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Abstract—Designing a secure system has always been
a difficult exercise. In practice, much of the focus
for designers and developers has been on delivering
a working system in the first place. Security concerns
have long been considered only in retrospect, especially
after serious flaws are discovered. On the contrary,
safety issues are commonly taken into account from
the very first development phases. However, the size,
heterogeneity, and communication features of modern
embedded systems make it compelling to develop an
appropriate engineering methodology to more explic-
itly define security objectives and threats. All this
complexity also makes it compelling to verify that
requirements are consistent with and satisfied by a can-
didate design before any commitment to a particular
implementation.
This paper introduces SysML-Sec, a new SysML

environment that makes it possible for security experts
to intervene at all methodological stages, as well as
to assess the impact of security over safety. Safety
and security requirements are first captured within
extended SysML Requirement diagrams. Attacks are
organized within Parametric diagrams, where assets
are represented with blocks. Since assets in embedded
system are composed of functional and architectural
elements of the system, requirements are linked to as-
sets, and subsequently attacks, in a partitioning stage.
The partitioning phase includes a functional descrip-
tion, a description of the hardware architecture, and a
mapping stage in which functions and communications
between functions are to be mapped over hardware
components. Once partitioned, software-implemented
functions are designed with communicating blocks and
state machines. Executable code can then be generated
from design diagrams.
An automotive embedded application, developed

with industrial partners in the scope of the FP7 Eu-
ropean project EVITA, illustrates the relevance of
SysML-Sec. This use case was modeled with the open-
source tool TTool, which supports SysML-Sec as well
as safety/security simulation and formal proof.

Index Terms—Communication System Security;
Computer Security; Design methodology; System-level
design; Component Architectures; Embedded Software

I. Introduction

ONLY THE ABSTRACT IS TO BE CONSIDERED

Embedded systems are pervading our daily experience
of technology as they are now commonplace in vehicles and
transportation systems as well as in mobile devices. Com-
mand and control designers are also increasingly resorting
to embedded systems. Embedded systems are made of
both software and hardware electronic components that
are tightly coupled together to form the embedded system
architecture. The software part of those systems offers flex-
ibility to products after they are released to the market,
for instance through firmware updates - something impos-
sible with the hardware. Many of those systems exhibit
a heterogeneous and distributed architecture, featuring
multiple computational units (microprocessors or micro-
controllers) interconnected with communication busses.

A. Security Issues in Embedded Systems.

Security mechanisms now are used to separate areas in
a processor whose communication is mediated: this is typ-
ically the case of virtualization technologies, or of trusted
computing technologies. The latter are best illustrated
with the Trusted Computing Group’s TPM or ARM’s
Trusted Zones. Attacks on embedded systems can be
physical or logical. For instance, probing attacks targeting
the communication bus between a microprocessor and its
memory may leak secret keys or protected software code
because it is not encrypted: this was for example the
case with the attack targeting Microsoft’s XBox. Logical
attacks exploiting a vulnerability in the implementation of
an applications running on top of a micro-controller of the
embedded system have now also become possible because
many embedded systems have communication interfaces
that may receive maliciously crafted data. A successful
attack may in turn make it possible to take control
of the execution environment and to probe communica-
tion interfaces or to inject further malicious traffic onto
them. Such vulnerabilities have typically been exploited in
jailbreak campaigns against operating systems of mobile
phones. Physical attacks may include techniques like on-
chip probing with a laser or fault injection through the use
of heavy-ion radiations.



B. Security Requirements and Embedded Systems.
Designing a secure system has always been a complex

exercise. In practice, much of the focus for designers and
developers has been on delivering a working system in the
first place. Security concerns have long been considered
only in retrospect, especially after serious flaws are discov-
ered. The size and heterogeneity of a modern embedded
system, which can be seen as a system of systems, makes
it compelling to develop an appropriate security require-
ments engineering methodology to support the systematic
description of the motives for securing a system and appro-
priate means to do so, for both hardware and software arti-
facts. This methodology should also support the validation
of the requirements expressed. Defining security goals or
objectives and acknowledging the existence a malicious
environment early can help steer the design of a system
architecture into the right direction well before designers
and developers are committed to a particular implemen-
tation or when time-to-market is of utmost importance.
Designers cannot afford to defend against all potential
threats, because security mechanisms are costly, and also
because they may degrade other qualities of the system,
in particular its safety or performance. In the remainder
of the paper, we discuss what the requirements analysis
should capture, especially with respect to the architecture
and design lifecycle, and also with respect to assessing the
impact of security on system properties like safety. We
introduce a SysML-based iterative process for embedded
systems that supports the model-driven identification of
security requirements which we organize as a set of goals.

C. Outline of the Paper.
Section 2 introduces some background on the design

of embedded system architectures, how they relate to
requirement engineering, and why we stick to SysML. This
section also introduces a case study we use throughout
the paper. Section 3 discusses the nature of security
requirements in embedded systems and how to model them
in SysML. Section 4 deals with the impact of security
requirements over the system architecture, and in par-
ticular the hardware/software partitioning of the system.
Section 5 summarizes the security requirements definition
methodology which we evaluate based on the case study
mentioned above. Section 6 compares our contributions
with related work. We finally summarize our findings and
sketch future work in Section 7.

II. Embedded Systems: Architecture Design and
Requirements

A. The Example of Automotive On-Board Systems.
Throughout this paper, we will illustrate our analysis

and methodology with results from a study that we con-
ducted in the scope of the FP7 European research project
EVITA. The project, which included a major car manu-
facturer and tier-one equipment suppliers, investigated the
security of so-called automotive on-board networks. These

are the embedded systems that are currently deployed
in modern vehicles and that control in particular the
engine, the brakes and ABS or ESP systems, as well
as the dashboard console or entertainment systems like
the CD player. All microcontrollers used in such systems
are termed Electronic Control Units (ECUs). A modern
vehicle easily contains a hundred of such ECUs, some
being very basic, some other being as powerful as a small
personal computer. ECUs are connected together through
busses of different technologies (LIN, CAN, Flexray ...)
that are organized in different local networks or domains
interconnected by gateways.

We present in this paper the result of experiments in ap-
plying the security requirement engineering methodology
we describe in this paper to the EVITA use cases. Those
use cases in particular featured two scenarios that we will
use in this paper. The first one deals with maintenance
issues at the workshop. It notably addresses the need
to update the firmware of an ECU in a secure manner
that should protect both the intellectual property of the
car maker or equipment supplier and the integrity of
the update process. The second use case relates to the
introduction of car-to-car communications to improve road
safety. It aims at notifying emergency braking events from
a car to its immediate followers, thereby making it possible
to display a warning sign on the dashboard and speed
up or even automate the braking action. A prototype
secure automotive on-board network was designed and
developed by the EVITA partners, and tested within cars.
Security here must be introduced to prevent an attacker
from injecting a fake notification into the sending or
receiving vehicle. Such attacks are feasible either through
the Internet connection increasingly available in vehicles
or through the connection of a compromised mobile phone
to the vehicle on-board network, a feature now available
in more and more vehicles. Further details about these
scenarios and security implementations are available in [1]
or from the EVITA project web site 1. We will illustrate
our requirements definition process with these examples.

B. Hardware / Software Partitioning
Software-centric systems are commonly designed with

a V-cycle comprising the following stages: requirements
elicitation, software analysis, software design, implemen-
tation. Each of these stages are then followed with a
corresponding verification state, that commonly relies on
testing, simulation and formal verification techniques. In
the case of embedded systems, that approach is obviously
applicable only once functions to be software implemented
have been specified. In other words, the V-cycle can start
only once the software and hardware partitioning has been
performed.
System partitioning is a process to analyze various func-
tionally equivalent implementation of systems specifica-

1www.evita-project.org/



tion. It usually relies on the Y-chart approach [2] depicted
in Figure 1:

1) Applications are first described as abstract communi-
cating tasks: tasks represent functions independently
from their implementation form. The traditional top
down methodology starts with an informal descrip-
tion of a system from which a reference model is first
developed. Typical languages for these first models
are Matlab, C, or C++. That first model is verified
against functional correctness, and might as well be
used to drive first performance evaluations.

2) Targeted architectures are independently described
from tasks. They are usually described with a set of
execution nodes (e.g., CPU), communication nodes
(e.g., buses), and storage nodes (e.g., memories).

3) A mapping process defines how application tasks
and abstract communications are assigned to com-
putation and communication / storage devices, re-
spectively. For example, a task mapped on a hard-
ware accelerator is a hardware-implemented function
whereas a task mapped over a CPU is a software
implemented function.

Fig. 1: The Y-chart methodology

The result of this process shall be an optimal hardware
/ software architecture with regards to criteria at stake
for that particular system (e.g., cost, area, power, perfor-
mance, flexibility, reliability, etc.). There, requirements are
to be captured along the process.
This partitioning step is of utmost importance. Indeed, if
critical high-level design choices are invalidated afterwards
because of late discovery of issues (performance, power,
etc.), then it may induce prohibitive re-engineering costs
and late market availability.

C. MDE and Embedded Systems
Model-Driven Engineering is probably the main con-

tribution of the last decade in modeling approaches.
MDE targets system analysis, design, simulation, code
generation, and documentation. MDE generally relies on
the UML language, and on meta-modeling techniques
in order to define Domain-Specific Languages. OMG’s
Model Driven Architecture for instance specifically targets
two abstraction levels, namely the Platform-Independent
Model (PIM) and Platform Specific Model (PSM): embed-
ded systems are thus clearly targeted by MDE. Profiles

have also been defined by the OMG to more specifi-
cally address embedded systems: SPT [3] and MARTE
[4], but none of them addresses requirements modeling.
Conversely, the SysML OMG profile [5] clearly takes into
account requirements with explicit modeling capabilities
and diagrams, but ignores some problematics inherent to
embedded systems, e.g., the partitioning issue.

Other methodologies, like for example Extreme program-
ming (XP) [6] or Agile Software Development [7] have
also been proposed to develop software-oriented systems.
However, their software focus means that they totally
ignore the partitioning issue. They also make traceability
and refinement extremely hard to achieve, also because
requirements are mostly separate from the design process.

Finally, new software-centric graphical engineering tech-
niques have been introduced during the last decade, and
in particular the MDE/MDA approaches standardized
at OMG. Our contribution takes security requirements
into account. Last but not least, our contributions are
settled upon the most recent OMG modeling languages:
SysML for the requirement dimension, and MARTE for
the partitioning issue.

D. Profiles and Tool Support
To support the modeling of embedded systems, we have

already integrated in the same toolkit three MDE-based
environment.

• The DIPLODOCUS UML profile [8] specifically tar-
gets the partitioning phase. Although usual functional
properties are usually studied at application level,
performance properties are investigated after map-
ping, e.g., resource sharing, that is, the scheduling on
CPUs (can the architecture execute tasks on time),
bus load (can a bus transmit the required amount of
data), and properties related to power consumption
and silicon area.

• AVATAR [9] relies on an iterative V-cycle for
software-based systems, and addresses the analysis,
design, implementation and prototyping stages within
a SysML environment, thus being used after the
partitioning phase. Time interval, non-deterministic
choices, synchronizations are enriched with regards
to their SysML definitions, making AVATAR particu-
larly suited to model constraints of embedded systems
at a high level of abstraction.

• TEPE [10] defines ways to model safety-oriented re-
quirements and properties within a SysML approach.

All those environments are implemented within the free
software TTool [11]. TTool automates the formal veri-
fication and simulation of models. For DIPLODOCUS,
the application or mapping models are taken as inputs,
simulation code (C++, SystemC) or formal specifications
(LOTOS, UPPAAL) being produces as outputs. TTool
also allows to control the simulation in real time (step-
wise execution, etc.) and provides live feedback to UML



diagrams. Models are simulated with respect to the under-
lying hardware, as opposed to state-of-the-art UML model
simulators which usually operate at a purely functional
level. Moreover, the environment does not require a broad
knowledge of simulation or formal proofs techniques.

III. Identifying, Analyzing, and Refining
Security Requirements

A. Security Goals and Requirements
Haley et al. [12] have shown that the meaning of a

security requirement significantly varies between authors.
As they point out, security requirements must be precise
enough and should make it possible to describe what
objects we need to protect and why, and to describe how
architectural vulnerabilities are addressed. Haley et al.
conclude that one should follow a goal-based approach
together with the description of a context which is strongly
connected with the execution environment. They distin-
guish between security goals and requirements: the latter
“express the systems security goals in operational terms,
precise enough to be given to a designer/architect” and
provide “a specification”. Though we roughly agree with
this point of view, we do not draw such a clear-cut line.
From our point of view, a large part of the security
requirements engineering process for embedded systems
is to discover at which level in the architecture of the
system to introduce a particular security mechanism. We
believe that this can only be achieved through the repeated
refinement of the architecture, until all relevant security
assets are discovered. In an embedded system too, the
architecture describes the context and is an essential part
of the design.

B. Security Assets
Haley et al. [12] further describe assets as a central no-

tion behind the definition of security goals. In particular,
finding an asset leads to envisioning threats to it, and
choosing particular security principles to apply to secure
it. We agree with this perspective, though we suggest to
assess the type of security asset considered, which will
affect the nature of related security requirements in an
embedded system. In particular, we classify assets into
three categories: (1) hardware components (processors,
memories, communication channels, clocks, ...), including
the data (and secrets) they contain; (2) software assets
(virtualization mechanisms, drivers, protocol stacks, appli-
cations, ...); (3) information and event flows, which capture
communication: those flows reflect the composition of the
functions used to realize a particular service together with
communication functions to transfer their data and their
control events. Such a flow can typically be represented
on a DIPLODOCUS UML deployment diagram. Figure 2
illustrates for instance a subset of the functional view -
at the partitioning stage - of the flow that would lead
a car to automatically brake in case of an emergency in
the EVITA system. Relationships between those elements

(assets, attacks, and requirements) will be defined by a
model as we describe farther below.

C. Security Threats and the Architecture

Security threats define situations that may lead to a
system failure, that is a successful attack, in the presence
of a malicious behavior. We are interested in describing
which assets must be compromised by an attacker in order
to perform a successful attack. The identification of a
security threat not covered by a the security goals over the
targeted security assets clearly points out an incomplete
elicitation of security requirements. The designer typically
has to either reconsider the mapping of the security goal to
assets (as described farther below) or identify missing or
incomplete security objectives. On the other hand, while
the identification of threats is worthwhile for validating
security objectives, we do not put specific requirements
that they be exhaustively identified. In particular, security
requirements might simply arise from the need to be
interoperable with a certain security standard or even
out of the certification of the system against a protection
profile, as defined for instance in the Common Criteria
scheme [13].

Attacks consist of a list of actions over assets (read a
message on a bus, etc.) They are very commonly modeled
with a wide variety of attack trees. We represent a similar
concept in a SysML model that maps attack phases of
a given threat to architectural constructs. Figure 3 de-
picts how this mapping is achieved thanks to a simple
extension of the parametric diagram. In particular, each
block represents an asset onto which attacks are mapped.
Some methodologies aim at defining security threats as
a fine-grained refinement of the goals of an attacker, like
KAOS’ antigoals [14]. While it is fine to stepwise refine
threats and finally attack steps, we consider that this is
not enough to capture all architectural mappings. Plain
refinement is satisfactory for attacks that only address
computational units and communication channels which
are seen as blocks in the parametric diagram. However,
the information and event flows featured by embedded
systems are distributed over the architecture. Attacks
on these assets can be modeled as the combination of
attacks on the two previous types of assets: for instance,
communication between two ECUs might be threatened
by an attacker taking control of an intermediate gateway,
then dropping all messages arriving on a channel. We
therefore introduced a few additional parametric operators
to the SysML specification like AND, OR, and AFTER
that make it possible to describe the distributed attack
scenarios we encounter in embedded systems.

D. SysML for Capturing Security Goals

In SysML, requirements can be captured within SysML
Requirements Diagrams. We have specialized the general-
purpose SysML requirements by adding a security kind



Fig. 2: Information and event flow of the EVITA emergency braking use case (UML deployment diagram excerpt)

Fig. 3: Attacks mapped to the architecture - EVITA firmware update use case (SysML parametric diagram excerpt)

(e.g., privacy, confidentiality, authenticity, integrity, non-
repudiation, controlled access, availability, immunity,
freshness) to them. The SysML relationships between re-
quirements and defined as follows apply as well to security
requirements:

• Composition. A requirement is composed of sub-
requirements. For example, in Figure 4, Con-
trolledAccessToFlashMemory is composed of two
sub requirements: ControlledAccessToFlashingFunc-
tion and ControlledAccessToReadFromFlash. Seman-
tically speaking, R1 is composed of requirement R2
and R3 means that R1 is more abstract than R2 and
R3 and that the R2 and R3 must be satisfied for R1
to be satisfied.

• Derive Requirement (DeriveReqt). A require-
ment derives from other requirements, that is, its
definition is strongly linked to another one. For exam-
ple, in Figure 4, ControlledAccessToReadFromFlash
derives from ConfidentialityofFirmwareData, i.e. the
access to flash reading is controlled because the data
contained in the flash must be confidential. Seman-
tically speaking, R1 derives from R2 means that the

security definition provided in R1 relies on the one
which is given in R2.

• Copy is used to re-use the same requirements in
several diagrams or views.

E. Mapping Security Requirements to the Architecture
Even with our extension of the SysML requirement con-

struct with additional semantics, requirements still remain
unrelated to assets. As explained before, assets in embed-
ded system are composed of functional and architectural
elements of the system, which lead us to map requirements
to assets at the partitioning phase. This additionally gives
us the possibility to relate requirements and attacks, since
attacks can only be defined from assets.

The introduction of new assets may obviously lead to
the definition of new requirements. For example, intro-
ducing flash memories at the partitioning phase may lead
to define requirements dedicated to the security of the
software code stored in these flash memories (as pointed,
for example, in Figure 4). Introducing flash memories
however does not mean that all of them are to store
confidential software codes. Those two examples demon-



Fig. 4: Security requirements in the EVITA firmware update use case (SysML Requirement diagram excerpt)

strate two important points: (1) New requirements may
be identified when studying candidate architectures at the
partitioning phase. (2) Requirements need to be related to
architectural elements so as to precise which requirements
apply to which architectural elements, and reciprocally.

SysML offers two main facilities to link elements of dif-
ferent natures: the depend and allocate relationships. The
first one models an explicit dependence between a master
element and a slave element. The allocate relationship is
rather used to mention resources that are provided to an
element for its execution, like for instance a task allocated
to a processor in the mapping phase. Finally, relationships
between requirements and architectural elements are ex-
pressed with a dependency link that can be reduced to
a simple text field in the requirement box as “referred
elements”.

F. Refining Requirements and Threats

Model-Driven Engineering clearly refers to levels of
abstractions, and suggests to rely on model transformation
techniques to handle the transition between two different
levels. The refinement of elements of the system (e.g.,
splitting a function into two sub functions, splitting a
computing hardware domain into two sub domains) is
likely to impact the definition of requirements and at-
tacks. Refining requirements and attacks, or identifying
new ones, may also impact the definition of the system
design itself. SysML offers no specific facilities for handling
refinement processes. In consequence, we have defined our
own set of refinement rules [15] to detect elements of the
overall model (system design, requirements, attacks) that
may be impacted when an element of the architecture (e.g.,
functions, ECUs, ...) or a security requirement is modified.
Those rules are based both on dependencies between
elements and on relation semantics (e.g., semantics of
the SysML DeriveReqt relationship). However, we do not
handle refinements until the point where diagrams can be
formally verified: DIPLODOCUS and AVATAR diagrams
have a formal semantics, but this is not the case of the
description of security requirements that remains informal
(like plain SysML requirements).

IV. Evolving the Architecture Based on
Security Requirements

A. From Security Requirements to Security Mechanisms
The security requirements expressed will determine

which mechanisms, like cryptography or access control for
instance, will need to be implemented. However, it is likely
that these mechanisms cannot be entirely defined until the
end of the architecture specification. We argue that it is
still possible and desirable to introduce a description of
broad security functionalities into the architecture in order
to bridge the gap between the requirements analysis phase
and the architecture specification phase. In particular, it
is important to describe where code for implementing a
security-related algorithm will be run, and how resilient
its execution will be. The hypotheses made about imple-
mentation resilience when defining requirements should be
transferred to the hardware/software partitioning model.
By doing so, we also associate a security requirement to an
architectural asset, and thus precise which threat may its
realization may be exposed to: for instance, implementing
the access control to the Head Unit of the car with a
hardware based implementation will, for remote attackers,
be enough to mitigate all attempts at bypassing this
control. We consider this mapping process as essential
to achieving a more complete and accurate threat and
risk assessment analyses, and to eliciting other security
requirements. Finally, this mapping may even reveal the
impossibility of any satisfactory implementation.

Finding which assets are at risk also contributes to
the definition of the defense perimeter achieved by a
related security objective, and hence to the placement of
the security mechanism that derives from this objective.
Typically the possibility of injecting fake traffic from
the driver’s mobile phone onto the vehicle backbone bus
might suggest to filter out mobile phone messages in the
engine or chassis and safety domains. This might in turn
be implemented through either the authentication of the
sender using cryptography or through access control at
respective domain gateways based on the origin of traffic.

Due to the communication-centric nature of the threats
that we focus on, the introduction of security function-
alities will also modify the purely functional information
and event flows of the embedded system. We introduce
security through the addition of security functions to ex-



isting entities, or through the introduction of new entities.
Those new entities would typically feature specific security
properties that should be matched by the final implemen-
tation in the architecture: for instance one such additional
entity might reflect the need to use of a tamper-resistant
hardware module (and subsequent communication with
it). Those additional security mappings to the architecture
might be introduced within sequence diagrams, or better,
in deployment diagrams.

B. Detecting Conflicting Classes of Requirements
Security requirements may typically impact other

classes of requirements, especially non-functional ones like
the interoperability, or more critically for an embedded
system, safety. This may result in conflicts. For instance,
an excessively large security payload may reduce the avail-
able bandwidth of a bus and endanger the safety critical
transmission of an emergency braking notification between
the brake sensor and the brake actuator. Similarly, security
may incur additional costs, like for the verification of the
signature of a message, that may entail an an overly long
latency for a low-cost ECU. Such conflicts have to be
detected.

We consider that, because it focuses on security assets
which are architecture-centric, our methodology is com-
patible with other requirements engineering methodologies
in which the requirement can be linked to the architec-
ture. While we did not experiment with the integration
of existing engineering methodologies for other types of
requirements, we validated the satisfaction of a few safety
requirements through the generation of tests and simu-
lations from our embedded system model. For instance,
we simulated the CAN bus to evaluate the impact of a
cryptographic envelope implementing our authentication
requirements. We also evaluated the braking latency in
the EVITA emergency braking use case by automatically
generating software for a virtual prototyping environment
from AVATAR models. Some of these validations can be
described even at the goal level description of security
requirements through the use of SysML observers.

V. Methodology: Summary and Evaluation
A. Summary

The overall methodology we are proposing captures the
design objectives described in the previous sections flexibly
with the evolution of the architecture specification. We can
summarize its different phases with the following iterative
process:

1) Initial Architecture Mapping. One or several
typical use cases are selected as a starting point
for investigation. The functionalities of the system
highlighted in these use cases are first modeled as
tasks. Exchanges between functions are modeled
with information and event flows. Event-based com-
munications is also captured in order to control
the Information Flow. Tasks and communication

can then be mapped to a draft architecture of the
system, following the Y-chart approach. Designer
experience plays a key role for determining first draft
architectures. Finally, assets are selected from this
architecture.

2) Security Objective Identification. Security ob-
jectives might be identified (1) from the above use
cases, for instance because of imposed standards or
of the properties expected from the system, or (2)
from unaddressed threats or attacks on assets, or
(3) as the refinement of another security objective
when the process is iterated and the level of detail of
the architecture has changed. They are represented
using the SysML requirements diagram. In further
iterations, one may need to delete or adapt security
objectives deprecated by modifications on the archi-
tecture.

3) System Asset Identification. System assets are
identified among architectural elements (processors,
pieces of software, communication channel). Assets
can specifically refer to a particular element, yet
we recommend the use of generic assets, like for
example: “all system busses”.

4) Threat Identification. Threats and security vul-
nerabilities of the selected assets are identified using
our extension of the SysML parametric diagram.
Threats should as much as possible document the
capabilities that an attacker should meet or exceed,
as well as information about the origin of attacks
(local, remote, through a specific interface).

5) Risk assessment. This step requires a strong secu-
rity expertise. Techniques for performing this anal-
ysis are outside the scope of this paper, but have
been largely described in the literature. We also
applied a specific metric to evaluate requirements in
the EVITA case study in [16]. Although we haven’t
automated this step, we have plans to model risk
metrics by introducing specific attributes in SysML
parametric diagrams. Risk assessment typically re-
lies on the definition of an attacker model.

6) Threat Coverage and Prioritization. One
should verify the coverage of threats or attacks by
security objectives (TTool automates that verifica-
tion). Based on the risk analysis, one should also
categorize and prioritize security objectives that are
mapped to a threat . The most important security
requirements will be further refined, while other
requirements may be left aside or even abandoned
at this stage. Those objectives are kept in SysML
diagrams but duly annotated. Consistency checks
should also be performed to ensure that a security
objective does not conflict with another security
requirement expressed over the same asset.

7) Architecture Refinement. The architecture, in-
cluding the specification of assets, is refined. This
refinement will result on the one hand from a more



detailed description of the architecture components
as use cases or the architecture are becoming more
precise (e.g., new communication channels, refine-
ment of an execution environment into OS/middle-
ware/application layers, etc.). On the other hand, it
may also result from linking requirements to system
information flows. Finally, the ongoing process is
iterated to the identification of new security objec-
tives.

B. Evaluation
The EVITA case study we presented in the beginning

of this paper was modeled using the TTool open-source
toolbox. Result of this study can be found on the EVITA
project web site 2 and browsed with the toolbox. Details
about this study and the related risk analysis can also
be found in [16]. EVITA includes around 20 case studies.
Out of the mass of use case specific requirements obtained
by applying our methodology, we could extract around
32 general requirements, i.e., requirements that apply
to all case studies. These requirements have been split
into four categories: availability (7 requirements), privacy
(7 requirements), fake commands (9), and environment-
related requirements (9). General requirements have been
progressively extracted from requirements specific to the
first analyzed case studies. We have then verified their
relevance for other case studies. They could probably
constitute a good foundation for defining security-oriented
patterns. Then, for each case studies, we have defined
specific requirements. For example, for the firmware
update use case, 9 additional security requirements have
been elicited: some of them are displayed in Figure 4.
Both general and specific requirements are linked to
assets and attacks. The iteration between requirements,
architecture, and attacks also led us to identify much
more attacks than when simply identifying them based on
our security expertise and on brainstorming sessions: the
number of identified attacks was multiplied by a factor
between 2 and 4, depending on use cases.

Lessons learned. One of our initial objectives was to
achieve a comprehensive and more systematic analysis of
security issues of an automotive on-board system. Based
on our experience with the EVITA case study analysis,
we can confidently state that our methodology has signif-
icantly improved the elicitation of security requirements.
The adherence to a stepwise and iterative process helped
us a lot to resist the constant urge to jump directly to
the selection of particular security mechanisms to map
to our system. This would have likely resulted in a less
complete insight into the threats to the vehicle, and in a
poorer understanding of the dependences between security
requirements. Similarly, the use of the architecture and
function placement helped us not only to understand

2The corresponding files are available at the following link:
http://www.evita-project.org/Deliverables/evita_t2300_23.xml

the use cases, but also to point at some inconsistencies
regarding security requirements they expressed.

Our methodology aims at guiding and providing repre-
sentations of security requirements compatible with the
MDE approach of practitioners that are not security
specialists. This has been the reason for our adoption of
the OMG standards, which are quite widespread in the
embedded system world today. In contrast, the result of
our analysis can be compared with the work of Bar-El [17]
on automotive on-board networks. This work in particular
essentially focuses on cryptographic mechanisms support-
ing the architecture. We contend that our analysis has
better captured security requirements and their dependen-
cies than the text analysis in this work. Furthermore, this
work fails to address the hardware/software partitioning
issue or the compatibility of security mechanisms with
safety requirements, that are so important in vehicles.
In comparison, we relied on the mapping of security
requirements with assets and with the information flows
to later evaluate the satisfaction of safety, realtime, or
performance requirements through formal validation [18],
as well as through tests and simulations in the same open-
source toolbox [19].

The definition of requirements in our case study
also convinced us early on that scalability had to
be addressed. To this end, we are using SysML copy
relationships between different SysML diagrams, which
reference other requirements. This approach makes it
possible to organize requirements with use-case oriented
views. We detected during our definition the occurrence
of security design patterns that could be systematically
applied to elicit finer-grained requirements. For instance,
whenever we were referring to ensuring the secure
communication of two entities, we could always derive an
authentication, an integrity, and a freshness requirements
over some information or event flow. We also found
that a similar strategy applied to the elicitation of
attacks. Scalability also relates to the automation of
consistency checks. In particular, we implemented in
the toolbox an automated verification of the coverage
of attacks with security objectives, as depicted in Figure 5.

Limitations. Our methodology does not bridge the
implementation gap. In particular, we do not describe
requirements as to the effectiveness of the implementation
of the security mechanisms that realize the requirements
described. Most notably, secure programming issues, like
buffer overflows, are plaguing all kinds of software pro-
duced. Yet they are not the result of a poor design of the
architecture as we can describe it in SysML and UML.
Similarly, hardware based implementations can be poorly
done, and for instance be vulnerable to timing or power
attacks. We believe that addressing such issues is not an
architecture design issue per se, and can be achieved by the
systematic application of software or hardware engineering
recipes. Nor our methodology nor the tools we developed



Fig. 5: Security Requirements Coverage Table (automated consistency check in TTool)

can provide support for these tasks though.
The approach we have proposed is also not addressing

all aspects of the automation of security requirements
engineering in embedded systems. In particular, SysML
still lacks the way to describe a terminology of require-
ments and relationships that would make it feasible to
designate unambiguously and to reason over the structure
of requirements and to automate the consistency checking
process. Although these techniques are outside the scope
of this paper, we have integrated security ontologies into
TTool as a means to achieve both objectives.

VI. Related Work

There has been a quite remarkable progress in the area
of security requirements engineering in the past decade.
In [20], Nhlabatsi et al. classify security requirements
engineering work in software systems according to four
dimensions, namely: (1) goal-based approaches: the KAOS
framework [14] was the first such approach to model,
specify, and analyze security requirements as the organized
refinement of goals into a set of sub-goals using generic
patterns. (2) Model-based approaches: in contrast, those
methodologies, like UMLSec [21], focus on the mapping
of security mechanisms to the software architecture. (3)
problem-oriented approaches focus on the expression of
attacks and on the threat-based elicitation of security
requirements. They are represented by approaches like
abuse frames [22] or misuse cases [23]. (4) Process-oriented
approaches, like the SQUARE [24] methodology, finally
aim mainly at the risk analysis of an existing design and
follow a rather rigid waterfall approach to engineering, yet
do not address well design exploration and refinement.

Those approaches are not incompatible, and our own
proposal essentially associates a goal-oriented description
of security objectives with a model-driven approach to
system design and in particular to the refinement of
security assets. In particular, we benefit from the re-
finement and tracing qualities of goal-based approaches
that have been similarly successful in other domains of
requirement engineering. Another strength of goal oriented
approaches lies in their ability to capture dependencies

even between security requirements with a high-level of
abstraction. Models on the other hand are extremely good
at capturing architecture details and have been shown
an excellent fit for describing security requirements re-
garding cryptographic protocols. For instance, security
requirements and functions can be progressively refined
until a formal verification step integrated in our toolkit
[9]. TTool implements model transformation techniques in
order to translate refined and formally expressed security
requirements and designs into a pi-calculus specification
taken as input by ProVerif, a Dolev-Yao based security
proof toolkit [25].

It is worth mentioning that the model-driven engineer-
ing of requirements has long been supported by researchers
in the field of embedded systems [26], [27], [28]. However,
only Peraldi et al. [29] advocate the need to link the model
driven engineering of the system architecture and a goal-
oriented expression of requirements that we follow in our
approach. To our knowledge, none of these proposals has
addressed the expression of security requirements.

Our methodological proposals also share quite some
similarities with the TwinPeaks approach advocated by
Nuseibeh [30], although the latter only deals with software
systems. Instead of a simple spiral alternating between the
requirements and the architecture as TwinPeaks suggests,
we alternate between the Y-Chart modelling of software
and its mapping to hardware components, the identifica-
tion of assets and threats to them, and the identification
of security requirements. In particular, we also deal with
the three management concerns that TwinPeaks aims at
addressing: (1) exploring the solution space (in our case,
both the embedded system architecture and attacks that
may result out of this design) early makes it possible to in-
crementally provide feedback about requirements; (2) the
designer has to rely on commercial off-the-shelf software
(as for TwinPeaks), or available electronic components,
or standard cryptographic algorithms and requirements
(security requirements in our proposal) help narrow down
their proper selection; (3) rapid change, which is also very
much linked with refining the architecture in our case.

Finally, Haley et al. [12] suggest to use propositional



logic to reason about the satisfaction of security require-
ments and their context. We believe this approach is quite
interesting and plan to develop a logical framework for rea-
soning about requirements in our own system. Regarding
the validation of requirements, we have also investigated
the assessment of the impact on safety of the security
mechanisms introduced after security requirements, like
for instance, assessing the added latency for performing
a braking operation with secure communication. There as
well, the use of an architecture-centric model of the system
makes it possible to proceed to tests and simulations.

VII. Conclusion

We have introduced both a methodology to define
security requirements in an embedded system and an
open-source tool to support this process. We conducted
an experiment on an automotive on-board system under
definition, which helped us assess the adequacy of our
approach. Out of this experience, security requirements
should be influenced by the system’s architecture and in
turn, influence its structure through a refinement process
integrated to the embedded system lifecycle, through the
Y-chart approach in our case. Our main claim is that
a security requirements engineering methodology should
capture this relationship. Assets are central to defining
security requirements and we argue that they are even
more critical in an embedded system where they encom-
pass many elements: they are to be found in the system
architecture components (both hardware and software), in
their particular mapping, and in communications within
the system and through external interfaces. We believe
that our adoption of a model-driven refinement of security
assets might be used right from the early definition of secu-
rity requirements to link the security expert’s goal-oriented
point of view with the model-centric perspective of the
embedded system designer and enable their collaboration
before any of them commits to an inappropriate solution.

We plan to further investigate security design patterns
that would be specific to embedded systems in order
to ensure a more systematic derivation of security re-
quirements. Explicitly representing such patterns with a
particular construct in our models might be a way to
produce more compact diagrams. We are also working
towards a more comprehensive and automated applica-
tion of our methodology, encompassing different classes
of requirements (security, safety, performance, etc.). In
particular, we plan to formalize the meta-model of the
relationships between those different requirements so as
to introduce security-oriented reasoning capabilities in our
modeling environment.
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