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Abstract

In modern cloud data centers, reconfigurable devices (FPGAs) are used as an

alternative to Graphics Processing Units to accelerate data-intensive computa-

tions (e.g., machine learning, image and signal processing). Currently, FPGAs

are configured to execute fixed workloads, repeatedly over long periods of time.

This conflicts with the needs, proper to cloud computing, to flexibly allocate

different workloads and to offer the use of physical devices to multiple users.

This raises the need for novel, efficient FPGA scheduling algorithms that can

decide execution orders close to the optimum in a short time. In this context,

we propose a novel scheduling heuristic where groups of tasks that execute to-

gether are interposed by hardware reconfigurations. Our contribution is based

on gathering tasks around a high-latency task that hides the latency of tasks,

within the same group, that run in parallel and have shorter latencies. We

evaluated our solution on a benchmark of 37500 random workloads, synthesized

from realistic designs (i.e., topology, resource occupancy). For this testbench,

on average, our heuristic produces optimum makespan solutions in 47.4% of the

cases. It produces acceptable solutions for moderately constrained systems (i.e.,

the deadline falls within 10% of the optimum makespan) in 90.1% of the cases.
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1. Introduction

In the last decade, the use of Field Programmable Gate Arrays (FPGAs) has

steadily increased to accelerate the computation of data-intensive workloads

(e.g., machine learning, financial applications, image and signal processing).

Specifically in the domain of cloud computing, the use of FPGAs has received5

much attention. As defined by the U.S. National Institute of Standards and

Technology, cloud computing ”[...] is a model for enabling ubiquitous, conve-

nient, on-demand network access to a shared pool of configurable computing

resources (e.g., networks, servers, storage, applications, and services) that can

be rapidly provisioned and released with minimal management effort or service10

provider interaction.” [1]. The economy of cloud computing is essentially based

on the idea that ”using 1000 servers for one hour costs no more than using one

server for 1000 hours” [2].

In cloud infrastructures, FPGAs are an interesting alternative to Graphics Pro-

cessing Units (GPUs): FPGAs can offer significant speed-up in the execution15

of many different types of workloads and are also power-efficient [3]. In exist-

ing cloud infrastructures (e.g., Microsoft Azure, Amazon Web Services - AWS),

FPGAs are used as fixed accelerators, where to statically deploy workloads that

are designed once and executed repeatedly over time. This conflicts with the

need of cloud computing to deploy different workloads at run-time and to offer20

to multiple users the shared use of physical devices. This requirement raises the

need for efficient scheduling algorithms that can rapidly take decisions while

accounting for the shared use of FPGA resources (e.g., logic elements, memory

blocks) in both space and time. In this paper, we present a novel scheduling

heuristic called Slot that aims to reduce the an application’s makespan (source-25

to-sink execution latency). The rationale of Slot is to iteratively transform an

input dependency graph of tasks (i.e., units of work), which allows for multi-

ple execution orders, into a totally ordered graph of groups of tasks. At each

iteration, we create a group of tasks, called a slot, by contracting task nodes

in the current graph. Tasks are grouped, by considering tasks’ resource needs,30
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around a high-latency task that executes in parallel to lower-latency tasks, thus

hiding their latency. Slots are sequentially executed, interposed by FPGA total

reconfigurations; tasks in slot n start execution when all tasks in preceding slots

have completed.

In the rest of this paper, Section 2 provides the reader with a summary of rele-35

vant knowledge from the context of our work: FPGA virtualization and multi-

tenant FPGAs used in cloud architectures. This section also un-ambiguously

states the basic definitions for our research problem. Section 3 discusses our re-

search problem and positions our solution with respect to existing works related

to FPGA scheduling. Section 4 presents our scheduling heuristic. Section 5 re-40

ports a detailed evaluation of the heuristic’s run-time and quality of solutions.

Additionally, we compare solutions from our heuristic to both optimal schedul-

ing and to solutions produced by well-known heuristics from the literature. Sec-

tion 6 concludes this paper and presents directions for future works. We include

three appendixes that present relevant work for our evaluation in Section 5.45

In Appendix A we detail our random generator of FPGA scheduling problems.

We present an exact formulation of our scheduling problem in Appendix B,

that we used to produce optimal solutions for comparison. In Appendix C we

correct the pseudo-code of a concurrent heuristic from the literature, HPF-NF

in [4].50

2. Context

To optimize FPGA utilization and return-on-investment in cloud comput-

ing, the fabric of a single FPGA device is shared among multiple users thanks

to the FPGA’s partial reconfiguration capacibilities [5]. Partial reconfiguration

allows to reconfigure the functionality of a pre-defined region of the FPGA while55

network services (tasks) are deployed. These regions are typically called Partial

Reconfigurable Regions (PRRs) and have led to the notion of multi-tenant FP-

GAs. FPGA sharing (also called multiplexing or partitioning) can occur either

temporally or spatially. Temporal sharing refers to scenarios where the FPGA
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device fabric (or one of its PRRs) is allocated to different users or tenants at60

different time slots. This is the more conventional scenario that is most widely

used nowadays in the industry. Recently, researchers have started to explore

the scenario of spatial sharing, where different tenants’ tasks are simultaneously

located on different isolated PRRs within the same FPGA device. While possi-

ble in principle, this scenario raises a security and privacy concerns [6]. As such65

it is currently under investigation and is not yet a reality.

Temporal sharing of FPGAs is possible thanks to partial reconfiguration. The

latter enables dynamically reconfiguring a portion of the FPGA, while the rest

of the device logic continues to operate [7]. An FPGA is partitioned into a

static region and one or more PRRs. These PRRs can be each configured with70

its own bitstream without affecting other PRRs. In this configuration, PRRs

communicate with the host CPU or other peripherals via pre-defined interfaces

implemented in the static region.

In the context of multi-tenant FPGAs, scheduling of hardware tasks is intrin-

sically relevant to other aspects of FPGA design (e.g., security, serviceability,75

billing). We highlight to the reader that, in our work, we focus on scheduling

in the context of an FPGA being temporally shared among tenants, regardless

of the entity that demands to execute hardware tasks (e.g., system designer,

network orchestrator). The reason for this choice is to enlarge the spectrum of

possible users of our contribution that is not specific to cloud FPGAs but also80

applies to FPGAs in other domains (e.g., embedded systems).

To help the reader in understanding how our work relates to other research ef-

forts in multi-tenant FPGAs, we position our work with respect to [8, 9]. In [8],

the authors present a mapper that assigns hardware tasks called Partial Recon-

figuration Modules (PRMs) onto PRRs. The goal of this PRR-to-PRM mapper85

is to map one PRM to as many PRRs as possible in order to maximize the

chances that, when a given PRM is requested by a user, the hosting PRR is

effectively available. This minimizes the user’s waiting time hence maximizes

serviceability. In our work, we consider the problem of scheduling dependent

tasks (equivalent to PRMs) onto an entire FPGA (equivalent to a single PRR).90
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Our objective is to reduce the makespan (source-to-sink latency). The research

problems and objectives in [8] and in our work are different but complementary.

We believe it would be possible (and scientifically interesting) to combine the

two works into a more complete DSE engine capable to study the PRR-to-PRM

mapping and the PRM scheduling within each PRR.95

The work in [9] describes a hypervisor for multi-tenant FPGAs that manages

the resources of PRRs and assigns them to hardware tasks. The focus of the

work in [9] is on building the hypervisor framework rather than proposing spe-

cific algorithms to map and/or schedule hardware tasks. This is evident from

Fig. 5 in [9], that illustrates the interactions between the PRR monitor and100

the Virtual Device Manager: no policy is specified to allocate hardware tasks in

users’ requests. The PRR-to-PRM mapper in [8] as well as our Slot algorithm

could be implemented as part of the infrastructure in [9] to take management

decisions for PRRs and PRMs.

2.1. Virtual FPGAs105

Motivated by the above mentioned needs for multi-tenancy, FPGAs are the

subject of many studies on virtualization. The most popular approach that is

currently taken to virtualize hardware FPGA resources (both programmable

and non-programmable) is based on the concept of overlays. An overlay, or

intermediate fabric implements a reconfigurable architecture within the recon-110

figurable logic of a physical FPGA. This approach can be compared to the Java

virtual machine concept that abstracts a physical CPU. An overlay consist of

a virtual arrangement of some physical resource or set of physical resources

connected by routing channels to a physical interconnect network (e.g., switch

grid, crossbar). Overlays offer great portability and flexibility and are of inter-115

est, besides cloud computing, as they allow workloads to be ported to FPGAs

from different vendors or families. An application vendor can generate and

distribute software and configuration bitstreams that can directly execute on

different target FPGAs, without the need for further target-specific synthesis or

place-and-route steps. In the literature, overlays can be classified as either fine120
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Figure 1: The structure of fine-grained (a) and coarse-grained (b) overlays (taken from [10]).

or coarse grained, depending on the granularity of the physical resources that

they abstract. Fig. 1, that we report from [10], shows overlay architectures for

physical logic elements. In a fine-grained overlay architecture [11, 12], virtual

reconfigurable elements (RE in Fig. 1, left-hand side) denote an arrangement of

generic logic elements (denoted Configurable Logic Elements - CLBs, in Fig. 1a)125

composed of LUTs and hardware registers that receive inputs from a crossbar.

In a coarse-grained overlay architecture [13, 14], virtual reconfigurable elements

denote (Fig. 1b) an array of coarse-grained physical resources, namely regis-

ter files and functional units (FU in Fig. 1b) that implement general-purpose

operations (e.g., addition, multiplication).130

Fig. 2 shows an overview of the development flow for virtualized FPGA

applications (workloads). Virtual bitstreams are generated from a process of

virtual synthesis that targets a virtual overlay architecture rather than a physical

device architecture. In this process, the generic overlay primitives are mapped

to a target FPGA. Users are offered with a view of the FPGA as a virtual135

device that is composed of overlays as well as of a hypervisor that governs the

execution of virtual tasks onto the virtual resources.
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Figure 2: Overview of the development approach for virtualized FPGAs.

2.2. Basic definitions

Before terminating this section we state some basic definitions that are nec-

essary for the reader to avoid misunderstandings with the multiple variants of140

FPGA scheduling problems that can be found in the literature, as well as to

clearly establish the boundaries of our contribution.

By the term task, we denote an elementary unit of work, regardless the abstrac-

tion level, that is implemented as a combination of the resources offered by a

target FPGA. A term frequently employed in the literature on scheduling, that145

is equivalent to our concept of a task is ”job”. By the term scheduling, we refer

to the process of deciding an execution order for a set of dependent tasks. We

also employ the same term to denote an execution order itself, depending on the

context. A scheduling makespan is the difference in time between the moment

where the last task (sink) of a workload terminates executing and the moment150

where the first task (source) started execution. We consider total FPGA recon-

figurations only. In the context of partial reconfigurations, where an FPGA is

statically divided in regions that are totally reconfigured, our contribution can

be used to target individual regions. Our FPGA scheduling problem consists in

scheduling a workload of tasks that requires at least one total reconfiguration155
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Figure 3: The time diagram of a solution to our FPGA scheduling problem.

before the last task finishes execution (apart from the first initial reconfigura-

tion that occurs just before the source task). The objective of our scheduling

problem is to minimize the makespan of a workload of tasks, while satisfying

the constraints imposed by resource requirements of tasks. To solve this prob-

lem, we propose a heuristic that we call Slot as it is based on grouping tasks160

and allocating them to reconfigurations stages called slots. Two consecutive

reconfigurations stages are separated by a total FPGA reconfiguration, Fig. 3.

A task allocated to stage n cannot start execution until all tasks from previous

stages have terminated. In the rest of this paper, we will use the terms stage

and slot (lower case) as synonyms.165

An important assumption in our work is that the dependency graphs that we

consider denote single-user workloads. This removes any concern related to

security and to the spatial sharing of the FPGA with multiple, potentially mali-

cious users. Also, please note that because of this assumptions, the serviceability

of our scheduling algorithm depends on the algorithm’s run-time, solely. Ser-170

viceability is defined as the success rate of the allocation of hardware tasks. It

is inversely proportional to the average time a user has to wait before its tasks

are deployed.

2.3. Target applications

We conclude this section by specifying to the reader the type and character-175

istics of applications that we target in our work. Here, we focus on applications

that are generally called data-flow or stream applications as they process large
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streams of data for image, video and signal processing systems. These applica-

tions are composed of tasks interconnected by producer-consumer relations. For

this reason, they are typically captured by a dependency graph whose nodes de-180

note tasks and edges denote producer-consumer relations involving the exchange

of input/output data between pairs of tasks. The density of these relations is

typically low and, based on our experience, it can be quantified around 0.2, on

average. We recall to the reader that, in graph theory, the density is a measure

of how far the number of edges within a graph is from the maximal number of185

edges. For directed graphs, the density is defined as D = |E|
|V |×(|V |−1) , where |E|

is the number of edges and |V | the number of nodes. The size of these appli-

cations, in terms of |N |, is typically in the order of magnitude of tens of tasks,

depending on the level of abstraction of a design. In the context of our work, we

are positioned at system-level of abstraction, where one task corresponds to one190

block in an application’s block diagram or to one function in the application’s

mathematical algorithm.

In data-flow applications, task priority is somehow implicit in the topology of

the dependency graph given by the producer-consumer relations between tasks.

In some scenarios, it is possible to enforce the priority of tasks by adding arti-195

ficial edges that denote control and/or precedence constraints. An example of

such a scenario is when periodic applications are considered and it is desired to

avoid the overlapping execution of tasks from different periods. In this case, it

is necessary to add precedence constraints from tasks in period n to tasks in

period n+ 1.200

By means of example, Fig. 4 shows four application dependency graphs from

the literature [15] for three image filters (Sobel, SUSAN, RASTA-PLP) and one

JPEG encoder. Also, Fig. 5 shows the system configuration of Intel’s CTAccel

Image Processor architecture [16]. The latter is used to accelerate JPEG, WebP

and Lepton decoding and encoding, image resizing and cropped pixel processing.205

The system targets E-commerce, social network and other domains where it is

necessary to accelerate thumbnail generation, image transcoding as well as com-

mon image processing functions such as sharpening, watermarking and image
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Figure 4: The dependency graphs of example applications for image and video processing

from [15]. Nodes are annotated with execution times and edges are annotated with the

amount of data exchanged between tasks, according to the Synchronous Data-Flow Model of

Computation [17].

analytics. In context of multi-tenant FPGAs, the light-blue blocks in the archi-

tecture of Fig. 5 could be mapped to different PRRs, thus enabling concurrent210

executions of multiple image conversion algorithms for different users/processes.

These examples indicate that the average size of the workloads that we target

is in the order of magnitude of tens of tasks. This is significantly different from

more traditional cloud workloads composed of hundreds of small, independent

software tasks (e.g., microservices in telecommunication cloud systems).215

3. Related Work

The FPGA scheduling problem that we defined in Section 2 can be seen

as a variant of the classical Resource-Constrained Scheduling Problem (RCSP)
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Figure 5: The system configuration of Intel’s CTAccel Image Processor architecture, as de-

picted in [16]. The acronym PAC stands for Programmable Acceleration Card that is an

FPGA card with Intel Arrai 10 GX FPGA.

for a project, [18]. A project is composed of T units of work (called activities,

jobs, tasks) labeled tj , j = 1, ..., J . Typically two tasks denoted with t0 and220

with tJ+1 represent the start (source) and the end (sink) tasks of the project,

respectively. Each task tj has a duration (processing time) hj and cannot be

preempted. Task tj may start once its predecessors are finished. The network of

precedence relations (dependency graph) is assumed to be acyclic. Tasks request

for resources to execute: K resources are given and task tj requires rjk units225

of resource k for each execution. The capacity (maximum amount of available

units) of resource k is denoted as Rk and is fixed. The goal of a RCSP is to

determine a start and finish time for each task such that the project’s makespan

is minimized. Different variants have been studied in the literature, that differ

in the characteristics of tasks and resources (e.g., tasks’ execution times and230

resource requirements can vary, resources can or cannot be renewed to execute

a new task). The authors in [19] demonstrated that the classical RCSP belongs

to the class of NP-hard problems. Our FPGA scheduling problem differs from

the classical RCSP problem because of three fundamental differences:

• At the end of each FPGA configuration stage, no task is running and the235

FPGA hardware is totally reconfigured to accommodate for the next slot
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of task, Fig. 3. On the other hand, in RCSPs, it is possible that, at any

given time instant, there is at least one running task.

• The FPGA reconfiguration time cannot be neglected. With respect to

the formulation of the classical RCSP, the reconfiguration process can be240

modeled as an additional task that has a given duration but does not

consume resources (idle task). Instead, it must be properly inserted in the

global scheduling of tasks, at time t, to regenerate the resources consumed

by the tasks scheduled in the slot just before time t. Difficulties arise

because the insertion of total reconfigurations impacts the final makespan.245

• FPGA resources are shared in both space and time: logic elements, pro-

grammable interconnections and I/O blocks are spatially divided in re-

gions that are programmed to execute some tasks; the same region can be

assigned to execute different tasks, at different time instants, that require

a different configuration of resources. To the best of our knowledge, exist-250

ing RCSP formulations in the literature concern problems where resources

are either space or time shared, but not both.

Because of these differences, the complexity of our FPGA scheduling would de-

serve its own analysis. Such an analysis is out of scope for this paper: to the

best of our knowledge, a proof of equivalence between the RCSP (or any of its255

variants) and our FPGA scheduling problem does not exist in the literature,

yet. Hence, we cannot claim that our FPGA scheduling problem has the same

complexity as the classical RCSP. However, our evaluation in Section 5 shows

that the run-time of the MILP solver increases very rapidly with an increase in

the size of the problem instances. This is a good indication that our problem is260

hard, thus motivating the need for efficient heuristics.

The two-dimensional sharing of resources mentioned above lead us to the fol-

lowing classification of resources. To the best of our knowledge, we are the first

to propose such a classification, that is expected to support how engineers and265
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researchers consider FPGA scheduling problems, thus advancing the state-of-

the-art. This classification is valid for both physical and virtual resources. We

classify resources as scheduling-independent and scheduling-dependent. We de-

fine a scheduling-independent resource as one that is exclusively assigned to a

task tj for the entire lifetime of the reconfiguration slot that contains tj . Con-270

sumption of a scheduling-independent resource rjk (e.g., logic element, memory

blocks) within a slot can be considered by simply subtracting the desired amount

from the capacity of that resource Rk. In other words, the consumption of rjk

does not depend on how task tj is scheduled with respect to the other tasks

in a slot (tasks that space-share the remaining resources). Consumption of rjk275

only depends on the presence/absence of tj within slot s. We remind to the

reader that in our problem, resource and dependency constraints are sufficient

conditions to guarantee that tasks, within a slot, execute without conflicts.

On the contrary, a scheduling-dependent resource is one whose consump-

tion depends on how remaining tasks are scheduled within a slot. Examples280

of scheduling-dependent resources are off-chip memory bandwidth and network

bandwidth. Satisfying requests for these resources does not only depend on the

capacity for a resource but also depends on the execution order of the remaining

tasks in a slot. This difference can be better understood by means of an exam-

ple. Suppose that three tasks A,B,C are allocated to a slot (regardless the slot285

allocation policy) as they fit the FPGA scheduling-independent resources (e.g.,

logic element, memory blocks, DSP blocks). If A and B both require 60% of the

off-chip memory bandwidth to manage I/O data and C only requires 30%, it is

clear that the correct execution of this slot depends on how memory accesses

are scheduled. Thus, with scheduling-dependent resources, resource constraints290

and dependency constraints are necessary but not sufficient conditions for the

tasks within a slot to execute without conflicts.

In the rest of this section, we classify related works based on the quality

of the solutions they produce: exact solutions and non-exact solutions (meta-295

heuristics and heuristics).
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3.1. Exact techniques

Exact techniques are based on mathematical formulations such as those

underlying Constraint Programming, Integer Linear Programming (ILP) and

Mixed Integer Linear Programming (MILP). These formulations are either writ-300

ten by the user or derived from input representations (e.g., code, models) and

then fed to a solver (e.g., Microsoft Z3, IBM CPLEX, GNU Linear Programming

Kit) together with an objective function (e.g., minimize makespan). The solver

can be configured to output all or some of the solutions (e.g., optimal, feasible).

These techniques produce optimal scheduling solutions at the price of high run-305

times (up to hours, days or years according to the size of the problem) that

make them applicable to scenarios where scheduling decisions are taken off-line.

These run-times are due to the very large solution space which characterizes

the FPGA scheduling problem that is influenced by inter-task dependencies,

tasks’ execution times, tasks’ resources, the nature of resources and inter-stage310

reconfigurations.

Relevant works are those described in [20] that compares a MILP formulation

with a list heuristic and a Genetic Algorithm meta-heuristic. In [21], the authors

propose an off-line iterative scheduler based on a MILP formulation that allows

to consider the impact of latency, peak power, energy consumption or linear315

combinations thereof. In [22], the ILP formulation targets the minimization of

processing time together with the time spent for I/O operations. The authors

also consider the execution of multiple instances of a given task. In [23], the

authors use an ILP formulation for the knapsack problem. As discussed below in

sub-section 3.5, our FPGA scheduling problem is not equivalent to the knapsack320

problem and requires a different solution. In [24], the authors present a MILP

formulation to schedule jobs allocated to networked FPGAs and thus consider

the latency impact of send/receive message primitives over the network.

In the context of our work, we also used a MILP formulation (Appendix B)

to evaluate the quality of the solutions (distance from the optimum) produced325

by our heuristic, Section 5.
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3.2. Meta-heuristics

Generally speaking, meta-heuristics are procedures used to solve large-scale

optimization problems by guiding the search process towards a valid, near-

optimal solution. These procedures are based on two general concepts: in-330

tensification and diversification. Intensification allows a promising region of

solutions to be better explored by improving on the current solution. On the

other hand, diversification allows to force the search towards unexplored regions

of the solution space, in order to escape from local optima. The most commonly

used meta-heuristics for the FPGA scheduling problem are Genetic Algorithms335

(GAs), Tabu Search (TS), Ant Colony Optimization (ACO) and Simulated An-

nealing (SA). The run-time, as well as the quality, of meta-heuristic solutions

stands in between the long run-times of exact methods and the fast run-time

of approximate heuristics. Common run-times for FPGA scheduling meta-

heuristics range from one second to a few minutes. The landscape of works340

based on meta-heuristics is very fragmented: the task scheduling problem is

often solved by a meta-heuristic together with other FPGA-related problems

(e.g., mapping). These solutions are often applied to solve problems encoun-

tered during FPGA synthesis. The authors in [25] demonstrated the superiority

of Ant-Colony Optimization with respect to Tabu Search, Genetic Algorithms345

and Simulated Annealing for the classical FPGA RCSPs. A previous edition of

the Elsevier Microprocessors and Microsystems journal [26] presents two algo-

rithms based on ant colony to schedule both dependent and independent tasks

onto multiple FPGAs. The problems the authors aim to solve has a twofold ob-

jective function: to minimize the energy consumption and to respect a deadline350

constraint, while accounting for partial reconfigurations taking place in parallel

on multiple FPGAs. The authors in [20] propose a genetic algorithm for task

scheduling that shows almost linear scalability in terms of the number of gener-

ations required to converge. The authors in [27] propose two algorithms based

on SA and GA for a target platform composed of a CPU and a FPGA.355
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3.3. List-based heuristics

List-based heuristics are commonly used to solve the multi-processor schedul-

ing problem that consists in scheduling processors in order to minimize the

makespan of a set of partially ordered tasks. List heuristics are common in the

RCSP literature because the multi-processor scheduling problem can be formu-360

lated as a RCSP and the theoretical complexity of many RCSP variants is based

on reductions to multi-processor scheduling problems. In a list-based heuristic,

individual tasks from a dependency graph are ranked in a priority list and as-

signed, in sequence, to the earliest available processor that fits their resource

request. This process is repeated until all tasks are scheduled. List heuristics365

require very small run-times (proportional to the size of the dependency graph

in terms of nodes and edges) at the cost of a compromise on the quality of

output schedules. As it is evident in our evaluation (Section 5), a common

characteristic of list-based heuristics is that tasks’ priorities are computed by

traversing the dependency graph, whose topology strongly influences the qual-370

ity of output schedules. When adapting list heuristics to FPGAs, a processor is

equivalent to a FPGA reconfiguration stage that can physically accommodate

for the resources required by a given task. The literature on list heuristics is

very large as they are intensively studied since the ’70s [28]. As representative

examples, we reference here the list heuristics described in [29], called Heteroge-375

neous Earliest Finish Time (HEFT) and Critical Path Of Processor (CPOP). In

these algorithms, tasks are assigned to logic processors according to a priority

that is computed based on the critical path (in terms of execution time) in a

dependency graph. Many variants of HEFT and CPOP were proposed, such as

the Next Fit (NF) version. In HEFT, if a task tj does not fit a logic processor380

p because of resource constraints, tj and all higher-rank tasks are assigned to

another logic processor. In HEFT-NF, instead, p can execute tasks with higher

ranks than tj , as long as there are available resources. In Section 5, we compare

the quality of solutions produced by Slot to those produced by HEFT-NF.
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3.4. Group-based heuristics385

We classify in this category algorithms that take scheduling decisions for

groups of tasks. In general, these algorithms require the computation of more

complex types of priorities (not only based on a dependency graph’s topology)

but yield higher-quality schedules. Tasks are grouped together and groups ex-

ecute sequentially; within a group, tasks can execute in parallel. Typically, a390

group cannot start before all tasks from previous groups have completed ex-

ecution. Representative heuristics for FPGA scheduling are described in [4],

where groups of tasks are formed based on a task’s longest distance from the

dependency graph’s source and on the tasks’ resource consumption. Groups of

tasks take different names according to the domain where the algorithms were395

designed: in real-time systems groups are called servers, in High Performance

Computing systems (HPC) groups are called packs or clusters. In compilation,

groups of elementary units of work (e.g., functions) are also called clusters.

Numerous contributions (see [30] and its related work) target High-Perfor-

mance Computing platforms without reconfigurable hardware, where tasks are400

implemented in software on multi-processor CPUs. Scheduling problems in this

domain are variants of the classical RCSP or of the multi-processor scheduling

problem. While similarities exist between our FPGA scheduling problem and

multi-processor scheduling (e.g., both software and hardware tasks consume re-

sources, FPGA reconfigurations can be logically considered similarly to context405

switches), total reconfigurations have no equivalent in multi-processor systems,

where a context switch takes place as soon as a task terminates. To the best of

our knowledge, in the HPC domain, only the work in [31] proposes a solution

that targets FPGA platforms. Here, resources are abstracted as a single param-

eter, area. An FPGA area is partitioned in slots, tasks are divided in groups410

and each group is scheduled to one slot with the Earliest Deadline First policy.

With respect to our work, the authors in [31] consider independent tasks and a

1D resource model.

Based on the same rationale as pack scheduling are clustering heuristics that

originate in compilers for parallel machines. By means of example, we mention415
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the work in [32] that is one of the most cited heuristics. Here, groups of tasks

called clusters are created, from the dependency graph of some input code, so as

to minimize the overall code’s execution time. Specific to some solutions in this

domain is task duplication: a task may have several copies in different clusters

and each copy is scheduled independently. Duplication is not at all a desirable420

feature in our work: users who rent one or more FPGAs would have to pay

also for the resources occupied by duplicate tasks. Another difference is the

lower level of granularity that is typical of tasks in clustering algorithms: tasks

can be routines or even subparts of routines. To the best of our knowledge, no

heuristic exists that forms clusters around high-latency tasks, as we propose in425

this paper.

Server-based scheduling is a recent technique from the real-time commu-

nity [33] that groups tasks in so-called servers. It applies to both periodic and

aperiodic tasks. It aims to improve the average response time of aperiodic

tasks that are scheduled when no instances of periodic tasks are ready to ex-430

ecute. In [33], a server is defined as a periodic task whose purpose is to serve

aperiodic requests for resources as soon as possible. It is characterized by a pe-

riod, a computation time and a set of tasks. To the best of our knowledge, this

paradigm has never been studied for task dependency graphs and reconfigurable

hardware. Static server-based scheduling for FPGAs was first studied in [34]435

for independent periodic tasks. On-line server-based scheduling is described

in [35, 36], in the context of a real-time operating system, also for independent

tasks. The authors propose a heuristic where servers are merged in order to

reduce the time utilization factor of a merged server’s task set Γ, that is defined

as: U (T ) =
∑
Ti∈Γ

Ci

Pi
, where Ti is a task, Ci its computation time and Pi its440

period. The resulting set of merged servers is then executed sequentially with

the single-processor Earliest Deadline First policy.

Our work differs from [34, 36, 35] as (i) we account for task dependencies

and (ii) we provide a generic model for K resources whose requests are constant

in time and independent of task scheduling.445

18



3.5. Related resource allocation problems

The bin-packing problem (BPP) is a well-known NP-hard combinatorial op-

timization problem [37]. Different versions of this problem exist. In the original

version, items of different volumes vi must be packed into a finite number of

bins, which are in turn characterized by a fixed maximum volume V , in such450

a way to minimize the number of bins used. Many FPGA scheduling problems

are formulated as variants of this problem (e.g., 2D bin packing, where items

and bins are rectangles with a given width and height). Here, items are equiva-

lent to tasks: volumes vi correspond to the resources requested by tasks; a bin’s

total volume V corresponds to the maximum number of resources offered by the455

FPGA; the instantiation of a new bin corresponds to the instantiation of a new

reconfiguration stage. Despite the analogies, there are some important differ-

ences between existing versions of the BPP and our FPGA scheduling problem,

which invalidate the re-use of BPP solutions for our problem. Items, in BPP,

are associated to consumption of resources only, whereas in our problem, the460

hardware execution time of tasks must also be considered. Instantiation of a

new reconfiguration stage increases the total makespan, whereas instantiating

a new bin is costless. The objective function of BPP is to minimize the num-

ber of bins. In our problem, instead, the objective function is to minimize an

application’s makespan, which is not necessarily achieved by minimizing the465

number of reconfigurations stages. Few high-latency stages may require more

run-time than a larger number of low-latency stages, even when accounting for

the reconfiguration time of all stages.

Bin-packing-related variants of the FPGA scheduling problem are usually

solved for static scenarios where the arrival time of tasks and their character-470

istics are known in advance. In a previous edition of the Elsevier Microproces-

sors and Microsystems journal [38], an algorithm is presented for online task

scheduling with unknown arrival and execution times, for the case where tasks

are assigned to 2D rectangles of FPGA resources. This algorithm solves the

problem called Maximal Empty Rectangles that consists in finding an empty475

rectangle of maximal area within a 2D matrix (that models the FPGA), whose
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entries are either empty (unoccupied) or occupied by a task.

The knapsack problem [39] is another well-known combinatorial optimization

problem related to resource allocation. In its original version, the user is given480

a set of different items, each characterized by a weight and a value. The objective

is to determine which items to put in a knapsack so as to maximize the value

of the selected items, while respecting the size constraints of the knapsack.

Our FPGA scheduling problem resembles the knapsack problem, in which the

FPGA resource capacities are equivalent to the capacity of the knapsack, items’485

weights correspond to tasks’ resource needs and items’ values correspond to

tasks’ hardware execution time. However, a solution to the classical knapsack

problem is not necessarily also a solution to our problem. Scheduling tasks in

one reconfiguration stage is equivalent to solving the knapsack problem for one

knapsack. Hence, scheduling a set of tasks that cannot all fit the resources of490

an FPGA, could be seen as the equivalent of solving the knapsack problem on

a set of identical knapsacks. However, this equivalence is fallacious as there is

no equivalent for the FPGA reconfiguration time in the knapsack problem.

3.6. Summary of differences with related works

To help the reader understand the positioning of our work, we conclude this495

section by means of a summary of the differences between our heuristic and

the heuristics referenced above. In list-based heuristics, tasks are sorted in a

list according to a score that is based on the topological position of tasks in

the dependency graph. As a result, list-based scheduling is heavily biased by

inter-task dependencies. On the contrary, in our heuristic, groups of tasks are500

formed around dominating tasks which can be located anywhere in the depen-

dency graph. Groups are formed on the basis of a score that accounts for both

the topology and the tasks’ characteristics (resources, execution time) which are

statistically independent variables.

With respect to group-based heuristics, our algorithm is novel as it proposes a505

new grouping strategy that, to the best of our knowledge, has never been pro-
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posed in the literature. With respect to bin-packing problems, our contributions

differs in that we aim to reduce the application’s makespan rather than the total

number of bins. With respect to knapsack-related problems, we account for the

FPGA reconfiguration time by attempting to form as few groups as possible in510

order to limit the number of FPGA reconfigurations.

With respect to the contributions presented in the conference paper [40], we

present here a richer evaluation. In [40], the evaluation was conducted on a

smaller benchmark, it compared Slot against HEFT-NF and involved a slower

implementation of the two algorithms in Java. In this paper, the evaluation515

results are based on a richer benchmark and on faster, C implementations of

the algorithms Slot, HEFT-NF and HPF-NF.

4. The Slot heuristic

In this section, we present the Slot heuristic, that we first published in [40].

We start by describing the logical modeling of an FPGA and our design as-520

sumptions. Because this logical modeling applies to physical or virtual FPGAs,

in the rest of the paper, the term FPGA (unless evident from the context) will

denote a logical FPGA. We use the term logical to stress the fact that our

modeling and scheduling heuristic can be applied to both physical and virtual

devices/resources. Subsequently, we present the heuristic’s pseudo-code, an in-525

structional example and an algorithm the formulation of Slot to reduce FPGA

resource fragmentation. We conclude this section with a discussion on the ap-

plication of our heuristic to scheduling problems that occur in synthesis and

workload management.

4.1. Logical FPGA modeling and design assumptions530

Our reference logical platform, as shown in Fig. 6, is composed of a log-

ical static region and a logical reconfigurable region. The static region has

a general-purpose processor (e.g., physical FPGA micro-processor, host server

CPU) controlling the reconfiguration and a reconfigurator device that internally
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reconfigures the system at runtime (e.g., hypervisor in the case of a virtual535

FPGA). The reconfigurable region is entirely dedicated to execute a workload

(denoted User application in Fig. 6) and maps either to a physical or to a virtual

FPGA. This assignment is fixed for the entire execution of a workload.

Logical static region

Reconfig. manager,
bitstream library

Logical reconfigurable region

User application

Logical FPGA device

Hypervisor

Reconfig. manager,
bitstream library

Virtual FPGA resources (overlays)

User application

Virtual FPGA device

Server CPU, physical FPGA µc

Reconfig. manager,
bitstream library

PCIe, AXI

Physical FPGA

Cloud data-center
network

User application

Server

Maps to Maps to

Figure 6: The mapping of a logical FPGA system to a physical device (bottom left sub-figure)

and a virtual device (bottom right sub-figure).

In the context of our work, each workload disposes of one or more logical

bitstreams that are designed off-line either by the user or are available as part540

of a library developed by third-parties, e.g., the cloud provider or the FPGA

manufacturer. We target the case where a workload cannot execute in its en-

tirety on a given FPGA and the latter must be reconfigured at least once after

the workload has started executing. These assumptions are coherent with the

design capabilities currently offered by FPGA manufacturers and vendors’ tools545

as well as by virtualization technologies (Section 2).

A workload is denoted, as in Fig. 6, by a directed acyclic graph (DAG)

DAG G =< T,E >. Each task tj ∈ T executes on the reconfigurable region, it

is a technologically mapped netlist implementing the jth logical task (mapped

to either physical or virtual/overlay resources). Task j0 denotes the source550

task and tJ+1 denotes the sink task, with J = |T | being the number of actual
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tasks. As it is frequent for dependency graphs, the source and sink can be

artificial tasks that correspond to units of work that do not occupy resources

and have zero execution time. We characterize task tj by means of a tuple

(hj , rj1, rj2, ..., rjk), where hj is the hardware execution time (HET) taken by555

tj to execute. The reconfigurable resources needed by tj are expressed by the

generic tuple (rj1, rj2, ..., rjk). Thus, for a physical device, rj1 may represent the

number of logic blocks, rj2 may represent the amount of on-chip RAM, rj3 may

denote the number of DSP blocks, etc. When applied to a virtual device, such

as the fine-grained overlay in Fig. 1a, rj1 may represent the number of CLBs, rj2560

may denote the number of I/O blocks, etc. Note that, for instance, for easier

partial bitstreams composition, the logic block resource could very easily be

replaced by entire rows of logic blocks. The occupancy of resources in the tuple

is associated to an operating frequency. Multiple tuples for different operating

frequencies can be assigned to a workload. Our heuristic supports aperiodic565

as well as periodic applications. We only require a workload DAG to include:

one instance of a periodic application’s dependency graph for each period to

schedule; the precedence relations between tasks that belong to different periods.

In our work, we consider that users are always aware of the characteristics

of the workloads they deploy on a target family of FPGAs. In other words,570

tasks’ resource occupancy is known beforehand, typically thanks to data avail-

able during the synthesis and simulation of a workload’s bitstream, profiling or

interpolation and curve-fitting from historic data. Task DAGs can also be read-

ily retrieved with the same techniques or simple static analysis of application

code (e.g., dependency analysis available in compilers and hardware synthesis575

tools).

Other design assumptions are listed below:

• All tasks T in a DAG are released at the same time instant.

• The time to read, write and transfer the input/output data for a task tj

in different memory locations is included in its execution time hj .580

• Tasks require a fixed amount of resources and have a fixed execution time.

23



• The time to transfer a reconfiguration bitstream is included in the FPGA

total reconfiguration time TR.

We require tasks to be designed without pipelining between a producer and a

consumer tasks. In workloads that do not respect this constraint, pipelined tasks585

must be modeled as a single task in the workload’s DAG. These assumptions

are driven by the context of cloud data centers, where FPGAs are available for

multiple users as a general-purpose reconfigurable platform for different types

of workloads.

4.2. The heuristic’s pseudo-code590

The formulation of our heuristic is generic and valid for k-dimensional models

of resources. We consider a set K that contains k resources, each available in

Rk units. Each task tj consumes a fixed amount of each resource, rjk. Our

heuristic takes scheduling decisions for groups of tasks that we call a slot. A slot

s is defined by the tuple (Gs, hs, rs1, rs2, ..., rsk). Gs ⊆ G,Gs = 〈Ns, Es〉 is the595

slot’s graph of tasks and hs is the slot’s HET. The generic tuple (rs1, rs2, ..., rsk)

denotes the slot’s occupancy for each of the K resources (physical or virtual).

Resources occupied by a slot correspond to the sum of the resources occupied by

all its tasks. Obviously, the amount of a slot’s resources cannot be larger than

those available in the target device: rs1 =
∑
tj∈Gs

rj1 ≤ R1, rs2 =
∑
tj∈Gs

rj2 ≤600

R2, ..., rsk =
∑
tj∈Gs

rjk ≤ Rk. Slots are executed sequentially, tasks within a

slot cannot execute until all tasks in preceding slots have terminated. Slots are

interposed by FPGA reconfigurations that add a latency denoted by TR.

In short, our heuristic iteratively transforms a DAG that expresses multiple

partial execution orders for tasks into a DAG that expresses a single total exe-605

cution order (the final schedule) for groups of tasks. This is performed, at each

iteration, by creating a slot, based on the concept of computational dominance.

A slot is built around the task that has the highest HET (dominating task)

among unscheduled tasks. Selected dominated tasks are added to a slot, as long

as there are enough resources, in a way that avoid reducing the parallelism for610

further slots. The final schedule is a succession of FPGA configurations, whose
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latency is determined by the dominating tasks that hide the latencies of the

dominated tasks.

Algorithm 1 shows the heuristic’s pseudo-code. Its main loop, lines 5-14, iterates615

over a worklist where tasks are sorted in decreasing order of their HET. At

each iteration, the algorithm selects from the worklist a dominating task tj

and computes the set S of candidate slots, function buildCandidateSlots(). A

candidate slot is composed of a dominating task tj and a resource-feasible set

of dominated tasks. Such a set is composed of all combinations of tasks that620

can execute in parallel to tj and fit the remaining resources. For instance, let’s

consider the DAG in Fig. 7a. Let’s suppose that t3 is the dominating task

and that both t2 and t5 can be allocated to the same slot. There is a set of 4

candidate slots: S = { {t3, t2, t5}, {t3, t2}, {t3, t5}, {t3} }.

1 Function generateSlots( G = < T, E > ):

2 G′ := G; /* Copy G to G’, G’=<T’,E’> */

3 worklist← T ′ \ {t0, tJ+1}; /* Remove source and sink tasks */

4 worklist← sortInDecreasingOrderOfHET (worklist);

5 foreach tj ∈ worklist do

6 S ← ∅;/* set of candidate slots */

7 S ← buildCandidateSlots(tj , G
′, S,R1, R2, ..., Rk); /* Defined in

Algorithm 4 */

8 foreach s ∈ S do

9 scores[ s ]← computeScore(s,G′); /* Defined in Algorithm 2

*/

10 end

11 Gs ← retrieveLowestScoreSlot(scores[]);

12 G′ ← contractSubgraph(Gs, G
′);

13 worklist← worklist \ {Ns};

14 end

15 return G’;

Algorithm 1: The Slot scheduling heuristic
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Among all candidate slots in S, only one is selected to be created in the625

current DAG G′, lines 8-11 in Algorithm 1. This selection is based on the score

returned by function computeScore(s,G′), Algorithm 2. The rationale underly-

ing the score is to compute (an estimate of) the makespan in the residual graph

G′−Gs, that would result if we created slot s and removed its tasks Gs from G′.

This (estimated) makespan is computed by separately considering the impact

1 Function computeScore( slot s, dependency graph G′ ):

2 Y := G′ −Gs;/* subtracting Gs from G′ */

3 r̄Y 1 :=

∑
tj∈Y rj1

R1
; r̄Y 2 :=

∑
tj∈Y rj2

R2
; ...; r̄Y k :=

∑
tj∈Y rjk

Rk
;

4 nreconfig
Y := max(dr̄Y 1e, dr̄Y 2e, ..., dr̄Y ke);

5 return T∞(G′ −Gs) + nreconfig
Y × TR;

Algorithm 2: The function that assigns a score to a slot.

630

of the variables that constrain our scheduling problem. These variables are the

inter-task dependencies and HETs (accounted by the first term at line 5 in Al-

gorithm 2); the reconfiguration time TR and the occupancy of tasks’ resources

(accounted by the second term at line 5 in Algorithm 2). We separately consider

the impact of these variables, by means of two terms (line 5 in Algorithm 2)635

as they are statistically independent. The first term, T∞(G′ − Gs) quantifies

the impact of tasks’ HET and inter-task dependencies, by ignoring resource oc-

cupancy. We compute it as the sum of the HETs, T∞ for all tasks that lie on

the critical path from source to sink in the subgraph G′ − Gs. This term is

similar to the score computed by list-based heuristics (e.g., HEFT in Section 3).640

To enhance the precision of such a score, we consider a second term that is an

estimate of the number of reconfigurations, in the residual graph G′ − Gs. It

is computed by ignoring inter-task dependencies and considering the occupancy

of the tasks’ resources only. It is denoted as nreconfigY in Algorithm 2, where

Y = G′ −Gs.645

Back to Algorithm 1, at line 11, we select the slot with the lowest score. This

is the slot for which the estimated makespan in G′−Gs is the lowest. Therefore,

creating this slot leaves the (estimated) highest degree of parallelism in the
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residual DAG G′ − Gs. Creating a slot is performed by contracting the nodes

for the slot’s tasks Gs into a single node, in G′, by function contractSubgraph().650

The latter modifies G′ by relabeling nodes that belong to Gs with the new slot

identifier. It collapses nodes in Gs by removing edges internal to Gs as well as

duplicate cross edges (edges with an endpoint in Gs and one in G′ − Gs) and

self-loops (edges whose endpoints are both in Gs). For instance, the contraction

of tasks t2, t3, t5 in Fig. 7a results in the DAG on Fig. 7b.655

We precise to the reader that, in Algorithm 2, function computeScore(s,G′)

does not modify G′. Instead, function contractSubgraph(Gs, G
′) returns a mod-

ified version of G′ that, at line 12 in Algorithm 1, is used for the next iteration

and overwrites the current G′.

660

With respect to the classification of resources as scheduling dependent and in-

dependent, in Section 3, the current formulation of Slot efficiently considers

scheduling-independent resources. This is because, the constraints imposed by

inter-task dependencies and scheduling-independent resources are sufficient to

establish a total execution order for all tasks in a slot. This does not hold when665

the task model includes scheduling-dependent resources. As discussed in Sec-

tion 3, let’s suppose that three tasks A,B,C are allocated to a slot as they fit

the scheduling-independent resources. Let’s also suppose that A and B both

require 60% of the off-chip memory-bandwidth to access I/O data (scheduling-

dependent resource), while C only requires 30%. Regardless the inter-task de-670

pendencies, the constraints imposed by the memory-bandwidth needs are not

sufficient to define a total execution order for A,B,C. It is thus necessary to se-

lect a total execution order by means of some additional policy that decides how

memory accesses are scheduled. An example of such a policy is an algorithm

that schedules memory accesses based on the bandwidth required by each task,675

so that the memory bandwidth consumed by all scheduled tasks is maximized.

Nevertheless, in Slot, scheduling-dependent resources can be treated as if they

were scheduling-independent at the price of a more pessimistic output schedule.
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4.3. Example

We illustrate our heuristic on the example DAG in Fig. 7a (continued in680

Fig. 8). We apply our contribution to a physical FPGA device, namely the

Xilinx Virtex Ultrascale 9P [41], which is available on servers of Amazon Elastic

Compute Cloud. This FPGA disposes of 2586k logic elements, 6840 DSP blocks,

75.9 Mb of embedded memory blocks and a reconfiguration time of 200 ms (for a

bitstream of 76.45 MB and a SPIx4 bus at 100 MHz). We remind to the reader685

that the availability of target resources in a specific device does not influence our

heuristic, as the capacity and the consumption of resources can be normalized

and expressed in the interval [0, 1].

To illustrate how Slot solves our FPGA scheduling problem for multiple re-

sources, we consider three types of resources: logic elements rj1 (LEs, called690

Configurable Logic Blocks, CLBs, in Xilinx nomenclature), DSPs rj2 and em-

bedded memory blocks rj3 (these are on-chip RAM blocks that we call EMBs;

they are denoted BRAM in Xilinx’ nomenclature). In a more refined example,

we could also model, for each task, the number and bitwidth of inputs and

outputs which need to be connected to the static part and the communication695

channels between tasks. Because the application of our heuristic to an instruc-

tional example would be difficult to follow with such a modeling, we decided to

use a simpler 3-resource model that does not capture these low-level resources.

The resource occupancy of tasks in Fig. 7a are given in Table 1. Fig. 7

and Fig. 8 illustrate all the graph transformations that the heuristic performs700

from a partially ordered DAG of tasks (Fig. 7a) to a totally order DAG of slots

(Fig. 8g). Each transformation corresponds to an iteration of the for-loop in

Algorithm 1.

We highlight to the reader the usefulness of the score in Algorithm 2: it

allows the heuristic to take scheduling decisions that a user normally considers705

counter-intuitive. For instance, slot S0 = {t2, t3, t5} is preferred over 19 other

candidate slots, such as {t2, t3, t4}. When S0 is created, it leaves the highest

degree of parallelism for the next graph transformation. While in {t2, t3, t4}, all

tasks can execute in parallel, slot {t2, t3, t5} amortizes the execution time of t5
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(larger than that of t4) as t5 can execute in parallel to t3 (dominating task).710

As indicated at line 5 in Algorithm 2, the score is T∞(Y ) + nreconfigY × TR,

where Y = G − Gs, G is the dependency graph in Fig. 7a, Gs = 〈Ns, ∅〉 is the

subgraph formed by tasks {t2, t3, t5}, only (no edges between tasks {t2, t3, t5}

exist in the dependency graph in Fig. 7a). The term T∞(Y ) is given by:

ht0 + max(ht4 , ht1) + ht6 + max(ht7 , ht8+t9) + ht10 = 287 + 200 + 199 + 303 +715

114 [ms] = 1103 [ms] (we remind to the reader that htj denotes the hardware

execution time of tj). In the second term, that indicates the minimum number of

reconfigurations, nreconfigY := max(dr̄LEse, dr̄DSPse, dr̄EMBse), where dr̄LEse =

d5090k/2586ke = 2, dr̄DSPse = d10266/6840e = 2, dr̄EMBse = d81/75.9e = 2.

Hence, nreconfigJ = 2, the second term nreconfigY ×TR = 2× 200 [ms]. Thus, the720

final score is 1103 + 2× 200 [ms] = 1503 [ms].

In Fig. 8, all tasks within slots execute in parallel but for slot S1, where t7

executes in parallel to the sequence of t8, t9. The total makespan of the slot

DAG in Fig. 8g is 1763 ms: it is equal to the sum of the dominating tasks’ HET,

plus the latency necessary for 5 reconfigurations.725

4.4. Reducing the fragmentation of FPGA resources

As illustrated in Fig. 7 and Fig. 8, we compute a schedule by progressively

transforming an initial tasks DAG, which defines a partial order for tasks,

Fig. 7a, into a slot DAG that specifies a total execution order for both slots

and tasks, Fig. 8g. While designing the heuristic, we observed that, in most730

cases, during the final iterations of Algorithm 1, slots tend to be composed

of a single dominating task, see Fig. 8e, Fig. 8f and Fig. 8g. This is because

most of the candidate dominated tasks have already been assigned to slots in

previous iterations. Thus, the fragmentation of FPGA resources in these single-

task slots is very high. It can be reduced by compacting single-task slots and735

has the indirect benefit of reducing the slot DAG’s makespan because it also

removes some inter-slot reconfigurations. Multiple approaches exist to reduce

the fragmentation of FPGA resources. Based on our experience, we propose

Algorithm 3. Here, we scan all slots in the slot DAG and, for each single-task

29



t0

t1

t2

t4

t3

t5

t6

t7

t8 t9 t10(a)

t0

t1

t4

S0

t6

t7

t8 t9 t10

t0

t1

t4

S0

t6

S1 t10

(d) S2

t1

t4

S0

t6

S1 t10

{t0}

(c)

{t8,t7,t9}

{t2,t3,t5}

(b)

{t8,t7,t9}

{t2,t3,t5}

{t2,t3,t5}

Legend:
Sn = slot created at iteration n in Algorithm 1
{t0,...,tk,...} = list of tasks for a slot; tk in bold is the dominating task
f/g = complexity encountered in the creation of slot: f (theoretical), g (actual)

256/20

4/4

1/1

Figure 7: The creation of slots in our heuristic on the dependency DAG (a), part I.
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Task LEs [u] DSPs [u] EMBs [Mb] HET [ms]

t0 487k 1966 7 287

t1 402k 2565 7 139

t2 272k 1539 15 209

t3 353k 1966 12 460

t4 609k 513 18 200

t5 704k 428 15 314

t6 943k 1453 10 199

t7 788k 1881 5 303

t8 566k 428 5 35

t9 1004k 599 9 49

t10 291k 855 20 114

Table 1: The resource occupancy and hardware execution time (HET) of the tasks in Fig. 7

and Fig. 8.
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S2 S3 S0 S4 S1 S5

{t0} {t1,t4} {t2,t3,t5} {t6} {t8,t7,t9} {t10}

(g)

(f)

S2 S3 S0 t6 S1 t10

{t0} {t1,t4} {t2,t3,t5} {t8,t7,t9}

Legend:
Sn = slot created at iteration n in Algorithm 1
{t0,...,tk,...} = list of tasks for a slot; tk in bold is the dominating task
f/g = complexity encountered in the creation of slot: f (theoretical), g (actual)

1/1

1/1

2/2

Figure 8: The creation of slots in our heuristic on the dependency DAG (a), part II (continued

from Fig. 7.
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slot, we attempt to allocate each of its tasks tj to a neighboring slot, in a first-fit740

manner. This re-allocation is performed by means of contracting edges between

slots. Edge contraction is defined in [42] as the operation that removes an edge

from a graph, while merging the edge’s end vertices and removing duplicate

edges. A task tj is allocated to the first neighboring slot s′ that has enough

FPGA resources and for which dependencies are respected. All tasks in s′ must745

either be predecessors or successors of tj in the initial DAG G. This approach

is simple yet efficient enough to produce solutions that are very close to the op-

timum (see Section 5). Its complexity is O(|S|), that is linear with the number

of nodes in the slot DAG.

1 G′ ← generateSlots(G); /* Defined in Algorithm 1 */

2 G′ ← reduceReconfigurations(G′); /* Pseudo-code below */

3

4 Function reduceReconfigurations( slot DAG G′ =< S,L > ):

/* S := set of slots, L := set of slot arcs */

5 foreach s ∈ S | |Gs| == 1 do

6 foreach s′ ∈ {S \ s} | ∀ti ∈ Ts′ , ti ∈ pred(s,G′) ∨ ti ∈ succ(s,G′) do

7 if (rs′1 + rs1 < R1) ∧ (rs′2 + rs2 < R2) ∧ ... ∧ (rs′k + rsk < Rk)

then

8 contractEdge(s→ s′, G′);

9 break;

10 end

11 end

12 end

13 return;

Algorithm 3: Merging single-task slots in first-fit.

Fig. 9 illustrates how function reduceReconfigurations() reduces the la-750

tency for the slot DAG of Fig. 8g. It merges S2 and S3 in the new slot S2,3

and it merges S0 and S4 in the new slot S0,4. The improved DAG in Fig. 9c

contains 4 slots (instead of 6 in Fig. 8g) and requires only 3 reconfigurations (as

opposed to 5 in Fig. 8g). The final makespan is reduced by 22.23%: from 1763
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ms in Fig. 8g to 1537 ms (this also coincides with the optimal makespan). This755

corresponds to 3 times the FPGA reconfiguration time plus the makespans of:

the sequence of t0, t4 (slot S2,3 - latency of t1 is hidden); the sequence of t2, t6

(slot S0,4 - latency of t3 and t5 is hidden); the processing time of t7 (slot S1 -

latency of t8 and t9 is hidden); the processing time of t10 (slot S10).

(a)

S2,3 S0 S4 S1 S5

{t0,t1,t4} {t2,t3,t5} {t6} {t8,t7,t9}

S2,3 S0,4 S1 S5

{t2,t3,t5,t6} {t8,t7,t9} {t10}

(c)

(b)

S2 S3 S0 S4 S1 S5

{t0} {t1,t4} {t2,t3,t5} {t6} {t8,t7,t9} {t10}

{t10}

{t0,t1,t4}

Figure 9: Reducing the makespan of Fig. 8g as described in Algorithm 3.

4.5. The heuristic’s complexity760

The complexity of the heuristic is dominated by the creation of all can-

didate slots for a dominating task ti, function buildCandidateSlots() (line 7

in Algorithm 1) whose pseudo-code is presented in Algorithm 4. Candidate

slots are computed from C: a subgraph of the current DAG G′, where the

dominating task ti, its successors and predecessors are removed. Function765

combinationsOfParallelTasks(), line 3 in Algorithm 4, returns the c-combi-

nations of tasks in the subgraph K ⊆ G′, with c = 1, ...|C| that can be executed

in parallel to a dominating task. In Fig. 7a, for the dominating task t3, this

function returns the combinations of c = 1, 2, ..., 8 tasks that can execute in

parallel to t3, from the subgraph obtained by removing t0, t3 and t10 in Fig. 7a.770

However, some of these combinations are invalid and must be filtered out

(lines 8-13 in Algorithm 4). Invalid combinations contain tasks that do not

fit the available resources or violate the computational dominance principle.
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1 Function buildCandidateSlots( tj , G′ = < T ′, E′ >, S, R1, R2, ..., Rk):

2 C ← G′ \ {tj , pred(tj , G
′), succ(tj , G

′)};

3 foreach C′ ∈ combinationsOfParallelTasks(C) do

4 Gs = {tj};

5 s← ({tj}, hj , rj1, rj2, ..., rjk);

6 feasible = true;

7 foreach tc ∈ C′ do

8 if executionT ime(Gs + tc, G
′) ≤ hi then

9 if feasibleAllocation(s, tc, R1, R2, ..., Rk) then

10 s← (Gs + tc, executionT ime(Gs + tc, G
′), rs1 + rc1, rs2 +

rc2, ..., rsk + rck);

11 continue;

12 end

13 end

14 feasible = false;

15 end

16 if feasible == true then

17 S ← S ∪ {s};

18 end

19 end

20 return S

Algorithm 4: The function that builds the candidate slots.
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Function executionT ime(X,G′), line 8, is used to verify if a combination of tasks

X respects the computational dominance principle in the DAG G′. It returns775

the length of the critical path that tasks in X form in G′. For X = {t2, t4, t5} in

Fig. 7a, the function returns max{h2, (h4+h5)}. Function feasibleAllocation(),

line 9, verifies if a slot disposes of enough FPGA resources for a new task.

For the sake of precision, we specify that functions pred(tj , G
′) and succ(tj , G

′),

line 1, return the set of predecessors (from the source) and successors (up to780

the sink) of a task tj ∈ G′, respectively. At line 2, the operator \ deletes a

set of nodes N from a graph G′. It returns the subgraph C ′ ⊆ G′ that results

from removing all nodes in N and all edges incident to nodes in N . Operation

Gs + tc, at line 10, adds tc to the slot task graph Gs. This addition produces

the same graph as the subtraction G−Gs − tc.785

The complexity of the heuristic is determined by the number of combinations of

tasks that may form a slot, for the subgraph C defined at line 2 in Algorithm 4.

This number depends on the task dependencies in C and cannot be expressed

in closed form. In the worst case, for a graph C where all tasks can execute in790

parallel, the number of combinations amounts to
∑|NC |
i=1

(|NC |
i

)
, where |NC | is the

number of tasks in C. This also corresponds to the theoretic case of a graph with

no edges (null graph). We ignore this case as it violates our design assumptions:

by definition, the input of our heuristic is non-null dependency graph. In fact,

the total number of combinations is strongly limited by task dependencies and795

by resource constraints. For instance, let’s consider the DAG in Fig. 7a and the

dominating task t3. Combinations {t4, t6}, {t4, t7}, {t4, t8}, {t4, t9} are not valid

candidate slots (even if they fit the available resources) because t6, t7, t8, t9 must

be scheduled after t5, which in turn must be scheduled after t4.

In most of the practical cases we encountered, the complexity is maximal800

at the first iterations of the loop at line 3 in Algorithm 4. Complexity de-

creases significantly with the creation of subsequent slots as parallelism in G′

is progressively reduced. This can be seen in Fig. 8 where below each slot we

reported a pair of numbers f/g. f is the number of combinations in C that can
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be computed without considering for inter-task dependencies (the theoretical805

complexity). g is the number of valid candidate slots (the actual complexity).

A significant difference between f and g exists only for S0.

In our implementation, we combined function combinationsOfParalleTasks()

with the tests at lines 7 and 10. When a combination of tasks X does not re-

spect the computational dominance condition or requires more FPGA resources810

than those available, we stop exploring combinations that are descendants of

X. This prunes the candidate space and significantly reduces runtime.

Although the complexity of Algorithm 4 is theoretically exponential, the

evaluation in Section 5 shows an actual complexity that tends to be polynomial

in terms of the size of the input task DAG.815

For the sake of completeness, we report in Table 2 the complexity of the functions

that compose our heuristic. Apart from Algorithm 4, the functions that con-

Algorithm Theoretical complexity

Main loop of Alg. 1 O(|N |)

Score - Alg. 2 O(|N |+ |E|)

Optimization - Alg. 3 O(|slots|)

Slot construction - Alg. 4
∑|NC |
i=1

(|NC |
i

)
Table 2: Computational complexity of the functions in the Slot heuristic.

tribute to the heuristic’s complexity are: the main loop of Algorithm 1 (lines 5-

14), function computeScore() in Algorithm 2 and functionminimizeReconfigurations()820

in Algorithm 3. The main loop of Algorithm 1 iterates over a worklist composed

of the sequence of tasks that compose the input DAG ordered in terms of de-

creasing hardware execution time. Thus, iterations at lines 5-14 in Algorithm 1

are executed proportionally to the number of tasks in the dependency graph, in

the worst-case. This corresponds to the situation where slots are composed by825

a single task. In our implementation of Algorithm 2, we computed the score by
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means of one breadth-first visit of the dependency graph. Thus, the worst-case

complexity of Algorithm 2 is O(|E|+ |N |). Complexity of Algorithm 3 is linear

in terms of the number of slots as it is based on a simple scan of the list of slots.

4.6. A discussion on the application of the Slot heuristic830

It is common for works that target FPGA scheduling problems (Section 3) to

consider an FPGA as a general-purpose computation unit where hardware tasks

can be programmed and un-programmed on-the-fly, similarly to how software

tasks are scheduled in a multi-processor system. Nevertheless, the adoption of

this approach is hampered by the fact that FPGA tasks are synthesized digital835

circuits whose execution requires the configuration of heterogeneous arrange-

ments of logic elements, programmable interconnects, I/O blocks and other

types of complex resources (e.g., DSP blocks, RAM blocks). Works exist, such

as [43] published at Euromicro DSD 2012, that aim to enable the support for

the Multiple Input Multiple Data computation model for FPGAs by proposing840

a run-time architecture composed of a mesh network of reconfigurable mod-

ules similar to DSP processors. Unfortunately this type of approach is not

mainstream. In the case of FPGAs that support coarse-grain partial recon-

figurations (e.g., Xilinx XC6200), an application of our heuristic for dynamic

task scheduling is possible. This was successfully demonstrated (with another845

heuristic, of course) in the ’90s, as described in [44]. This type of FPGAs (now

outdated) were effectively composed of homogeneous logic that could be com-

bined together to implement hardware tasks. However, modern FPGAs offer

heterogeneous, fine-grain resources that make it much more difficult, for design

tools, to directly support dynamic scheduling. The reason for this is that such850

a dynamic scheduling requires hardware support for the relocation of tasks to

different regions of physical resources. A more practical application of Slot for

dynamic scheduling is to floorplan a target FPGA and generate bitstreams for

all tasks at all possible reconfigurable regions and store the bitstreams in a

data-base, similarly to the approach in [45]. In general, the application of fast855

heuristics to dynamic scheduling is hampered by the long runtime of the place-
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and-route phase that are necessary to produce the hardware configuration for

the scheduled tasks. For this reason, more precise yet time-consuming schedul-

ing approaches (e.g., based on exact methods or meta-heuristics) may be more

appealing than heuristic-based approaches.860

In the context of dynamic scheduling, Slot also applies to dynamic workloads,

i.e., dependency graphs that change over time due to the arrival of new tasks to

be scheduled. Here, the slots must be generated (Algorithm 4) on the depen-

dency graph updated with new edges and nodes corresponding to the arrival of

new tasks. The Slot algorithm can be applied to dynamic workloads in scenarios865

where the algorithm’s run-time is smaller than the reconfiguration time TR.

Another application opportunity for Slot is provided by works that analyze

and translate or manipulate bitstreams [46]. These works aim to (re)generate

and (re)parameterize on-the-fly new bitstreams (e.g., reroute wires, reconfigure870

LUTs and clock signals) from existing designs, without re-running the entire

design flow. This allows to rapidly program similar reconfigurable regions to

execute different tasks, thus reducing the costs of dynamic scheduling. In the

2010 edition of Euromicro DSD, the work in [47] demonstrated the feasibility of

creating partial FPGA reconfigurations at run-time. The applicability of these875

approaches, however, is still hampered by the high time required to produce

bitstreams (47.5 seconds on average, on a Xilinx Virtex-II Pro and a 300 MHz

Power PC processor, as reported in [47]) and by tool support. To counter this

latter issue, in Euromicro DSD 2016, a tool called AutoReloc, based on Xilinx

PlanAhead tool, was proposed to automate floorplanning and timing constraints880

management [48].

Virtualization approaches for FPGAs, such as those based on overlays [10],

are an additional opportunity for dynamic scheduling based on Slot. As de-

scribed in Section 2, overlays allow to decouple logical designs from the char-

acteristics of physical devices similarly to the virtualization offered by the Java885

Virtual Machine for software tasks. Although this type of approaches are still

in their infancy, our heuristic could be used in the future, by the hypervisor of
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such virtual FPGAs, to dynamically schedule virtual tasks.

Apart from dynamic scheduling, another application of our work is for the

partitioning of tasks into reconfigurable regions. This partitioning is a combi-890

natorial optimization problem that is solved off-line and consists in deciding the

size and number of reconfigurable regions that will execute hardware tasks at

run-time. This partitioning phase is currently not supported by vendor tools.

Solutions to this problem are the result of compromises between conflicting re-

quirements in terms of resource usage and reconfiguration time. For instance,895

one solution could be designed to combine tasks into few large regions. While

this allows to optimize the resource occupancy, it increases the reconfiguration

time that is directly proportional to the amount of resources to be reconfigured

(size of regions). Assigning tasks to few large regions also usually entails that

these regions are reconfigured more often. This partitioning problem cannot be900

solved efficiently without considering the scheduling of tasks onto regions. In

this context, the makespans of execution orders, produced by Slot, for different

sizes of a target region can help designers in improving the quality of solutions

to the partitioning problem.

The scheduling problem is also present in High-Level Synthesis (HLS) flows.905

HLS is a design process that ”interprets” the behavioral description of an algo-

rithm, written in a high-level programming language (e.g., C/C++), and pro-

duces the digital hardware that implements that behavior. HLS is a commonly

supported by FPGA vendors (e.g., Xilinx Vivado HLS, Intel HLS Compiler)

as it significantly eases the programming of reconfigurable devices. Scheduling910

is at the heart of HLS: it determines in which clock cycle an operation will

occur by taking into account user directives for control and data flows. HLS

scheduling is, of course, constrained by the FPGA resources and our heuristic

can be applied in a way similar to how clustering heuristics schedule operation

in programming language compilers (sub-section 3.4). Slot can be used, as part915

of a HLS compiler’s back-end, to group low-level operations (e.g., additions,

multiplications) specified in a control-flow dependency graph that is extracted

by the HLS compiler’s front-end from the input code.
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5. Evaluation

In this section we report our evaluation of the Slot heuristic in terms of920

the quality of solutions and of the computational complexity. To compare the

quality of solutions with respect to the optimum and to concurrent heuristics

we relied on a MILP formulation whose details are presented in Appendix B.

To conduct our evaluation, we designed a random generator of FPGA schedul-

ing problem instances, described in Appendix A, with which we generated925

two benchmarks: one with realistic DAGs (that is, with constrained number of

edges), and another with totally random DAGs. The need for this random graph

generator arised as, in the context of our target applications (subsection 2.3)

there’s no publicly available graph generator that allows to tune the topology

of candidate graphs (e.g., density of edges, number of input and output edges930

per node). Additionally, there’s no public available benchmark that offers a sta-

tistically significant collection of data-flow workloads for pertinent evaluations.

The constraints we added to our graph generator to obtain realistic DAGs are

based on our experience of real-world designs for signal and image processing

systems. We start this section by presenting the evaluation results on the first935

benchmark of realistic DAGs, subsequently we describe the observed computa-

tional complexity and compare solutions produced by Slot with those produced

by concurrent heuristics. Finally, we also present the evaluation results on the

second benchmark of totally random DAGs.

5.1. Evaluation results940

The target physical FPGA we used for the evaluation is the Xilinx XC7S25

from the Spartan-7 family. We selected a different device from the one in the

instructional example in Section 4 to further prove that performance of our

contribution do not depend on the target device. We modeled its resources in

terms of logic elements, RAM blocks and DSP blocks. The XC7S25 FPGA is945

a relatively small FPGA but the complexity of our FPGA scheduling problem

does not depend on the size of the target FPGA. Indeed, resource requirements
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could as well be normalized and represented as real numbers in the interval

[0, 1]. The results of our evaluation were retrieved with:

• A MILP solver written in C using the GNU Linear Programming Kit950

(GLPK) [49] version 5.0 and based on the MILP formulation presented

in Appendix B. As the MILP-solving can take much longer than heuristics,

a time-out of 24 hours has been set: for any instance exceeding this real

time the solver has been stopped, and the instance has been excluded from

the comparison with MILP. These “hard” instances have however been955

retained for comparisons not involving MILP.

• The Slot, HEFT-NF and HPF-NF heuristics have been implemented in

C. Slot makes use of version 0.8.5 of the igraph library [50].

HEFT-NF is the Next-Fit version of the list-based heuristic called Heteroge-

neous Earliest Finish Time [29] discussed in Section 3. It is the variant of the960

original HEFT algorithm suitable when targeting reconfigurable devices. HPF-

NF (High-Priority First, Next Fit) is a group-based heuristic presented in [4].

HPF-NF first sorts tasks in a priority list based on a task’s distance from the

DAG source and on the task’s resource consumption. The priority list is then

traversed and tasks are grouped in the same reconfiguration stage if there are965

enough available resources and if, for a task tj , all of its immediate predecessors

have been scheduled in the same or in a previous group.

We selected these two heuristic as they are representative for the category of

list and group based approaches; they are easy to implement and can be readily

adapted to our problem without biasing the comparison of scheduling solutions.970

Comparisons to other heuristics is not possible without significantly denaturing

them and biasing the comparison. Indeed, some of the works cited in Section 3

are based on single resource models that are still valid for less recent FPGAs

(without embedded DSP or on-chip RAM blocks). Other related heuristics are

based on design assumptions that conflict ours. For instance, the contribution975

in [51] is based on partial reconfiguration; in [31], independent tasks are grouped,

whereas we account for dependent tasks.
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All experiments were run on a workstation with 2 sockets, 16 hyper-threaded

cores per socket, that is, 64 logical CPUs, clocked at 3.5 GHz and with 64 GB

of memory. Due to the very large set of instances up to 60 runs have been980

launched in parallel. The memory monitoring showed that the memory was

not a bottleneck in terms of performance. For each problem instance the three

heuristics each produced one approximate solution. The schedule, the makespan

and the tool’s CPU User Time (CUT) have been recorded in a database. All

instances with between 6 and 15 tasks have been solved by MILP in less than985

24 hours. We did not continue with larger instances for two reasons: First, the

total CUT spent on the nt = 151 tasks batch already represents about 7 days

of cumulated CUT2. Second, the preliminary results with larger instances show

that the 24 hours time-out starts being exceeded and, unsurprisingly, that the

portion of instances for which the time-out is exceeded increases with the number990

of tasks, which probably introduces a significant bias by keeping only “simple”

instances. Continuing with larger instances would take huge computation times

and produce more and more biased batches.

5.2. The practical complexity of the FPGA scheduling problem

One of the first outcomes of our experiments is the practical complexity of995

the FPGA scheduling problem. On the 7500 solved instances we estimated the

practical complexity of the FPGA scheduling problem from the CUT taken by

our MILP solver. The CUTs were all measured with the getrusage function

of the glibc library. As the complexity increases with the number of tasks,

we analyzed the distribution of the CUTs for batches of problem instances1000

with identical number of tasks. Table 3 summarizes the observations for 6 ≤

nt ≤ 15, one row per batch, with the number of instances solved by MILP

1In the rest of this section, by nt we denote the total number of tasks in a dependency

graph: nt = J + 2. We previously denoted by J the number of actual tasks (excluding source

and sink).
2This is without counting the fact that the real time, that we did not record, is always

significantly larger than the CUT
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(Solved), the total CUT spent on the solved instances (Total), the minimum,

maximum, average, standard deviation and median of the CUT. All CUT are

in microseconds. Zero values are due to the limited resolution of getrusage.1005

The CUT distributions of MILP solving are highly biased towards the minimum

Tasks Number of instances Total Min Max Mean Std Median

6 300 8.87E+05 0.00E+00 9.75E+03 2.96E+03 1.62E+03 3.05E+03

7 400 3.66E+06 0.00E+00 3.04E+04 9.15E+03 4.27E+03 8.53E+03

8 500 1.37E+07 2.63E+03 7.36E+04 2.75E+04 1.26E+04 2.56E+04

9 600 4.58E+07 1.07E+04 3.47E+05 7.63E+04 4.47E+04 6.60E+04

10 700 1.72E+08 2.70E+04 1.80E+06 2.46E+05 1.75E+05 2.02E+05

11 800 6.49E+08 7.90E+04 8.77E+06 8.11E+05 6.95E+05 6.62E+05

12 900 2.49E+09 2.09E+05 2.55E+07 2.77E+06 2.64E+06 2.02E+06

13 1000 1.10E+10 5.41E+05 2.21E+08 1.10E+07 1.91E+07 6.38E+06

14 1100 1.01E+11 1.11E+06 4.17E+09 9.21E+07 3.17E+08 2.54E+07

15 1200 4.59E+11 3.44E+06 4.24E+09 3.82E+08 6.53E+08 1.31E+08

Table 3: MILP CPU user times in micro-seconds

as can be seen for the nt = 15 tasks batch (1200 instances) and its histogram

represented on Figure 10. There are more than 6 orders of magnitude between

the non-zero minimum (1.2 milliseconds) and maximum (1.2 hours), and more

than 95% of the instances fall in the first decile (0 to 7 minutes). Because of the1010

great variability of the CUT and the bias in each batch towards the minimum,

we decided to use the median instead of the average to compare the different

batches. They are plotted in Figure 11 with a logarithmic scale. Even if these

results are not conclusive on the complexity of our FPGA scheduling problem,

we clearly see that, in practice, its complexity increases very rapidly with the1015

size of the problem instances.

5.3. Comparison of Slot, HEFT-NF and HPF-NF quality

For the 7500 instances solved with the MILP approach, the criteria we re-

tained to compare the quality of the schedules computed by the heuristics is the

additional makespan they add to an optimum solution.1020
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Figure 11: Median of MILP CPU user times vs. the number of tasks
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The Empirical Cumulative Distribution Function (ECDF) is commonly used

to represent the distribution of quality metrics when comparing optimization

techniques. We thus chose to plot the ECDF of the heuristics’ over-makespans,

expressed as percentages of the optimal makespan. Let us denote Mref , Ms,

Mhe, Mhp the optimal makespan, the makespans of solutions by Slot , HEFT-NF

and HPF-NF, respectively. These makespans, considered as random variables,

define the over-makespans ∆s, ∆he and ∆hp as follows, where x ∈ {s, he, hp}

for Slot , HEFT-NF and HPF-NF:

∆x = 100× Mx −Mref

Mref

And we plot:

ECDFx : R+ → [0, 1]

δ 7→ P (∆x ≤ δ)

The plots of the ECDFs, ECDFhe and ECDFhp for all task batches are shown

on Figure 12. These ECDF curves clearly show that Slot outperforms both
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Figure 12: ECDF of Slot , HEFT-NF and HPF-NF over-makespans vs. MILP, all batches

HEFT-NF and HPF-NF. Indeed, Slot over-makespan is less than 10% on more

45



than 90.1% of the cases against 47.0% for HEFT-NF and 42.1% for HPF-NF. In

order to analyze how this advantage over HEFT-NF and HPF-NF depends on1025

the number of tasks we also plotted separately on Figure 13 the individual ECDF

curves per batch. The plots show that the Slot behavior is significantly better

for all explored numbers of tasks, with a considerable advantage to Slot for small

numbers of tasks. They also show that the quality of the heuristics decreases

when the number of tasks increases, which is not very surprising for a problem1030

whose complexity seems to be exponential. To compare the performance of

Slot , HEFT-NF and HPF-NF on the instances for which the MILP solver has

not been used we do not have an absolute optimum reference anymore. We

thus imagined a new heuristic, BEST, that simply consists in taking the best

of the heuristics’ solutions. The ECDF curves of the over-makespans of Slot ,1035

HEFT-NF and HPF-NF vs. BEST for all batches are shown on Figure 14. The

individual ECDF curves per 16 ≤ nt ≤ 30 batch are shown on Figure 15. Again,

these ECDF curves show that Slot outperforms HEFT-NF and HPF-NF in most

cases.

5.4. Comparison of the heuristics CPU user times1040

We did our best to implement MILP, Slot , HEFT-NF and HPF-NF as ef-

ficiently as possible. MILP CPU user times have already been discussed in

Section 5.2. Tables 4, 5 and 6 summarize the observed CUT for the three

heuristics on a subset of the batches. Figure 16 shows the median of the CUT

Tasks Number of instances Total Min Max Mean Std Median

10 700 7.30E+05 0.00E+00 2.94E+03 1.04E+03 4.88E+02 1.08E+03

15 1200 6.05E+06 0.00E+00 1.73E+04 5.04E+03 2.27E+03 4.53E+03

20 1700 2.65E+07 3.62E+03 4.48E+04 1.56E+04 6.52E+03 1.49E+04

25 2200 6.81E+07 4.95E+03 1.09E+05 3.10E+04 1.37E+04 2.86E+04

30 2700 1.62E+08 1.50E+04 2.93E+05 6.01E+04 3.33E+04 5.16E+04

Table 4: Slot CPU user times in micro-seconds

for the 3 heuristics as a function of the number of tasks.1045
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Figure 13: ECDF Slot , HEFT-NF and HPF-NF over-makespans vs. MILP, separate batches
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Figure 14: ECDF of Slot , HEFT-NF and HPF-NF over-makespans vs. BEST, all batches

Tasks Number of instances Total Min Max Mean Std Median

10 700 6.56E+03 0.00E+00 3.00E+01 9.37E+00 6.12E+00 1.00E+01

15 1200 1.51E+04 0.00E+00 6.10E+01 1.26E+01 8.00E+00 1.30E+01

20 1700 2.73E+04 0.00E+00 8.30E+01 1.61E+01 1.08E+01 1.70E+01

25 2200 4.22E+04 0.00E+00 8.10E+01 1.92E+01 1.22E+01 1.90E+01

30 2700 5.95E+04 0.00E+00 1.16E+02 2.20E+01 1.44E+01 2.20E+01

Table 5: HEFT-NF CPU user times in micro-seconds

Just like MILP, Slot has a fast growing complexity with the number of tasks.

However, the median CUT for the 15 tasks instances is 5 milliseconds, that

is, several orders of magnitude less than with MILP (1.31E+05 milliseconds).

Even for the most complex instances with 30 tasks the Slot CUT is about 1

second. Regardless the quality of our implementations, these CUT also show1050

that HEFT-NF and HPF-NF scale much better than Slot with the increase of

the number of tasks. As expected the CUT for HEFT-NF and HPF-NF seems

linear, while the Slot CUT grows much faster with the number of tasks. For

very large instances the Slot advantages in terms of quality of the computed
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Figure 15: ECDF Slot , HEFT-NF and HPF-NF over-makespans vs. BEST, separate batches
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Tasks Number of instances Total Min Max Mean Std Median

10 700 6.98E+03 0.00E+00 5.80E+01 9.97E+00 6.79E+00 1.00E+01

15 1200 1.63E+04 0.00E+00 5.50E+01 1.36E+01 8.94E+00 1.40E+01

20 1700 3.29E+04 0.00E+00 9.80E+01 1.94E+01 1.20E+01 2.00E+01

25 2200 5.64E+04 0.00E+00 8.80E+01 2.56E+01 1.58E+01 2.60E+01

30 2700 8.18E+04 0.00E+00 1.16E+02 3.03E+01 1.88E+01 3.35E+01

Table 6: HPF-NF CPU user times in micro-seconds
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Figure 16: Median CUT of heuristics vs. number of tasks

schedules will be counterbalanced by its larger run-times.1055

Before concluding this sub-section, we report the CPU run-time and the quality

of solutions for a workload of 100 tasks, in Fig. 17 and Table 7, respectively.

These results correspond to a workload that is beyond the size of the reasonable

workload we target in our work (i.e., tens of tasks). Nevertheless, we believe

these results are a relevant indication to readers interested in the scalability of1060

our contribution for larger workloads, for instance, in the context of resource-

constrained scheduling of software tasks on non-reconfigurable hardware plat-

forms.
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Figure 17: ECDF of Slot , HEFT-NF and HPF-NF over-makespans vs. BEST, 100 tasks

Solver Number of instances Total Min Max Mean Std Median

HEFT-NF 9700 7.15E+05 0.00E+00 2.28E+02 7.37E+01 3.91E+01 7.20E+01

HPF-NF 9700 4.47E+06 0.00E+00 1.28E+03 4.61E+02 2.53E+02 4.33E+02

Slot 9700 1.29E+12 7.29E+06 1.23E+09 1.33E+08 1.19E+08 9.92E+07

Table 7: CPU user times in micro-seconds for 100 tasks workloads

5.5. Problem instances with completely random DAG

As already noted the constraints we added to our graph generator to obtain1065

realistic DAGs are based on our experience of real-world designs for signal and

image processing systems. Because DAGs from other domains may have dif-

ferent edge densities, in this section, we evaluate our contribution on problem

instances with more random graph topologies. The vertexes can now have an

arbitrary large number of incident edges. For each number of tasks 6 ≤ nt ≤ 301070

and for each possible number of internal edges 0 ≤ ne ≤ (nt−3)×(nt−2)
2 we gen-

erated totally random instances. As the number of nt×ne combinations is very

large we generated 100 instances per combination where 6 ≤ nt ≤ 15 and only

10 per combination where 15 ≤ nt ≤ 30.
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Figure 18: Randomly generated 10 tasks DAG

As with the first benchmark, in the 6 ≤ nt ≤ 15 batches we tried to obtain1075

an optimum solution by MILP. Several instances exceeded the 24 hours time-

out but as it was only a small number we decided to keep the corresponding

batches. We just eliminated from comparisons with MILP the 29/37000 in-

stances for which the time-out was exceeded. This second benchmark contains

70050 instances with completely random DAG, among which 36971 have an1080

MILP optimal solution. The number of internal edges range from 0 to 378 and

the total number of edges range from 5 to 380. Figure 18 shows two DAG (with

source and sink tasks) of the 10 tasks batch, one with no internal edges and the

other with the maximum: 28. The plots of the ECDFs, ECDFhe and ECDFhp

for all batches with a known MILP optimal solution are shown on Figure 19.1085

The individual ECDF curves per batch are plotted separately on Figure 20.

The plots show that the Slot improvement over HEFT-NF and HPF-NF still

exists for all explored numbers of tasks but it is less significant than in the first

benchmark.

The performance of Slot , HEFT-NF and HPF-NF on the 16 to 30 tasks in-1090

52



0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 10 20 30 40 50 60
Over−makespan (% of MILP)

E
C

D
F Slot

HEFT−NF
HPF−NF

Figure 19: ECDF of Slot , HEFT-NF and HPF-NF over-makespans vs. MILP, all batches

stances for which the MILP solver could not be used are compared thanks to

the same BEST reference heuristic we already used with the first benchmark.

The ECDF curves of the over-makespans of Slot , HEFT-NF and HPF-NF vs.

BEST for all batches are shown on Figure 21. The individual ECDF curves per

16 ≤ nt ≤ 30 batch are shown on Figure 22. Again, the Slot advantage over1095

HEFT-NF and HPF-NF is visible, though it is not as evident as in the first

benchmark.

6. Conclusions and Future Works

In this paper we presented a heuristic, that we call Slot, for the scheduling

of dependent tasks (i.e., logical units of work) on FPGAs, subject to constraints1100

imposed by the resource requirements of tasks. Our heuristic can be classified

as a group heuristic as it consists in forming groups of tasks that are assigned

to reconfiguration stages, called slots. Two consecutive slots are interposed by

total reconfigurations; a task from slot n cannot start executing until all tasks

from slot n − 1 terminate. Our algorithm is based on a parameterized and1105
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Figure 20: ECDF Slot , HEFT-NF and HPF-NF over-makespans vs. MILP, separate batches
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Figure 21: ECDF of Slot , HEFT-NF and HPF-NF over-makespans vs. BEST, all batches

generic modeling of FPGA resources that allows to capture any resource and to

target both physical and virtual FPGAs.

An interesting direction for future work is to study the scheduling when tasks

are modeled to consume what we defined as scheduling-dependent resources.

These are resources (e.g., network and/or memory bandwidth) whose consump-1110

tion depends on the scheduling of tasks within a reconfiguration stage. Another

interesting direction is to study the case where multiple identical instances of a

task are present in a dependency graph. This scenario was studied in a previous

publication of the Elsevier Microprocessors and Microsystems journal, [52], for

multimedia systems. This scenario is of interest for cloud computing systems,1115

where image and video processing applications are among the most common

type of applications being offloaded to reconfigurable hardware.
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Figure 22: ECDF Slot , HEFT-NF and HPF-NF over-makespans vs. BEST, separate batches
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ration and Reprogrammability.
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Appendix A. Random generator of FPGA scheduling problem in-

stances

An instance of our FPGA scheduling problem is characterized by a work-

load of tasks and their characteristics (e.g., hardware execution time, resource1125

occupancy), the task dependency graph and a target device. We decided to ran-

domly generate task characteristics, within certain reasonable bounds. More in

details, we configured our generator to discard tasks with small resource re-

quirements as these tasks diminish the impact of the resource constraints in

favor of the impact of the execution time constraint, on a problem’s instance.1130

This would bias the problem space towards that of a classical multi-processor

scheduling problem, e.g., we could have problem instances where all workload

tasks fit in a single slot because tasks consume few resources. We also prevented

the generation of tasks with large resource requirements as this corresponds

to simple problem instances where solutions tend to be formed by single-task1135

slots. Consequently, we decided that, given a random problem instance, each

task requires a proportion of a resource comprised between 10% and 50% of

the total capacity for that resource. In terms of our formalization (Section 4):

0.1 × Rk ≤ rjk ≤ 0.5 × Rk, ∀j = 1, 2, ...J, ∀k = 1, 2, ...,K. Our experiments

show that this choice produces many ”hard” problem instances with non-trivial1140

solutions.

A similar reasoning was conducted to establish the generation of the tasks’

hardware execution time (HET). Short HETs tend to bias the problem towards

a resource-only combinatorial optimization problem, while long HETs tend to

favor our heuristic, based on dominant tasks first. Thus, we decided that a task’s1145

HET is comprised between 1/4 and 4 times the FPGA reconfiguration time,

0.25×TR ≤ hj ≤ 4×TR, ∀j = 1, 2, ..., J . The dependency graph generation is a

bit more subtle because it must be acyclic, have a unique source and sink nodes

and because of the need to produce ”realistic” graphs, in terms of density of

edges, that can represent real-world workloads. Based on our experience on the1150

design of signal and image processing systems, real-world dependency graphs are
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not very dense: tasks with more than 3 producers and/or consumers are rare.

Thus, our random graph generator is defined by the following characteristics:

• The graph random generator is given a number of vertices (tasks) J ≥ 1

and a number of internal edges (dependencies) ne. An internal edge is1155

an edge between any of the J actual tasks, thus an edge whose starting

and arrival nodes are both different from the source vertex t0 and the sink

vertex tJ+1. We remind to the reader that J denotes the number of actual

tasks, excluding the source and the sink tasks.

• The task indexes are used as a topological ordering of the dependency1160

graph: if there is an edge from ti to tj , then i < j in the topological

ordering. This is a necessary and sufficient condition to guarantee that

the graph is acyclic.

• The generator starts with a graph with J + 2 vertices and no edges. It

iterates ne times and adds one internal edge per iteration. At each iter-1165

ation the generator randomly selects two different vertices ti and tj such

that 0 < i < j < J + 1 and there is no edge already placed between them.

In order to avoid unrealistic numbers of incident edges the two vertices

must also be such that after adding an edge between them:

– Their total number of input internal edges is less or equal 2.1170

– Their total number of output internal edges is less or equal 4.

– Their total number of incident internal edges is less or equal 5.

• The generator then adds an internal edge from ti to tj . At the end of this

first phase, vertices t0 and tJ+1 are not yet connected and the rest of the

graph is not guaranteed to be fully connected (it could be composed of1175

several disjoint sub-graphs).

• The second phase then fully connects the graph by adding one edge be-

tween t0 and each other task without a predecessor (except tJ+1), and one

edge between each task without a successor (except t0) and vertex tJ+1.
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This produces a connected graph with one single source task (t0) and one1180

single sink task (tJ+1).

Of course, the above specifications work if and only if the number of internal

edges ne is less or equal the theoretical maximum: the J non-artificial tasks

have at most two input internal edges except task t1 which has none and t2

which has at most one (from t1). The maximum number of internal edges is1185

thus 0 + 1 + 2× (J − 2) = 2× J − 3. Our specifications exclude the generation

of graphs with too few internal edges. These graphs would result in problem

instances close to the classical multi-dimensional bin packing problem. We

considered only graphs with at least one incident internal edge per non-artificial

task (i.e., the J tasks included between the source and sink), that is a minimum1190

of J−1, J > 1. This is the case, for instance, of a perfectly sequential application

(or two independent sequential applications with one extra internal edge in one

of the two sub-DAG).

With this random generator we produced 37500 different graphs with 6 to

30 tasks, 3 to 53 internal edges, and 5 to 61 total edges. By means of example,1195

Fig. A.23 shows two graphs, without the artificial source and sink tasks, with

J = 10 tasks, one with ne = 7 internal edges (the minimum) and the other with

ne = 13 (the maximum).
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Figure A.23: Randomly generated DAGs with 10 tasks (source and sink are not represented).

Appendix B. MILP formulation

In this appendix we report the complete MILP formulation for our FPGA1200

scheduling problem, that we used in Section 5 to evaluate our heuristic. We

remind to the reader that in this appendix, term nt denotes the total number

of tasks in a DAG (nodes). With respect to the notation used in Section 4,

nt = J + 2, J being the number of actual tasks (no source and no sink tasks).

We start with the input values:1205

• nt ∈ N, nt ≥ 2 is the total number of tasks, including the artificial source

and sink. In the following we denote T = {T0, . . . , Tnt−1} the set of tasks.

T0 and Tnt−1 are the artificial source and sink tasks with zero duration

and zero resource consumption. We remind that the artificial source and

sink tasks are just a way to close the DAG that represents the inter-task1210

dependencies and that they are added without loss of generality. They

ease the modeling by providing simple start and end points but they have
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no impact on the results.

• y ∈ R+nt is the vector of the durations of the tasks; yt is the duration of

task Tt. We always have y0 = ynt−1 = 0 because tasks T0 and Tnt−1 have1215

zero duration.

• nr ∈ N, nr ≥ 1 is the number of types of resources offered by the target

FPGA. R = {R1, . . . , Rnr} is the set of types of resources (e.g. LE, DSP

blocks, Embedded Memory Blocks, Clock Generators. . . )

• ns = nt − 2 ∈ N is the total number of slots. S = {S1, . . . , Sns
} is the1220

set of slots. By definition the maximum number of slots is equal to the

number of non-artificial tasks so, to simplify the problem specification,

we fix the number of slots to its theoretical maximum (ns = nt − 2). In

most cases the last slots of a schedule have no allocated tasks and are not

considered in the computed makespan, but in exceptional cases it can be1225

that all slots are used, each by one single task.

• T ∈ R+ is the reconfiguration time of the target FPGA.

• P ∈ {0, 1}nt×nt is a matrix of precedence relations; elements of P are

binary values; if P element πt,t′ = 1, then task Tt precedes task Tt′ (Tt′

can execute only after Tt termination). Precedence is transitive so all1230

precedence matrices with same transitive closure are equivalent. P is not

a free variable and must obey constraints: the directed graph G with

vertices in T and edges defined by P must be acyclic. P must also be such

that task T0 is a direct or indirect predecessor of all other tasks and task

Tnt−1 is a direct or indirect successor of all other tasks.1235

• q ∈ Nnr is the vector of the total available quantities of FPGA resources;

qr is the total quantity of resource Rr. We decided to use natural number

values because FPGA hardware resources are usually discrete elements.

As these are input variables, and no output integer variables are derived

from them, this choice has no impact on the solving complexity. If other1240
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types of resources were needed and would be better described by real

numbers (e.g. energy), this choice could easily be changed and would have

no impact.

• R ∈ Nnt×nr is the matrix of resources consumptions; elements of R are

natural numbers; R element 0 ≤ ρt,r ≤ qr is the consumption of resource

Rr by task Tt (we consider only problem instances for which solutions

exist, so there are no tasks that consume alone more resources than what

is available). The artificial source and sink tasks do not consume any

resource:

∀ 1 ≤ r ≤ nr ρ0,r = ρnt−1,r = 0

• H is a large number, larger than every possible makespan. In MILP

parlance this is the “horizon”. In our caseH can easily be set to the sum of

the task durations plus the sum of the maximum number of reconfiguration

times. This extreme case corresponds to the worst possible schedule where

all slots are used with one single non-artificial task per slot:

H = ns × T +
∑

0≤t=0<nt

yt

Outputs

The outputs are the values computed by the MILP solver and that fully1245

define a solution. They must be very carefully selected and their types (real,

integer, binary) must also be carefully chosen because these choices have a strong

impact on the solving complexity. The theoretical complexity of the general

Linear Programming (LP) problem is polynomial and instances can actually be

solved in polynomial time using interior-point techniques. Changing some of its1250

real output variables into integer output variables changes the LP problem into

MILP and the theoretical complexity becomes NP-hard. The rule of thumb of

our formulation is thus to limit the number of integer output variables and use

binary variables instead of integer variables whenever possible.
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• x ∈ R+nt is the vector of start times of tasks; xt is the start time of task1255

Tt. Without loss of generality we constrain the start time of the artificial

source task to be zero: x0 = 0. The x0 component is thus technically an

input.

• z ∈ R+nt is the vector of end times of tasks; zt is the end time of task

Tt. If we consider the xt as true output variables, as task durations yt are1260

known inputs, the zt are not true output variables: they can be computed

from the xt and the yt and they should not add to the complexity.

• u ∈ R+ns is the vector of start times of slots; us is the start time of slot

Ss. Without loss of generality we constrain the start time of the first

slot to be zero: u1 = 0. The u1 component is thus technically an input.1265

This means that the initial reconfiguration time is not counted in the total

makespan, which is the same convention used by the heuristics we compare

with MILP.

• v ∈ R+ns is the vector of durations of slots; vs is the duration of slot Ss.

• w ∈ R+ns is the vector of end times of slots; ws is the end time of slot Ss.1270

A bit like for the xt, yt and zt, the us, vs and ws are redundant: the ws,

for instance, can be computed from the us and the vs and they should not

add to the complexity.

• A ∈ {0, 1}nt×ns is the allocation matrix; elements of A are binary values.

A element αt,s = 1 if task Tt is allocated in slot Ss, else αt,s = 0. The αt,s1275

are the unavoidable but only source of MILP solving complexity. Without

loss of generality we constrain task T0 to be allocated to slot S1: α0,1 = 1

and ∀ 1 < s < ns, α0,s = 0. These matrix elements are thus technically

inputs.

Objective function1280

Our objective function is the total makespan and can be very easily ex-

pressed using the output variables: it is znt−1 − x0 = znt−1, the end time of the
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artificial sink task Tnt−1. The MILP solver will be instructed to find a solution

that complies with the constraints and that minimizes znt−1. This objective

function does not involve the number of actually used slots, which naturally1285

solves the potential issue about the total number of slots ns = nt − 2; the un-

used slots, if any, and the corresponding reconfiguration times are not counted

in the objective function and do not influence the optimization effort.

Constraints

We present here a high-level human-readable form of the constraints of the1290

MILP formulation. The low-level form that can directly be used by the solver is

less intuitive. It makes use of auxiliary variables defined by linear equations of

the input and output variables. A low-level constraint then consists in specify-

ing upper and/or lower bounds of the output and auxiliary variable, plus type

constraints on the output variables (e.g. the αt,s are binary values).1295

For instance, in order to express that a task Tt cannot be pre-empted and its

end time is its start time plus its duration we introduce the auxiliary variables

at such that:

∀ 0 ≤ t < nt, at = xt + yt − zt

∀ 0 ≤ t < nt, 0 ≤ at ≤ 0

The list of time-related constraints is the following:

• A task cannot be pre-empted, its end time is equal to its start time plus

its duration:

∀ 0 ≤ t < nt, zt = xt + yt

• There is no idle time between slots and the start time of a slot is the end

time of the previous slot plus the reconfiguration time:

∀ 2 ≤ s ≤ ns, us = ws−1 + T
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• A slot cannot be pre-empted, its end time is equal to its start time plus

its duration:

∀ 1 ≤ s ≤ ns, ws = us + vs

• If a task Tt is allocated in a slot Ss (αt,s = 1), then its execution happens

during the slot’s duration:

∀ 0 ≤ t < nt, ∀ 1 ≤ s ≤ ns, αt,s = 1⇒ us ≤ xt ≤ zt ≤ ws

• If a task Tt precedes another task T ′t (πt,t′ = 1), then Tt end time is less

or equal Tt′ start time:

∀ 0 ≤ t < nt − 1, ∀ 1 ≤ t′ < nt, πt,t′ = 1⇒ zt ≤ xt′

The resources-related constraints can be condensed in one single statement:

the tasks allocated to a slot cannot use more of any resource than its total

available quantity:

∀ 1 ≤ r ≤ nr, ∀ 1 ≤ s ≤ ns,
∑

0≤t<nt,αt,s=1

ρt,r ≤ qr

Finally one more constraint is needed to express the fact that a task is allocated

to one and only one slot:

∀ 0 ≤ t < nt, ∃! 1 ≤ s ≤ ns, αt,s = 1
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Appendix C. Correcting the pseudo-code of Highest Priority First,

Next-Fit (HPF-NF)

Algorithm 6 shows the pseudo-code of heuristic HPFNF as published in [4].1300

The aim of HPFNF is to group tasks (nodes in a dependency graph G = 〈N,E〉)

in reconfiguration stages by considering tasks sorted in a topological priority

where parent tasks have higher priority over child tasks (Algorithm 5). HPF-

NF assigns a task to a reconfiguration stage Sk only if it fits resources available

in Sk and if all of its parent tasks have been scheduled into the same stage or1305

in previous stages (line 12 in Algorithm 6). Otherwise, the algorithm attempts

to schedule tasks with lower priorities or creates a new reconfigurations stage.

Note that, differently from our work, the pseudo-code of HPF-NF, consid-

ers a dependency graph G without source and sink nodes. Unfortunately, the

pseudo-code in Algorithm 6 does not behave as described above for the following1310

two reasons:

• At line 12, in Algorithm 6, the second part of the if statement checks the

visited status of a task’s parents (immediate predecessors). This condition

does not express the requirement that a task be scheduled in stage Sk only

if its predecessors have been scheduled in stages Sj , j = k, k−1, k−2, ..., 1.1315

Instead, this part of the if statement states that a necessary condition for

a task to be added to Sk is that its parents have already been considered

for addition. However, parent tasks may have already been considered

for addition, but discarded (thus remaining unscheduled) because their

resource occupancy didn’t fit the available resources of Sk.1320

• At line 16, in Algorithm 6, the body of the else statement implies that a

task is marked as visited only if it cannot be inserted in a reconfiguration

stage Sk. This prevents the first part of the if statement at line 6 to be ever

evaluated to true. As a consequence, a new stage can only be instantiated

if, by chance, the resource occupancy of all tasks in the current stage Sk1325

match exactly the resource availability W (second part of the if statement

at line 6).
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The corrected pseudo-code is shown in Algorithm 7, where the corrected por-

tions of pseudo-code are highlighted in yellow:

• A task is added to a reconfiguration stage Sk if it fits the available resources1330

of Sk and all of its parents have already been scheduled, hence they have

been removed from the worklist O.

• A task is always marked as visited, after it has been considered for inclu-

sion in a reconfiguration stage.

In Fig. C.24 and Fig. C.25, we respectively show the same example dependency1335

graph and the resulting scheduling as those published in [4]. Here, tasks consume

a single (normalized) resource (annotated in the graph) and the target FPGA

is assumed to dispose of 100 elements of such a normalized resource (W = 100).

The priority of tasks is annotated in Fig. C.25, where shadowed shapes denote

the reconfiguration stages.

1 Function sort( dependency graph G = < N, E > ):

2 Initialize set O with N ;

3 Initialize queue Q to empty;

4 while O is not empty do

5 Find the lightest node in the current top level of G and assume it is node x;

6 Put node x into queue Q, remove x from O and from G;

7 end

8 return Q;

Algorithm 5: The pseudo-code of the algorithm to assign a topological

priority to tasks in a dependency graph, [4]. A set of tasks (nodes) in G have

the same level li if they have the same maximum distance from G’s source.

Lightness of a node is defined with respect to its resource occupancy: the

lightest node among a set of candidates is the one that occupies the least

(normalized) resources.

1340
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1 Function hpfnf( dependency graph G = < N, E > ):

2 Store in worklist O the result of sort(G);/* See Algorithm 5 */

3 Set the status of nodes in O unvisited;

4 k = 1;/* Stage index */

5 while O is not empty do

6 if All nodes are visited or
∑

i∈Sk
wi = W then

7 k = k + 1;/* Create a new reconfiguration stage */

8 Set the status of nodes in O unvisited;

9 end

10 else

11 Find the highest priority node from unvisited nodes and assume it is x;

12 if
∑

i∈Sk
wi + wx ≤W and node x has no visited parent nodes

then

13 Put node x into Sk and remove it from O and G;

14 end

15 else

16 Set the status of node x visited;

17 end

18 end

19 end

Algorithm 6: The pseudo-code for heuristic High Priority First, Next-Fit

(HPF-NF) as published in [4]
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1 Function hpfnfCorrect( dependency graph G = < N, E > ):

2 Store in worklist O the result of sort(G);/* See Algorithm 5 */

3 Set the status of nodes in O unvisited;

4 k = 1;/* Stage index */

5 while O is not empty do

6 if All nodes are visited or
∑

i∈Sk
wi = W then

7 k = k + 1;/* Create a new reconfiguration stage */

8 Set the status of nodes in O unvisited;

9 end

10 else

11 Find the highest priority node from unvisited nodes and assume it is x;

12 if
∑

i∈Sk
wi + wx ≤W and node x has no parent nodes in O

then

13 Put node x into Sk and remove it from O and G;

14 end

15 Set the status of node x visited;

16 end

17 end

Algorithm 7: The correct pseudo-code for heuristic HPF-NF, Algorithm 6;

corrections are highlighted in yellow.
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Figure C.24: The example dependency graph G from [4] (source and sink are not part of

G in [4]). The numbers within nodes denote the normalized resource consumption. Based

on the dependencies, four levels are present: l1 = {35, 28, 23, 15}, l2 = {55, 34, 12}, l3 =

{45, 27, 13, 66}, l4 = {10, 25}.

Figure C.25: The dependency graph in Fig. C.24 scheduled by Algorithm 7 for a target

FPGA with W = 100, as published in [4]. Task nodes are annotated with the priority

assigned by Algorithm 5, 1 is the highest priority, 13 the lowest. Reconfiguration stages are

S1 = {28, 23, 15, 12}, S2 = {35, 34, 13}, S3 = {55, 27, 10}, S4 = {45}, S5 = {66, 25}.
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