of communication network technologies (e.g.,
LIN, CAN, MOST, and FlexRay) that interconnect in-
car Electronic Control Units (ECUs). The increasing
number of such equipments - sometimes more than a

hundred - triggers the development of novel applica-
tions that are commonly spread among several ECUs
to fulfill their goals.
The case study, an automatic braking application [17],
works basically as follows: an obstacle is detected by
another automotive system which broadcasts that infor-
mation to neighboring cars. A car receiving such an
information has to decide whether it is concerned with
this obstacle, or not. This verification includes a plau-
sibility check function that takes into account various
parameters, such as the direction and speed of the car,
and also information previously received from neigh-
boring cars. Once the decision to brake has been taken,
the braking order is forwarded to ECUs responsible for
performing the emergency braking. Also, the presence
of this obstacle is forwarded to other neighbor cars in
case they have not yet received that information. Safety
and security requirements were already given in [2].

Figure 2 represents the internal block diagram of
the active braking use case. This internal block diagram
comprises two kinds of blocks:

• Blocks dedicated to the modeling of the environ-
ment. They model messages received via wireless
connections, data received from sensors, and data
output to actuators. For instance, the block CarPo-
sitionSimulator models the car traffic around the
considered automotive system. This car traffic
generates location information to the system. The
GPSSensor regularly records the car position.

• Blocks dedicated to the modeling of the system
itself. Blocks are grouped within a parent block
whose name is the one of the modeled ECU. Basi-
cally, the system model contains four ECUs: Com-
munication ECU (receiving information, broad-
casting information), Chassis Safety Controller
ECU (CSCU), Braking Controller ECU (BCU),
and Power Train Controller ECU (PTC).

The DrivingPowerReductionStrategy block, part of the
Power Train Controller ECU (PTC), is not too com-
plex to be shown on the limited space of this paper, and
will serve as a running example. For our current experi-
mentation, the security-related functions specified in the
original application are left out, but not the safety ones,
obviously. Also, the simulation and formal verification
aspects have been presented in [2], which explains that
the present paper focuses only on prototyping aspects.

5. Contribution

5.1. The AVATAR deployment diagram

Again, our main contribution is to enhance
AVATAR with a hardware platform modeling capabil-
ity, including the mapping of tasks and channels onto
this platform. To do this, we rely on a newly defined
deployment diagram, containing a SysML represen-
tation of hardware components, their interconnection,
tasks and channels.

The AVATAR deployment diagram is this new
modeling facility that allows a design to capture its
hardware constraints. Figure 3 shows the main window
of TTool with the deployment diagram of our example,
the active braking application. We use a generic in-
terconnect, a VGMN (Virtual generic Micro Network),
along with five CPUs and one memory bank, which
is not so realistic with regards to the real architecture,
but far more convenient to explain the technical issues
on code transformations. Platforms can be modified in
a matter of minutes, for example by adding a second
RAM and mapping part of the channels onto it. A valid
platform must contain at least one CPU, one memory
bank and one TTY.

5.2. New Tool Chain

From the deployment diagram, and from the pre-
viously existing software component diagrams, a fully
executable SoCLib specification for a MPSoC can be
generated. A new tool chain has been defined in or-
der to support that model transformation (see Figure 4).
The main components of this model transformation are:

• libavatar Runtime for SoCLib, implements the
AVATAR operators.

• DDSyntaxChecker checks the syntax of the de-
ployment diagrams and identifies their elements.

• AVATAR2SOCLIB translates AVATAR blocks
(i.e., software components) into C POSIX tasks
and generates the main program.

• TopcellGenerator generates a SystemC top cell
for cycle accurate bit accurate simulation.

• LdscriptGenerator generates the linker script
taking into account the mapping specified in the
deployment diagram.

Note that the arc crossing over between
AVATARDDSpecification and AVATAR2SOCLIB is
necessary: information from the deployment diagram
is required to generate the application code.

Figure 3. Deployment Diagram of the Active Braking Application

SoCLib
Executable

DDSyntaxChecker

TopcellGeneratorLdscriptGeneratorAVATAR2SOCLIB

SyntaxChecker

AVATARSpecification

top.cc

AVATARDDSpecification

ldscriptmain.cblock0.c blockn.c

Block Diagram
and

State Machine

Deployment
 Diagram

libavatar

crosscompiler

loader

SoCLib-cc

deployinfo.h

...

Application
Binary

Figure 4. Tool chain

We now go through the main stages/elements in-
volved in the model transformation.

5.3. The AVATAR Runtime ("libavatar")

The AVATAR runtime is a library of functions which
capture the semantics of the AVATAR operators that
appear in the code of the tasks (delay, asyncRead,
etc.) and implements them using C/POSIX primitives.
MutekH [4] is a free portable operating system for em-

bedded platforms.
The AVATAR runtime more particularly focuses

on channels, since the interconnect latencies and cache
effects make the channels difficult to implement ef-
ficiently on a MPSoC platform. SoClib provides an
efficient implementation of asynchronous channels as
sowtware objects stored in on-chip memory, based on
the Kahn [16] model, that can be accessed by any num-
ber of hardware or software reader and writer tasks alike
[14]. Synchronous communications however require a
central manager to resolve conflicts. In order to run on
a SoCLib platform, instead of the local workstation, the
runtime had to be adapted. Of course, the main model
transformation issue is to maintain that precise seman-
tics after transformation.

5.4. Code Generation

AvatarDeploymentPanelTranslator traverses the
graphical elements of the DDiagram, extracts the data
in form of objects (example: AvatarCPU) and adds it to
a AvatarDDSpecification object.

5.4.1. Code Generation for AVATAR Blocks. Each
mapped block is translated into a C POSIX thread. As
an example, Figure 5 shows the state machine of the
DrivingPowerReductionStrategy block. On receiving
a signal getReducePowerOrder in the WaitForReduce-
PowerOrder state, a waiting time within a given interval
(minimum, maximum) is taken into consideration be-
fore the order is executed (state WaitForReducePower-
ToBePerformed). Figure 6 shows the generated code for

Figure 5. State Machine of the Block Driving-
PowerReductionStrategy

the DrivingPowerReductionStrategy block. The state
machine has three states, including the start state. State
WaitForReducePowerOrder awaits a synchronous mes-
sage, which has been enqueued in a list of pending re-
quests of the overall system by another block named
DangerAvoidanceStrategy (see lower left of Figure 2).
Then, WaitForReducePowerToBePerformed waits for a
delay randomly selected between 10 and 20 millisec-
onds. That delays corresponds to the actuators work to
really reduce the power.

i n c l u d e " D r i v i n g P o w e r R e d u c t i o n S t r a t e g y . h "
s t a t i c u i n t 3 2 _ t _ge tReducePowerOrder ;

d e f i n e STATE__START__STATE 0
d e f i n e STATE__WaitForReducePowerToBePerformed 1
d e f i n e STATE__WaitForReducePowerOrder 2
d e f i n e STATE__STOP__STATE 3
. . .
vo id ∗m a i n F u n c _ _ D r i v i n g P o w e r R e d u c t i o n S t r a t e g y (vo id ∗a r g) {

i n t v a l u e = 0 ;
i n t minReducePowerTime = 1 0 ;
i n t maxReducePowerTime = 2 0 ;

i n t _ _ c u r r e n t S t a t e = STATE__START__STATE ;
. . .
p t h r e a d _ c o n d _ i n i t (&__myCond , NULL) ;
f i l l L i s t O f R e q u e s t s (& _ _ l i s t , __myname , &__myCond , &__mainMutex) ;

w h i l e (_ _ c u r r e n t S t a t e != STATE__STOP__STATE) {
s w i t c h (_ _ c u r r e n t S t a t e) {

c a s e STATE__START__STATE :
_ _ c u r r e n t S t a t e = STATE__WaitForReducePowerOrder ;
b r e a k ;

c a s e STATE__WaitForReducePowerOrder :
__params0 [0] = &v a l u e ;
makeNewRequest (& __req0 , 853 , RECEIVE_SYNC_REQUEST, 0 , 0 , 0 , 1 , __params0) ;
__req0 . syncChanne l = &_ _ D a n g e r A v o i d a n c e S t r a t e g y _ r e d u c e P o w e r \

_ _ D r i v i n g P o w e r R e d u c t i o n S t r a t e g y _ g e t R e d u c e P o w e r O r d e r ;
_ _ r e t u r n R e q u e s t = e xe cu t eO ne Re qu es t (& _ _ l i s t , &__req0) ;
c l e a r L i s t O f R e q u e s t s (& _ _ l i s t) ;
D r i v i n g P o w e r R e d u c t i o n S t r a t e g y _ _ a p p l y R e d u c e P o w e r (v a l u e) ;
_ _ c u r r e n t S t a t e = STATE__WaitForReducePowerToBePerformed ;
b r e a k ;

c a s e STATE__WaitForReducePowerToBePerformed :
w a i t F o r (minReducePowerTime , maxReducePowerTime) ;
D r i v i n g P o w e r R e d u c t i o n S t r a t e g y _ _ r e d u c e P o w e r D o n e () ;
_ _ c u r r e n t S t a t e = STATE__WaitForReducePowerOrder ;
b r e a k ;

}
}
r e t u r n NULL;

}

Figure 6. Extract from the generated code for
the DrivingPowerReductionStrategy block

5.4.2. Main Program Generation. The main program
instanciates all necessary elements, e.g. the POSIX
threads of the AVATAR blocks, and the SoCLib chan-
nels translated as software objects stored in the on-chip
memory: these channels correspond to the AVATAR
channels. Threads, corresponding to an AVATAR
block each, are spawned from the main thread. Via
pthread_attr, they are forced onto the CPU indi-
cated in the Deployment Diagram. For example,
attr_t->cpucount=2 forces thread DrivingPowerReduc-
tionnStrategy onto CPU2. In order to map channels
to specific memory areas, we name a software object
whose mapping will be performed in the linker script
using the same identifier.

Figure 7 shows an extract from the main pro-
gram, focusing on our example block. First, the
POSIX threads are initialized. Next, the signals be-
longing to the channel are associated to their in-
put and output ports (for lack of space, we show
this only for the channel DrivingPowerReductionStrat-
egy_getReducePowerOrder). The threads are then cre-
ated, attributes set beforehand, for example attr_t-
>cpucount to force a thread upon CPU 2. Finally, all
threads are joined to wait for the program completion.

/∗ Synchronous c h a n n e l s ∗/
s y n c c h a n n e l _ _ D a n g e r A v o i d a n c e S t r a t e g y _ r e d u c e P o w e r \
_ _ D r i v i n g P o w e r R e d u c t i o n S t r a t e g y _ g e t R e d u c e P o w e r O r d e r ;
. . .
i n t main (i n t a rgc , c h a r ∗a rgv []) {

vo id ∗p t r ;
p t h r e a d _ b a r r i e r _ i n i t (& b a r r i e r , NULL, NB_PROC) ;
p t h r e a d _ a t t r _ t ∗ a t t r _ t = ma l l oc (s i z e o f (p t h r e a d _ a t t r _ t)) ;
p t h r e a d _ a t t r _ i n i t (a t t r _ t) ;
p t h r e a d _ m u t e x _ i n i t (&__mainMutex , NULL) ;

/∗ Synchronous c h a n n e l s ∗/
_ _ D a n g e r A v o i d a n c e S t r a t e g y _ r e d u c e P o w e r \

_ _ D r i v i n g P o w e r R e d u c t i o n S t r a t e g y _ g e t R e d u c e P o w e r O r d e r . inname
=" ge tReducePowerOrder " ;

_ _ D a n g e r A v o i d a n c e S t r a t e g y _ r e d u c e P o w e r \
_ _ D r i v i n g P o w e r R e d u c t i o n S t r a t e g y _ g e t R e d u c e P o w e r O r d e r . outname

=" reducePower " ;
. . .
/∗ Threads o f t a s k s ∗/
p t h r e a d _ t t h r e a d _ _ D r i v i n g P o w e r R e d u c t i o n S t r a t e g y ;
. . .
p t r = m a l l oc (s i z e o f (p t h r e a d _ t)) ;
t h r e a d _ _ D r i v i n g P o w e r R e d u c t i o n S t r a t e g y = (p t h r e a d _ t) p t r ;
a t t r _ t = ma l l oc (s i z e o f (p t h r e a d _ a t t r _ t)) ;
a t t r _ t −>c p u c o u n t = 2 ;

p t h r e a d _ c r e a t e (& t h r e a d _ _ D r i v i n g P o w e r R e d u c t i o n S t r a t e g y , NULL,
m a i n F u n c _ _ D r i v i n g P o w e r R e d u c t i o n S t r a t e g y , NULL) ;

. . .
p t h r e a d _ j o i n (t h r e a d _ _ D r i v i n g P o w e r R e d u c t i o n S t r a t e g y , NULL) ;
r e t u r n 0 ;

}

Figure 7. Extract from generated main program

5.5. Top Cell Generation

SoCLib is based on the shared memory paradigm,
where a target is identified by the most significant bits
of its address in a common memory space. The top cell
generator thus must determine, for each target compo-
nent, its unique target number associated to the segment

address. We opted for the generic platform described in
Figure 8: the platform considered in the case study has
been derived from this generic platform. The platform
features five PowerPC cores with integrated data and
instruction cache (Xcache), one TTY, and one memory
bank. Components are interconnected by a VGMN (see
Section 5.1). VCI target interfaces are depicted with
lighter arrows, initiators with darker arrows.

Some features must be explicitly captured in the
Deployment Diagram, like CPUs and memory banks,
as shown in Figure 3, while others are totally hidden
to the TTool user, e.g. the numbering of target seg-
ments. Moreover, a timer, ICU and simhelper contain-
ing some simulation support facilities are currently gen-
erated transparently for the user. In the same way, the
size of memory segments is given by a default value and
the starting addresses are calculated by the top cell gen-
erator tool. Specific use cases may need other formats
and must therefore modify the generated code.

The mapping of tasks to processors has no impact
on the top cell, the sections containing channels how-
ever have to be listed in the call to the loader, see upper
part of Figure 9.

The top cell generation takes as input the
AvatarDDSpecification object (see Figure 4), and pro-
ceeds as follows:

1. We generate all segment addresses transparently,
with exception of the segments containing chan-
nels which are visible in the Deployment Diagram.

2. All platforms use a flattened device tree (FDT)
stored in ROM and contain a simhelper component
for simulation support.

3. We systematically add a multi-timer and an inter-
rupt control unit (ICU) target, even if not used by
the application, and generate connection of all pos-
sible interrupt lines.

Figure 8. Generic SoCLib Platform

Top cell

d a t a _ l d r . l o a d _ f i l e (s t d : : s t r i n g (k e r n e l _ p)
+ " ; . d a t a ; . c h a n n e l 0 ; . . .

. c h a n n e l 1 4 ; . c p u d a t a ; . c o n t e x t d a t a ") ;

Excerpt of the ldscript
Mapping channels on a single RAM:

. c h a n n e l 0 : { ∗ (s e c t i o n _ c h a n n e l 0) } > mem_ram
. . .
. c h a n n e l 1 4 : { ∗ (s e c t i o n _ c h a n n e l 1 4) } > mem_ram

Mapping on two RAMs:

. c h a n n e l 0 : { ∗ (s e c t i o n _ c h a n n e l 0) } > mem_ram0
. . .
. c h a n n e l 1 4 : { ∗ (s e c t i o n _ c h a n n e l 1 4) } > mem_ram1

Figure 9. Top cell (top) and ldscript (bottom)

5.6. The Linker Script Generator

Handling the mapping of channels is rather difficult
since it is related to the main program, the top cell and
the ldscript. The linker script (ldscript) is a file which
defines the memory layout; it associates each entry sec-
tion to an output section, which receives its address in
memory. It is generated by a tool developed in the con-
text of [2] and uses essentially the C preprocessor.

The mapping information of channels in AvatarDe-
ploymentPanelTranslator are then used to generate a
file deployinfo.h: the latter is meant to be included by
the ldscript generator. the lower part of Figure 9 shows
an excerpt from the generated ldscript for our example.
Thus, we first map all channels on one memory bank,
then on two different banks. The section .channel of

Figure 10. Menu for SoCLib code generation

the ldscript is made from section_channel which in turn
contains the software object specified in the main pro-
gram in order to represent the channel. Several channels
can be placed on the same memory bank. The loader in-
voked in the top cell (lower part of figure 9 then places
it on the RAM as specified in the Deployment Diagram.

5.7. Using TTool/SoCLib

The generation of the code, top cell and ldscript
has been integrated into TTool with a press-button ap-
proach. When checking the syntax of the deployment
diagram, TTool also now checks for related blocks, in-
terconnections between blocks, and state machines dia-
grams. Then, TTool displays the code generation dialog
window from which executable code can now be gener-
ated, as explained in previous section, for the SoCLib
platform. Figure 10 shows the code generation menu of
TTool. Figure 11 shows the resulting SoCLib simula-
tion. The application and main program code genera-

Figure 11. Using SoCLib from TTool

tion takes less than one second. The generation of the
SystemC executable takes around 30 seconds on a 64
bit 4 core Xeon 2 Gbyte RAM machine under scientific
Linux 64 bit (Table 1). Among others, CABA level sim-

top cell and main and block compilation soclib
ldscript code generation to application platform

generation executable compilation
0.31 s 1.14 s 14.61 s 28.74 s

Table 1. Performance results for the case study

ulation potentially allows to measure cache miss rates,
latency of each step of the individual cache miss, traf-
fic on the interconnect, latency of each transaction on
the interconnect, fill state of the buffers, knowing which
lock is taken/released and the cycle when this happens.
For example, the effect of a remapping of channels as
shown in the upper part of Figure 9, or a change to the
cache parameters can be analyzed in full detail.

6. Current Limitations

The approach is already available in TTool an ex-
perimental branch (-experimental option). Yet, it will

be publicly available before the ERTS’2016 edition (a
live demonstration will be performed).

From the model and translation point of view, syn-
chronous channels currently require the use of a cen-
tral manager, thus generating a significant overhead due
to synchronization traffic on the interconnect. Adding
a specific support for specific automotive interconnects
(CAN, flexray) is planned.

From the simulation perspective, we opted for a
prototyping environment with a low-level abstraction
level (CABA level). Thus, an obvious limitation is the
simulation speed. We need to get comparative results
and work on speeding up the simulation. The simula-
tion speed drawback is probably due to other factors.
Currently, we use a flat, generic interconnect, however
with contention and cache effects. Also, instead of a
detailed CABA model of the processor, we use a in-
struction set simulator [23] to speed up simulation. Due
to simulation complexity, we are still limited to some
dozen processors, yet, it should be enough for most em-
bedded applications.

A variety of low level performance measuring tools
exists for SoCLib, among others giving cycle level in-
formation on the channel fill state and latency on the
interconnect [13, 15]; these will have to be integrated,
opening the way to automated feedback of performance
results and, ultimately, Design Space Exploration.

7. Discussion and Future Work

The paper demonstrates the use of a recent exten-
sion to the TTool/AVATAR environment, by a larger
case study stemming from automotive systems. One
strength of our approach is that it offers a prototyping
and exploration solution for engineers from industry,
accustomed to the use of UML/SysML diagrams, while
maintaining precise simulation results in addition to for-
mal proofs, all in a joint framework. Our framework tar-
gets embedded systems with complex platforms, such
as the ones found in telecommunication and transporta-
tion applications, but also automotive [10] and avionics
providers, in particular those who already use AVATAR.

The next technical steps will consist in supporting
more hardware components (e.g., co-processor wrap-
pers, other types of interconnect, DMA), and more map-
ping capabilities (e.g., stacks, locks, see [14]). The sup-
port of synchronous channels requires a central request
manager as such a semantics is not natively supported
by SoCLib. Also, the current trade-off between simplic-
ity and functionality might be reconsidered w.r.t. the
usage of this new prototyping environment.

In TTool, the animation of the model in the proto-
typing phase is currently limited to a sequence diagram

displaying transactions between software components.
It would also be useful to provide information about
hardware nodes, e.g., the load of processors, the state
of buffers and the traffic on the interconnection network
during simulation. Last by not least, for the moment,
design space exploration is done by hand, The roadmap
of our project envisages to integrate the feedback from
detailed simulation such that it can be taken into ac-
count by the high level models.

Acknowledgments We would like to thank Alexan-
dre Becoulet for his assistance on MutekH.

References

[1] L. Apvrille. Webpage of TTool. In http://ttool.telecom-
paristech.fr/, 2015.

[2] L. Apvrille and A. Becoulet. Prototyping an embedded
automotive system from its UML/SysML models. In
ERTSS’2012, Toulouse, Feb. 2012.

[3] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno,
C. Passerone, and A. L. Sangiovanni-Vincentelli.
Metropolis: An integrated electronic system design en-
vironment. IEEE Computer, 36(4):45–52, 2003.

[4] A. Becoulet. Mutekh. http://www.mutekh.org.
[5] M. Ben Youssef, J.-F. Boland, G. Nicolescu, G. Bois,

and J. Hugues. Bridging the high-level model to exe-
cution platform for design space exploration and imple-
mentation. In ERTSS, 2014.

[6] J. Bengtsson and W. Yi. Timed automata: Semantics,
algorithms and tools. In Lecture Notes on Concur-
rency and Petri Nets. W. Reisig and G. Rozenberg (eds.),
LNCS 3098, Springer-Verlag, 2004.

[7] B. Blanchet. Automatic verification of correspondences
for security protocols. Journal of Computer Security,
17(4):363–434, July 2009.

[8] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt.
Ptolemy: a framework for simulating and prototyping
heterogeneous systems. Readings in hardware/software
co-design, pages 527–543, 2002.

[9] C. Erbas, S. Cerav-Erbas, and A. D. Pimentel. Multiob-
jective optimization and evolutionary algorithms for the
application mapping problem in multiprocessor system-
on-chip design. IEEE Transactions on Evolutionary
Computation, 10(3):358–374, 2006.

[10] EVITA. E-safety Vehicle InTrusion protected Applica-
tions. http://www.evita-project.org/.

[11] P. H. Feiler, B. A. Lewis, S. Vestal, and E. Colbert.
An overview of the SAE architecture analysis & design
language (AADL) standard: A basis for model-based
architecture-driven embedded systems engineering. In
P. Dissaux, M. Filali-Amine, P. Michel, and F. Vernadat,
editors, IFIP-WADL, volume 176 of IFIP, pages 3–15.
Springer, 2004.

[12] A. Gamatié, S. L. Beux, É. Piel, R. B. Atitallah, A. Etien,
P. Marquet, and J.-L. Dekeyser. A model-driven de-

sign framework for massively parallel embedded sys-
tems. ACM Trans. Embedded Comput. Syst, 10(4):39,
2011.

[13] D. Genius. Measuring Memory Latency for Software
Objects in a NUMA System-on-Chip Architecture. Re-
CoSoc, Darmstadt, Germany, July 2013.

[14] D. Genius, E. Faure, and N. Pouillon. Mapping
a telecommunication application on a multiprocessor
system-on-chip. In G. Gogniat, D. Milojevic, and A. M.
A. A. Erdogan, editors, Algorithm-Architecture Match-
ing for Signal and Image Processing, chapter 1, pages
53–77. Springer LNEE vol. 73, Nov. 2011.

[15] D. Genius and N. Pouillon. Monitoring communication
channels on a shared memory multi-processor system on
chip. In ReCoSoC, pages 1–8. IEEE, 2011.

[16] G. Kahn. The semantics of a simple language for par-
allel programming. In J. L. Rosenfeld, editor, Informa-
tion Processing ’74: Proceedings of the IFIP Congress,
pages 471–475. North-Holland, New York, NY, 1974.

[17] E. Kelling, M. Friedewald, T. Leimbach, M. Menzel,
P. Sger, H. Seudié, and B. Weyl. Specification and eval-
uation of e-security relevant use cases. Technical Report
Deliverable D2.1, EVITA Project, 2009.

[18] P. Lieverse, T. Stefanov, P. van der Wolf, and E. F. De-
prettere. System level design with spade: an M-JPEG
case study. In ICCAD, pages 31–38, 2001.

[19] P. Lieverse, P. van der Wolf, K. A. Vissers, and E. F. De-
prettere. A methodology for architecture exploration of
heterogeneous signal processing systems. VLSI Signal
Processing, 29(3):197–207, 2001.

[20] G. Pedroza, D. Knorreck, and L. Apvrille. AVATAR:
A SysML environment for the formal verification of
safety and security properties. In The 11th IEEE Con-
ference on Distributed Systems and New Technologies
(NOTERE’2011), Paris, France, May 2011.

[21] A. D. Pimentel, L. O. Hertzberger, P. Lieverse, P. van der
Wolf, and E. F. Deprettere. Exploring embedded-
systems architectures with artemis. IEEE Computer,
34(11):57–63, 2001.

[22] Polarsys. ARCADIA/CAPELLA (webpage). In
https://www.polarsys.org/capella/arcadia.html, 2008.

[23] N. Pouillon, A. Becoulet, A. V. de Mello, F. Pêcheux,
and A. Greiner. A generic instruction set simulator API
for timed and untimed simulation and debug of MP2-
socs. In RSP, pages 116–122. IEEE, 2009.

[24] SoCLib consortium. SoCLib: an open platform for
virtual prototyping of multi-processors system on chip
(webpage). In http://www.soclib.fr, 2010.

[25] Sodius Corporation. Mdgen for SystemC.
http://sodius.com/products-overview/systemc.

[26] J. Vidal, F. de Lamotte, G. Gogniat, P. Soulard, and J.-
P. Diguet. A co-design approach for embedded system
modeling and code generation with UML and MARTE.
In DATE’09, pages 226–231, April 2009.

[27] VSI Alliance. Virtual Component Interface Standard
(OCB 2 2.0). Technical report, VSI Alliance, Aug. 2000.

