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Abstract—The development of new Systems on Chip commonly
relies on previous products for whom, due to factors such
as system complexities, time and cost constraints, little design
space exploration can be performed. Hardware and software are
typically composed as if they were separate components, whereas
their interactions yield more than the sum of the two parts. In
the scope of the demonstration, we present our enhanced version
of TTool/DiplodocusDF, a UML model-driven engineering tool
and methodology for the design of heterogeneous data processing
systems. Our contributions enrich the modeling and design space
exploration capabilities of TTool/DiplodocusDF to target complex
transfer schemes and control information exchange at different
abstraction levels. Our ameliorated methodology is applied to
two signal processing applications, showing the analysis of
novel interactions between typically conflicting aspects such as
computations vs communications and dataflows vs controlflows.

I. INTRODUCTION

Today’s embedded Systems on Chip (SoC) are more and
more realized as parallel systems (e.g., Multiprocessor Sys-
tems on Chip, MPSoCs) and/or distributed systems (e.g.,
Networks on Chip interconnect, NoCs). This trend constitutes
a challenging scenario for both embedded systems designers
and programmers. For instance, in data-dominated systems
(i.e., signal, image, video processing) the storage and com-
putational resources are usually pooled and used by a set of
interconnected control processors.
The obstacles encountered when designing and/or program-
ming these SoCs lay in managing the complexity of the
hardware, the software and in understanding their interactions.
Currently, embedded system applications are manually pro-
grammed by system experts in languages like C/C++, with
little or no use of Electronic Design Automation (EDA) tools.
New products are often based on existing solutions, where
system experts have a solid understanding of the different
hardware and software components and above all of their
interactions. An example of the latter is a software command
sent to configure a processing unit contending for a bus access
with a data flow. Moreover, hard constraints imposed by devel-
opment costs, time-to-market and cross-platform portability,
leave little room to explore and implement new solutions.
Consequently, a hot topic for the industrial and scientific

communities is to find an efficient way to prototype such
systems in order to explore hardware/software interactions
before SoCs are programmed. In order to achieve this target,
the most promising strategies are based on raising the level
of abstraction at which SoCs are modeled to the Electronic
System Level (ESL). Here, appropriate abstractions allow to
increase comprehension about the system. Models of the latter
are then combined with transformation engines and generators
to synthesize artifacts such as application source code.
In the scope of ESL design, we propose a demonstration to
illustrate our advancements applied to two signal processing
applications running on an heterogeneous multiprocessor ar-
chitecture with shared memory. Following the thread initiated
with past presentations [1] and [2], this year’s demonstration
presents TTool/DiplodocusDF: a UML Model Driven Engi-
neering (MDE) methodology for the design, verification and
code generation of modern SoCs.
The demonstration shows the modeling, simulation, formal
verification and code generation of an application mapped onto
an architecture, with particular emphasis on hardware/software
interactions, e.g., contentions. In terms of novelty we propose
two main contributions. First, a novel modeling feature to ex-
plicitly capture complex transfer schemes for data and control
information, such as those involving multiple intermediate bus,
DMAs and memories. Secondly, the mapping of an application
control needs onto the control resources (e.g., interrupt lines,
CPUs) of the underlying architecture. In this way, we enhance
the design space exploration of novel interactions for later
simulation and code generation. For instance, the impact of
routing a data transfer through a certain path as opposed to
the real time constraints required by a task that consumes
those data; the impact of contentions over the overall system’s
performance when a given unit is used to transfer both control
and data items.
This abstract is organized as follows: Section II introduces
the context of TTool/DiplodocusDF and our contributions to
modeling and design space exploration of modern SoCs. Sec-
tion III describes the demonstration’s case study. Section IV
discusses relevant works in the field of hardware/software co-
design that are related to our research. Finally, the state and



directions of our future works are given in Section V.

II. THE CONTEXT

A. The Methodology TTool/DiplodocusDF

TTool/DiplodocusDF [3], Fig. 1, is a UML MDE method-
ology for the design of heterogeneous dataflow applications
for real time embedded systems, conceived with signal pro-
cessing applications in mind. It stems from DIPLODOCUS,
[4], a UML Model Driven Engineering methodology for
hw/sw partitioning of Systems on Chip at high abstraction
level, currently implemented by the free software TTool [5].
DIPLODOCUS is based on the following fundamental two
principles:

• Data abstraction: only the amount of data exchanged
between functional entities is modeled. Data dependent
decisions are abstracted and expressed in terms of non-
deterministic and static operators.

• Functional abstraction: algorithms are described using
abstract cost operators. The complexity of computations
is taken into account without having to actually execute
them. Architectures are modeled as a set of generic
hardware nodes (e.g. CPUs, memories, bus) that can be
interconnected and parameterized.

The core strength of DIPLODOCUS is the automatic transfor-
mation of models for simulation and formal verification [6].
However, the DIPLODOCUS approach is too abstract to
permit automatic code generation for modern SoCs as models
lack the necessary expressiveness to face the complexity of
architectures and applications.
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Fig. 1. The DIPLODOCUS (solid lines) and DiplodocusDF (dotted lines)
methodologies

TTool/DiplodocusDF is a first attempt to fill the aforemen-
tioned gaps; it enriches DIPLODOCUS with the following
extensions:

• A dataflow semantics: an application is modeled as a
dataflow graph, where nodes represent tasks (processing,
routing, addressing operations) and edges are used to
carry data-blocks and the related control parameters (e.g.,
r/w memory addresses).

• A specialization of the architecture language: het-
erogeneous platforms are represented as a network of
computation nodes (e.g., DSPs), storage nodes (e.g.,
memories) and transfer nodes (e.g., bus) interconnected
by communication edges for data wiring.

• An environment for automatic generation of exe-
cutable code: the description of an application mapped
over a platform is translated in C-language code via an
Intermediate Representation completed by the platform
Application Programming Interface (API) and by a Run
Time Environment for static scheduling computations.

B. Enhancing TTool/DiplodocusDF for Modern Systems on
Chip

In order to address modern SoCs we need to supply for some
modeling deficiencies of TTool/DiplodocusDF concerning the
mapping of control and data:

1) From the perspective of mapping data flows,
TTool/DiplodocusDF is not capable of describing com-
plex transfer schemes such as those that can be imple-
mented in highly parallel SoCs. Here multiple units (e.g.,
DMAs, Digital Signal Processors, DSPs) access shared
memories and data can be transferred via multiple paths.
Currently, only point-to-point transfers, corresponding to
an edge between two nodes in the application graph, can
be modeled. Consequently, an application graph must
be manually adjusted with the injection of routing and
addressing operations to meet the transfer capabilities of
the hardware. This limits the cross-platform portability
of applications (i.e., an application graph tailored to
a given platform must be re-designed if a different
architecture is targeted) and prevents an efficient usage
of architecture resources (i.e., the best way to move data
might not always be a point-to-point transfer).

2) From the perspective of mapping control flows,
TTool/DiplodocusDF lacks the means to map control-
related information from the application onto the ar-
chitecture. Interactions between data and control flows,
such as contention, thus cannot be represented and are
hidden to the eyes of a developer. The mapping of
an application is blind with respect to the real control
capabilities of each hardware unit: two dependent tasks
can be mapped to execution units that are not able to
communicate control information.

We recently enhanced TTool/DiplodocusDF with the modeling
features essential to tackle the above points:

1) To cope with the limitations in terms of the description
of complex transfers, we have introduced Communica-
tion Patterns [7]. This novel modeling feature allows to
explicitly describe complex data transfers schemes so as
to decouple an application graph from the architecture
constraints related to addressing. In a nutshell, a Com-
munication Pattern is made up of a set of interconnected
architecture units as well as the application source and
destination of a transfer. By means of UML Sequence



and Activity diagrams, Fig. 3, 4, all the actions and the
architecture units involved in a transfer are described
and an order relation is provided for verification and
code generation purposes.

2) The description languages have been enriched, as
described in [8], with the expressiveness to address the
exchange of control information. An application model
now features control exchange primitives and nodes to
gathercast and/or broadcast control information among
tasks. Similarly, an architecture model is provided with
dedicated nodes and links to describe the hardware con-
trol capabilities. The control primitives of an application
graph can be mapped onto the control network of the
hardware.

III. THE DEMONSTRATION CASE STUDY

The purpose of this demonstration is to show the method-
ology DiplodocusDF and the contributions we mentioned in
Section II-B, within the framework of TTool [5].
The case study we chose for this demonstration belongs to
the domain of Software Defined Radio (SDR) [9]. Here,
adding reconfigurability has blurred the separation between
hardware and software, therefore introducing new interactions
as well as increasing the complexity of programming such
systems. SDRs are complex telecommunication systems where
some or all of the physical layer functions are implemented
in software. This has made the signal processing of radio
equipments software-reconfigurable, whereas, all functional-
ities where previously implemented in hardware.
This section presents a Software Defined Radio system com-
posed of a hardware architecture (Embb) and two software
applications (High Order Cumulants, HOC and Welch Peri-
odogram Detector, WPD) that are the subject of our demon-
stration.

A. The Applications

The two applications we chose for this demonstration are
used in cognitive radio and operate on an input data stream
that is processed to retrieve information about the usage of
frequency spectrum.

1) High Order Cumulants (HOC): The first application,
HOC is a classification algorithm (as implemented in [10]),
that is used in cognitive radio by a transmitter to sense the
spectrum and detect if another user is currently transmitting
in the same frequency range. The application graph for HOC
is illustrated in Figure 2. The occupancy of a specific fre-
quency range is determined by extracting a score out of the
input data stream from the Source block. Such a stream is
broadcast, FORK, and then processed by operations CWM1,
CWM2 (Component-Wise Modulus) and CWS (Component-
Wise Square). The so-computed classification score is then
accumulated over a classification period by node ACC (AC-
Cumulation) which in turn dispatches its result to the Sink.
In the latter block, the spectrum occupancy is determined
by comparing the accumulated scores with a pre-computed

threshold. Sink also receives a copy of the unprocessed data
directly from Source. Such a copy is not used to compute
the classification score but is specially instantiated for the
demonstration to illustrate how Communication Patterns are
deployed to capture complex transfer schemes, Fig. 3 and
Fig. 4. In Figure 2, data dependencies are represented by
channels connected via blue ports to the graph nodes, while
control dependencies are connected to via purple ports. Sink,
CMW1, CWM2 and CWS control and configure the input data
stream produced by Source. Moreover, Sink also control and
configures the accumulation period of scores in ACC.
Fig. 3 illustrates the UML Activity Diagram for a Commu-
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Fig. 3. The UML Activity Diagram for a Communication Pattern describing
three parallel transfers from the graph of Fig. 2. Data is being transferred in
parallel from the Source block to processing nodes CWM1, CWS and Sink.

Read(data_size)

Read(data_size)

Read(data_size)

Write(data_size)

Read(data_size)

TransferDone(ID)

TransferDone(ID)

TransferRequest(ID, data_size, DSPmemory1, MainMemory)

TransferRequest(ID, data_size, DSPmemory1, MainMemory)

MainBus MainMemoryBridgeDMA

transferred_size += data_size

CrossbarMainCPU

transferred_size = 0; data_size = 64

DSPmemory1

LOOP ( transferred_size <= SIZE )

Read(data_size)

Fig. 4. The UML Sequence Diagram for transfer Source to Sink of Fig. 3.
This example highlights the expressiveness of Communication Patterns to
describe a transfer where data is routed through the whole system interconnect
of Embb.

nication Pattern where three parallel data transfers take place.
These transfers move data from Source to processing oper-
ations CWM1 (Source to CWM1), CWS (Source to CWS)
and Sink (Source to Sink), via the channels ch1, ch2, ch3,
ch8 and ch10 of Fig. 2. Fig. 4 details with a UML Sequence
Diagram all the actors and the actions necessary to carry
out the transfer Source to Sink. The latter is controlled and
configured by Main CPU and executed by Bridge DMA. Data
are transferred from the DSP memory to the Main Memory
via Main Bus, Bridge and Crossbar.

2) Welch Periodogram Detector (WPD): The second appli-
cation we will show in this demonstration is a sensing algo-
rithm, Welch Periodogram Detector (WPD) as implemented
in [3], that is used for sensing the spectrum and detecting
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Fig. 2. The application graph for the High Order Cumulants application

when a given frequency band can be opportunistically used
by a non-licensed user. Fig. 5 shows the application graph
for WPD. Here, a Source node produces the input vectors
whom frequency representation is computed via a Fast Fourier
Transform by the node FFT. The output samples of the latter
are then processed by Component-Wise Modulus (CWM)
node. Next, two output vectors of node CWM are added by
the Component-Wise Addition (CWA) node and the compo-
nents of the resulting vector are summed by node SUM and
collected by node Sink. As for the previous application, the
processing operations of Sink, FFT, CMW and CWS control
and configure the input data stream produced by Source.
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Fig. 5. The application graph for Welch Periodogram Detector algorithm

B. The Hardware Platform: Embb

The hardware architecture for this demonstration is
Embb [11], Figure 6, a generic baseband architecture dedicated
to SDR applications. Embb is composed of a Processing
System, left-hand side of Figure 6, interconnected to a Control
System, right-hand side of Figure 6. The Processing System
operates on the raw samples that are transmitted or received
via the Radio Frequency Interface (RFI), by executing signal
processing operations on a set of interconnected Digital Signal
Processor (DSP) units. The latter are equipped with a hardware
accelerator (Processing SubSystem, PSS), a DMA, a micro-
controller (µC) and an internal memory, mapped on the global
address map of the Main CPU (Central Processing Unit).
The internal memory is accessible by the system interconnect,
DMAs and µCs. The system interconnect permits exchanges of
control and data items: it is composed of a Crossbar, a Bridge

and a Main Bus. The latter is shared with the Control System,
which is also composed of a Main Memory and the Main CPU.
The latter executes the control part of an SDR application:
it manages data transfers, DSPs, the RFI and the External
Environment Interface. Control information within Embb are
exchanged either through a dedicated network of interrupt lines
and interrupt controllers interconnecting DSPs with the Main
CPU, or by means of control instructions passing through the
system interconnect.
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Fig. 6. The architecture of a generic Embb instance

C. Simulation and Formal Verification

Fast simulation and formal verification [12] can be con-
ducted over TTool/DiplodocusDF’s application models before
and after mapping, as illustrated in Fig. 1. The simulation
environment, which has been the subject of previous demon-
strations [1], [2], allows for an interactive exploration of
the application mapped onto a particular architecture via a
revisited version of Discrete Event Model of Computation
(MoC) based on transactions, a data structure that represents
a computation or communication action involving one or more
hardware components. The simulation speed directly matches
the granularity of models and the simulator tool comes with a
graphical interface which allows the user to easily interface
with animated models whose execution can be customized
by means of break-points, generation of execution traces,
save/restore simulation states and other debug facilities. Fig. 7
shows a simulation window where the Welch Periodogram
Detector application of Fig. 5 runs on an instance of Embb.
Fig. 7 shows the load of each architecture component, defined
as the occupation time with respect to the total simulation
time. Thanks to these information, showing for instance that



Fig. 7. Welch Periodogram Detector simulated on an instance of Embb composed of the Control System and the Processing System made up of a DSP,
where all processing operations of Fig. 5 have been mapped.

Fig. 8. A portion of the reachability graph for the WPD application running on the same instance of Embb as in Fig. 7. The reachability graph captures all
possible simulation traces in the form of a graph. The latter is then used by TTool/DiplodocusDF for the model-checking of system properties.

the DSP’s DMA is the most heavily loaded unit (81% of
the total simulation time), a designer can easily identify a
potential system bottleneck and explore the design space of
the WPD simply by changing the application mapping, without
re-designing the whole system.
Formal verification is made possible thanks to the high abstrac-
tion level of models (as described in Section II-A) as well as
to their formal semantics. The latter is defined in the formal
semantics of LOTOS and the timed automata underlying
UPPAAL. TTool/DiplodocusDF formal verification facilities
allow model-checking of system properties such as safety,
schedulability and performance. Fig. 8 shows an excerpt of
the reachability graph of the WPD application running on the
same instance of Embb as the simulation of Fig. 7. The graph
of Fig. 8 illustrates different traces merging together: in the
upper part of Fig. 8, the reader can identify transactions caused
by the DMA execution, whereas, in the lower part, transitions
labeled with LEON are due to the execution of tasks on the
Main CPU (a LEON SPARC-V8 microprocessor).

D. Code Generation

TTool/DiplodocusDF can automatically generate an almost
complete software implementation of a dataflow application
in C code. TTool/DiplodocusDF has been deployed to au-
tomatically synthesize the code for the WPD application
of Fig. 5, which has successfully run on the FPGA-based
prototyping board ExpressMIMO[]. Currently, the generated
code is an almost complete version, in the sense that memory
allocation and the related addressing parameters for DSPs
are left to the designer. As summarized in Fig. 1, synthesis
in TTool/DiplodocusDF takes place via the generation of an
Intermediate Representation of an application mapped onto an
architecture and enriched with the Application Programming
Interface of the latter. The executable code is then produced
by translating the Intermediate Representation into C code,
which is in turn compiled and linked against the Run Time
Environment in charge of scheduling the application.

IV. RELATED WORK

Typically, ESL design tools are domain specific. Some of
them they rely on formal Models of Computation (MoCs)



such as dataflow models, state machines or process net-
works. These MoCs are deployed to model both non-
functional and functional requirements as input descrip-
tion to ESL synthesis tools. According to the novel clas-
sification proposed in [13], true ESL synthesis tools are
the well-known Daedalus [14], [15], Koski [16], Metropo-
lis [17], Ptolemy [18], PeaCE/HoPES [19], SCE [20]
and SystemCoDesigner[21]. With respect to these works,
TTool/DiplodocusDF targets the same hardware platforms, i.e.,
heterogeneous bus-based MPSoCs, and shares the same design
principles in terms of providing a complete flow that can
generate systems across hardware and software boundaries
from an algorithmic specification.
The abovementioned MoCs are not the only solution to
describe input requirements: UML has also gained attention
in the domain of hardware/software co-design [22]. In terms
of modeling the UML/MARTE [23] profile has been especially
proposed for embedded system design. However, it lacks the
notation to describe dataflow application in a pure abstract way
and its procedural approach leads to models with only one
centralized controller [3]. In terms of simulation, some of the
state of the art UML modeling tools, such as Tau [24], TOP-
CASED [25], Papyrus [26], Artisan [27] and Rhapsody [28],
only simulate purely functional models in an untimed fashion,
whereas, TTool/DiplodocusDF also accounts for architecture
constraints, e.g., arbitration of shared resources, speed and data
throughput of components.

V. CONCLUSIONS AND FUTURE DIRECTIONS

In conclusion, it can be said that we enriched
TTool/DiplodocusDF with the expressiveness to describe
control information exchange and complex communication
transfer schemes. As a result of applying these contributions
to TTool, our enriched TTool/DiplodocusDF is provided with
the means to model and verify novel design space points
and interactions. Controlflows, data transfers and interactions
between the latter two, that before our contributions were
invisible to the developer, can finally be taken into account.
This early detection may considerably alleviate the process
of:

• Debugging existing applications and systems
• Enhancing the analysis of hardware/software interactions

early at design time
• Fast prototyping of applications for design space explo-

ration on the real hardware
In future works, the investigation of new modeling techniques
will remain subject to our research. In this direction, we will
further study the application of Communication Patterns to
recent communication architectures such as Networks on Chip.
Parallel to this, a second direction of our research will target
code generation from TTool/DiplodocusDF models [3]. We
will re-visit the code generation phase of TTool/DiplodocusDF
so as to include the automatic synthesis of code for data trans-
fers. Additionally, we will also account for the control depen-
dencies among nodes in the application graph, independently
with respect to the dataflows. This will enable us to improve

the existing Run-Time Environment of TTool/DiplodocusDF
with dynamic scheduling and dynamic memory management,
so as to make a given system reactive to the needs of its
surrounding environment.
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