TELECOM
ParisTech

Operating Systems

VII. Synchronization

«O0> «FP» «4E>» «=>»

Outline

Synchronization issues
Definition
Implementing critical sections

Programming with synchronization constraints
Objects for Ensuring Mutual Exclusion
Example: using mutex and condition variables

Ludovic Apvrille OS - VII. Synchronization - Fall 2009

Synchronization issues Definition
Implementing critical sections

Outline

Synchronization issues
Definition
Implementing critical sections

- Fall 2009

OS - VII. Synchronization

Ludovic Apvrille

Synchronization issues Definition
Implementing critical sections

Why is Synchronization Necessary?

» Know for a process / thread at which execution point is

another process / thread?
» Ensure shared data consistency

— Where is my money?!

| ProcessA | | Bank account | | Process B |
Value = 1000 v
—)_1000 .
[= etValueO) g—)ll(l(lo y = getValue()]
(x—x+700 | v
[y=y+500]
1700 o
[Setval“e(x) J Value)= 1700
i€ 1500 [setValue(y)]
Valuei= 1500

Fall 2009

OS - VII. Synchronization -

Ludovic Apvrille

Synchronization issues Definition
Implementing critical sections

Critical Section Problem: Definition

Critical code sections must satisfy the following requirements:

1. Mutual exclusion (or safety condition): At most one
process at a time is allowed to execute code inside a critical
section of code

2. Machine independence: No assumptions should be made
about speeds or the number of CPUs

3. Progress: Process running outside a critical section may not
block other processes

4. Bounded waiting (or liveness): Process should be
guaranteed to enter a critical section within a finite time

Critical-sections are:
» Used when resources are shared between different processes

» Supported by many programming mechanisms

Ludovic Apvrille OS - VII. Synchronization - Fall 2009

Synchronization issues Definition
Implementing critical sections

Mutual Exclusion Using Critical Sections

[Process A | | Process B |
Executing Executing
Enters critical section
° Cd
. Attempts to enter critical section
° &
Executing in ¢ v
critical °
¢ . Blocked
section . :
° 55 ; :
° & R S R Enters critical section ,
r .
+ Executing in
s critical
-) o section
Leaves critical section .

A4 S
Executing IExecuﬁng

Ludovic Apvrille OS - VII. Synchronization - Fall 2009

Synchronization issues Definition
Implementing critical sections

The Deadlock Issue

Problematic
» Use of shared resources: request, use, release

» Deadlock = situation in which a process waits for a resource
that will never be available

Handling deadlocks: Use a protocol to ensure that the system
will never enter a deadlock state

» Deadlock prevention: Restraining how requests can be made

» Deadlock avoidance: More information from user on the use
of resources

Ludovic Apvrille OS - VII. Synchronization - Fall 2009

Synchronization issues Definition
Implementing critical sections

The Deadlock Issue (Cont.)

Handling deadlocks: Allow the system to enter a deadlock
state and then recover

» Process termination

» Resource preemption

Ignore the problem (i.e. assume deadlocks never occur in the
system)

» Most OS, including UNIX

Ludovic Apvrille OS - VII. Synchronization - Fall 2009

Synchronization issues Definition
Implementing critical sections

Software Approaches

Disabling Interrupts

» Unwise to empower user processes to turn off interrupts!

Lock variables

» Procedure

» Reads the value of a shared variable
» If 0, sets it to 1 and enters the critical section
» If 1, waits until the variable equals to 0

» Possible scheduling is a major flaw!
» Can you guess why?

Ludovic Apvrille OS - VII. Synchronization - Fall 2009

Synchronization issues Definition
Implementing critical sections

Software Approaches (Cont.)

Strict alternation
» Busy waiting (waste of CPU)

> Violates the progress requirement of critical-sections
» Can you guess why?

Process 0 Process 1
While (TRUE){ While (TRUE){
while(turn = 0); while(turn != 1);
/xbegin critical section x/ /*begin critical section x/
turn = 1; turn = 0;
/% end critical section x/ /+* end critical section x/
} }

Ludovic Apvrille OS - VII. Synchronization - Fall 2009 10 of 25

Synchronization issues Definition
Implementing critical sections

Software Approaches (Cont.)

Dekker's and Peterson’s solution
» 1965, 1981

» Alternation + lock variables

Process 0 Process 1

while(true) { while(true) {

flag [0] = true; flag [1] = true;

turn = 0; turn = 1;

while(flag[1] && (turn==0)); while(flag[0] && (turn==1));
/% Critical section x/ /* Critical section x/

flag [0] = false; flag [1] = false;

/x End critical section x/ /* End critical section x/
} }

Ludovic Apvrille OS - VII. Synchronization - Fall 2009 11 of 25

Synchronization issues Definition
Implementing critical sections

Hardware Approaches

The Test and Set Lock (TSL) Instruction
» Special assembly instruction which is atomic
» TSL Rx, LOCK

» Reads the content of the memory at address lock and stores it
in register Rx

Assembly code to enter / leave critical sections

Enter_critical_section:

TSL register , LOCK | copy lock to register and set lock to 1
CMP register , #0 | was lock equal to 07
JNE Enter_critical_section if 1= 0 —> lock was set —> loop

RET | return to caller —> ok to enter critical section

Leave_critical.section:
MOVE LOCK, #0 | Store a 0 in lock
RET | return to caller

Ludovic Apvrille OS - VII. Synchronization - Fall 2009 12 of 25

Synchronization issues Definition
Implementing critical sections

Limits of Peterson’s and TSL solutions
» Busy waiting
» Priority inversion problem: If a lower priority process is in
critical section and a higher priority process busy waits to
enter this critical section, the lower priority process never
gains CPU — higher priority processes can never enter critical
section)

Solution: Sleep and wakeup system calls
» Sleep(): Caller is blocked on a given address until another
process wakes it up
» Wakeup(): Caller wakes up all processes waiting on a given
address)

Ludovic Apvrille OS - VII. Synchronization - Fall 2009 13 of 25

Objects for Ensuring Mutual Exclusion
Programming with synchronization constraints Example: using mutex and condition variables

Outline

Programming with synchronization constraints
Objects for Ensuring Mutual Exclusion
Example: using mutex and condition variables

Ludovic Apvrille OS - VII. Synchronization - Fall 2009 14 of 25

Objects for Ensuring Mutual Exclusion
Programming with synchronization constraints Example: using mutex and condition variables

Semaphores

Definition
» A semaphore is a counter shared by multiple processes

» Processes can increment or decrement this counter in an
atomic way.

» Mainly used to protect access to shared resources

» But semaphores are quite complex to use

Ludovic Apvrille OS - VII. Synchronization - Fall 2009

Objects for Ensuring Mutual Exclusion
Programming with synchronization constraints Example: using mutex and condition variables

Semaphores: Main functions

Creating Semaphores

int semget(key_t key, int nsems, int flag);

15 of 25

Modifying the value of a semaphore

Struct sembuf {

ushort sem_num; /«member # in the set of semaphores x/
short sem_op; /+* operation: negative (—1), 0, +1, etc.
short sem_flg; /* IPC_NOWAIT, SEM_UNDO x/

}

int semop(int semid, struct sembuf semoarray[], size_t nops);

w

Ludovic Apvrille OS - VII. Synchronization - Fall 2009

16 of 25

Objects for Ensuring Mutual Exclusion
Programming with synchronization constraints Example: using mutex and condition variables

Using Semaphores to Share Access to a Resource

Initialization
» A semaphore is associated to each resource

» Value of the semaphore is initialized with semct/() to the
maximum number of processes which can access to this
resource at the same time

Using the Semaphore: semop()
» Before accessing a given shared resource, a process tries to
decrease the value of the semaphore
» If the value is 0, the process is suspended until the value of the
semaphore becomes positive
» To release a resource, a process increments the value of the
semaphore

Ludovic Apvrille OS - VII. Synchronization - Fall 2009 17 of 25

Objects for Ensuring Mutual Exclusion
Programming with synchronization constraints Example: using mutex and condition variables

Mutexes

Definition
» Mutual Exclusion
» A mutex has two states: locked, unlocked

» Only one thread / process at a time can lock a mutex
» When a mutex is locked, other processes / threads block
when they try to lock the same mutex:
» Locking stops when the mutex is unlocked
» One of the waiting process / thread succeeds in locking the
mutex

Ludovic Apvrille OS - VII. Synchronization - Fall 2009 18 of 25

Objects for Ensuring Mutual Exclusion
Programming with synchronization constraints

Mutexes: Main functions

Example: using mutex and condition variables

Initialize a mutex

pthread_mutex_t mymutex;

Lock the mutex

» Waits for the lock to be released if mutex is already locked

pthread_mutex_lock(&mymutex);

» Returns immediately if mutex is locked

pthread_mutex_trylock(&mymutex);

Unlock the mutex

pthread _mutex_unlock (&mymutex);

Ludovic Apvrille

OS - VII. Synchronization - Fall 2009

Objects for Ensuring Mutual Exclusion

Programming with synchronization constraints Example: using mutex and condition variables

Condition Variables

19 of 25

» Used to signal a condition has changed

To wait on a condition

» Put lock on mutex

» Wait on that condition — Automatic release of the lock

To signal a change on a condition
» Put lock on mutex

» Signal that condition

Ludovic Apvrille

OS - VII. Synchronization - Fall 2009

20 of 25

Objects for Ensuring Mutual Exclusion
Programming with synchronization constraints Example: using mutex and condition variables

Use of Condition Variables

Process A Process B

Executing Executing
Enters critical section

Y > Aftempts to enter critical sectio
: M5
L
Executingin : Checks for a given condition: if {...) i
i We assume the test returns false i
critical . (it returns fale) i Blocked
section . | Waits on cvl
°_Relpases mutex L] Enters critical section
Waiting i 1= .
/ | Signals on evl .
H [°
>>< #ical . .
Blocked ?qttempts to get mutex Leaves critical section 'y
Executingin ¢
critical ¢ Executing
saction * leaves critical section
Executing

Ludovic Apvrille OS - VII. Synchronization - Fall 2009 21 of 25

Objects for Ensuring Mutual Exclusion
Programming with synchronization constraints Example: using mutex and condition variables

Producer / Consumer Example

#include <stdlib.h>
#include <pthread.h>

#define N_THREADS_PROD 3
#define N_.THREADS_CONS 4

void *produce(void *); void produceData(int id);
void sconsume(void %) ;void consumeData(int id);

int data = 0; int maxData = 5;
pthread_mutex_t myMutex;
pthread_cond_t full , empty;

int main(void) {
int i;
pthread_t tid_p [N.THREADS_.PROD];
pthread-t tid_c [N.THREADS_-CONS];

for (i=0; i<N-THREADSPROD; i++) {pthread_create(&tid-p[i], NULL, produce, (void x*)i);
for (i=0; i<N_THREADS_CONS; i++) {pthread_create(&tid_c[i], NULL, consume, (void x*)i);

0;
0;

for (i
for (i

N_THREADS_PROD; i++) {pthread_join (tid_p[i], NULL); }

i<
i < N.THREADS.CONS; i++) {pthread_join(tid-c[i], NULL); }

return (0);

Ludovic Apvrille OS - VII. Synchronization - Fall 2009 22 of 25

Objects for Ensuring Mutual Exclusion
Programming with synchronization constraints Example: using mutex and condition variables

Producer / Consumer Example (Cont.)

void xproduce(void xarg) {
int myld = (int)arg;
while (1) {
produceData(myld);
sleep (random () % 5);
}
}

void *consume(void =xarg) {
int myld = (int)arg;
printf ("I am the consumer #%d\n", myld);
while (1) {
consumeData (myld);
sleep (random () % 5);

Ludovic Apvrille OS - VII. Synchronization - Fall 2009 23 of 25

Objects for Ensuring Mutual Exclusion
Programming with synchronization constraints Example: using mutex and condition variables

Producer / Consumer Example (Cont.)

void produceData(int id) {
pthread _mutex_lock (&myMutex);

while (data = maxData) {
printf("#%d is waiting for less data; data = %d\n", id, data);
pthread_cond_wait(&full , &myMutex);
}
data ++;
printf(”#%d is producing data; data = %d\n", id, data);
pthread_cond_signal(&empty);
pthread_mutex_unlock(&myMutex);
¥
void consumeData (int id){
pthread _mutex_lock (&myMutex);
while (data = 0) {
printf("#%d is waiting for more data; data = %d\n", id, data);

pthread_cond_wait(&empty, &myMutex);

}

data——;

printf("#%d is consuming data; data = %d\n", id, data);
pthread_cond_signal(&full);
pthread_mutex_unlock(&myMutex);

Ludovic Apvrille OS - VII. Synchronization - Fall 2009 24 of 25

Objects for Ensuring Mutual Exclusion
Programming with synchronization constraints Example: using mutex and condition variables

Producer / Consumer Example: Execution

$gcc —Ipthread prod prodcons.c
$prod

#3 is waiting for more data; data =
#1 is waiting for more data; data =0
#2 is producing data; data =1

#2 is producing data; data = 2 . . ! _
#0 is consuming data; data =1 ig :: E;::ﬁ;::g ::Ei :::: —
#2 is consuming data; data = 0 # s producin§ dataz data ;
#2 is waiting for more data; data = # is producing data: data —
#3 is waiting for more data; data =0 . . ! _
#0 is producing data; data =1 #1 's produc!ng datai data =
#1 is consuming data; data = #0 is consuming data; data =

0 . .
. . ! — #1 is consuming data; data =
#2 is producing data; data :(1) #3 is consuming data; data =
1
0

#3 is consuming data; data =
is producing data; data =
#2 is producing data; data =
#1 is consuming data; data =
#0 is producing data; data =

o
IS

o

2 is consuming data; data = . .

il is producing data; data = #1 's produc!ng data; data =
#3 is consuming data: data = #1 's produc!ng data; data =
#0 is waiting for more data; data = ﬁ :z araﬁ:?:lngfosafzésdjfaia%
#2 is waiting for more data; data = 0 . € X !
#0 is producing data; data =1 #2 !s consuming data; data =
#0 is consuming data; data = 0 #0 's produc!ng datai data =
#0 is waiting for more data; #1 1s consuming data; data =
#3 is waiting for more data; data = 0 ig :: sorz:lrj:]'l:g :::f j::: i
#1 is waiting for more data; data = 0 g ! -

#2 is producing data; data = 1 G is waiting for less dsta; data
#2 is producing data; data = !

#2 is consuming data: data 7? #2 is waiting for less data; data
#0 is consuming datar data = 0 #3 is consuming data; data = 4
1

#1 is producing data; data =

a
o
-+
o
|
o o
PP OPLPWNWAEAAPRWNWNFENREO

Il
oo

Ludovic Apvrille OS - VII. Synchronization - Fall 2009 25 of 25

