
Real-Time Operating Systems

Ludovic Apvrille
ludovic.apvrille@telecom-paris.fr
Eurecom, office 470

perso.telecom-paris.fr/apvrille/OS/

perso.telecom-paris.fr/apvrille/OS/

Real-time and embedded Systems Real-Time Operating Systems Linux for real-time systems

What is an Embedded System?

Definitions

■ Computer system designed for specific purpose
• Tightly coupled hardware / software / analog integration

PC vs. embedded systems

■ PC: general-purpose microprocessor and OS
• High power consumption, heat production, large size

■ Embedded system
• Dedicated system

- Dedicated hardware (e.g., DSPs) and software

• Constraints of consumption, heat, size, performance, price, . . .

2/56 Une école de l’IMT Real-Time Operating Systems

A
R
EF

G
N

D

R
ES

ET
3V

3

L

TX
RX

USB

EXT

PW
R

SE
L

PWR

ICSP

TX R
X

3
1

2
1

1
1

0
1

9 8
DIGITAL

7 6 5 4 3 2 1 0

1

5V Gnd
POWER

www.adruino.cc

ANALOG IN
Vin 0 1 2 3 4 5

ADRUINO

Real-time and embedded Systems Real-Time Operating Systems Linux for real-time systems

Example of Embedded Systems

3/56 Une école de l’IMT Real-Time Operating Systems

Real-time and embedded Systems Real-Time Operating Systems Linux for real-time systems

A Few Characteristics of Embedded Systems

Environment

■ Temperature, vibration, impacts, variable power supply,
interferences, corrosion, fire, water, radiations, small
packaging, etc.

Safety critical systems

■ Take into account possible failures and hazards if they may
have major consequences

• Hardware level: for example, a specification could be that the
system should continue to work even if an electronic
component fails (e.g. use of redundancy)

• Safety at software level: e.g., handling of possible bugs and
crash

- Various execution modes

4/56 Une école de l’IMT Real-Time Operating Systems

Real-time and embedded Systems Real-Time Operating Systems Linux for real-time systems

A Few Characteristics of Embedded Systems: Highly
Available Systems

Number of 9s Downtime per year Typical application

3 Nines (99.9%) ≈ 9h Desktop
4 Nines (99.99%) ≈ 1h Enterprise server
5 Nines (99.999%) ≈ 5mn Carrier-class server
6 Nines (99.9999%) ≈ 30s Carrier network switch

Source: ”Providing Open Architecture High Availability solutions”, Revision
1.0, Published by HA Forum, Feb. 2001

5/56 Une école de l’IMT Real-Time Operating Systems

Real-time and embedded Systems Real-Time Operating Systems Linux for real-time systems

High-level Architecture

Embedded system = controlling system + controlled system +
environment

6/56 Une école de l’IMT Real-Time Operating Systems

Real-time and embedded Systems Real-Time Operating Systems Linux for real-time systems

Response to External Events

7/56 Une école de l’IMT Real-Time Operating Systems

Real-time and embedded Systems Real-Time Operating Systems Linux for real-time systems

Typical Development Environment

8/56 Une école de l’IMT Real-Time Operating Systems

Real-time and embedded Systems Real-Time Operating Systems Linux for real-time systems

Example of a Target Embedded System

9/56 Une école de l’IMT Real-Time Operating Systems

Real-time and embedded Systems Real-Time Operating Systems Linux for real-time systems

What is a Real-Time System?

Real-Time Systems have been defined as:

”Those systems in which the correctness of the
system depends not only on the logical results of
the computation, but also on the time at which the
results are produced”

(J. Stankovic, ”Misconceptions About Real-Time Computing”,

IEEE Computer, 21(10), October 1988)

10/56 Une école de l’IMT Real-Time Operating Systems

Real-time and embedded Systems Real-Time Operating Systems Linux for real-time systems

What is a Real-Time System? (Cont.)

More precisely, a system is said to be a Real-Time System if:

■ It reacts to external stimuli
• System interacting with its environment

■ It reacts to these stimuli within a limit of time, regardless of
the load of the system

• WCET = Worst Case Execution Time
• Timing correctness

Vs. usual systems

■ Only logical correctness

■ Manage the average case
• ”Best effort”

11/56 Une école de l’IMT Real-Time Operating Systems

Real-time and embedded Systems Real-Time Operating Systems Linux for real-time systems

Response to External Events

12/56 Une école de l’IMT Real-Time Operating Systems

Real-time and embedded Systems Real-Time Operating Systems Linux for real-time systems

Time Constraints

Time constraint =
Constraint imposed on the timing behavior of each job of a task

Release time

■ Instant of time when a job becomes available for execution

Deadline

■ Instant of time at which a job is required to be completed

■ Absolute deadline = release time + relative deadline

Response Time

■ Difference between the completion time and the release time
of a job

13/56 Une école de l’IMT Real-Time Operating Systems

Real-time and embedded Systems Real-Time Operating Systems Linux for real-time systems

Latency and Jitter

■ System latency = End-to-end delay between a change of
state in the environment, and the corresponding output
reaction produced by the system

• Delay for scanning the environment, delay due to the OS,
delay for executing calculations, delay for producing output
results (communication delay)

■ Jitter = Incertitude on
delays

• Load of the system,
etc.

• Should be low with
regards to the latency

14/56 Une école de l’IMT Real-Time Operating Systems

Real-time and embedded Systems Real-Time Operating Systems Linux for real-time systems

Incertitude / Determinism

■ Computing time
• Each activity can use various execution branches

■ Communication time
• Status of messages queues, delay of signals, etc.

■ Interrupts

■ Software or hardware exceptions

15/56 Une école de l’IMT Real-Time Operating Systems

Real-time and embedded Systems Real-Time Operating Systems Linux for real-time systems

Hard and Soft Real-Time Systems

Comparison between hard and soft systems

1. The degree of tolerance of missed deadlines

2. The usefulness of computed results after missed deadlines

3. The severity of penalty incurred for failing to meet deadlines

Hard system Soft system

1 Zero tolerance Non-zero

2 Useless Not zero right after passing deadline

3 Catastrophic Non-catastrophic

Complex real-time and embedded systems

A complex real-time and embedded system is commonly a mix of
hard and soft subsystems

16/56 Une école de l’IMT Real-Time Operating Systems

Real-time and embedded Systems Real-Time Operating Systems Linux for real-time systems

Example ♯1: GSM Communication

Specification

■ Software is in charge:
• Of some operations performed at physical level (receiving,
sending, measuring the level of the electromagnetic field, etc.)

• Of logical operations such as scanning for incoming calls,
maintaining connections when changing of beams, etc.

■ Sending and receiving voice data is a critical task
• 577µs of voice data are transmitted every 4.6ms
• 577µs of voice data are received every 4.6ms

■ Management of the mobility issue
• If the distance to the relay is increasing, data should be emitted
earlier to remain synchronized with the relay (Doppler effect)

17/56 Une école de l’IMT Real-Time Operating Systems

Real-time and embedded Systems Real-Time Operating Systems Linux for real-time systems

Example ♯1: A GSM Phone (Cont.)

Constraints

■ Timing constraints on sending and receiving

■ Global constraint: audio quality

18/56 Une école de l’IMT Real-Time Operating Systems

Real-time and embedded Systems Real-Time Operating Systems Linux for real-time systems

Example ♯2: Video Streaming

19/56 Une école de l’IMT Real-Time Operating Systems

Real-time and embedded Systems Real-Time Operating Systems Linux for real-time systems

True or False?

A real-time system runs faster than usual systems?

An elevator controlling system is a real-time system?

A real-time application can be executed on every operating
systems?

20/56 Une école de l’IMT Real-Time Operating Systems

Real-time and embedded Systems Real-Time Operating Systems Linux for real-time systems

Limitations of General-Purpose OS for Real-Time Systems

■ Scheduling policies share CPUs in fair way → They don’t
take into account timing constraints

■ Memory management (MMU, cache, dynamic allocation)
introduces non-deterministic execution time

■ Input / output management is non-deterministic

■ Communication mechanisms introduce non-deterministic
temporal behavior

■ Software timers used for managing time are not fine-grained
enough

→ Use of Real-Time Operating Systems

21/56 Une école de l’IMT Real-Time Operating Systems

Real-time and embedded Systems Real-Time Operating Systems Linux for real-time systems

Key Characteristics

Reliability

■ Need to operate for a long period of time

■ System reliability depends on all system elements
• Hardware, BSP, RTOS and application(s)

Predictability

■ To a certain degree, and at least better than in GPOS

■ Completion of system calls occurs within known frames
• Benchmark on the variance of the response times for each
system calls

• WCET

22/56 Une école de l’IMT Real-Time Operating Systems

Real-time and embedded Systems Real-Time Operating Systems Linux for real-time systems

Key Characteristics (Cont.)

Performance

■ CPU performance: MIPS

■ Throughput performance: bps

Compactness

■ RTOS memory footprint should be small

Scalability, i.e handling application-specific requirements

■ Modular components

■ File systems, protocol stacks, etc.

23/56 Une école de l’IMT Real-Time Operating Systems

Real-time and embedded Systems Real-Time Operating Systems Linux for real-time systems

Target Initialization Sequence

24/56 Une école de l’IMT Real-Time Operating Systems

Real-time and embedded Systems Real-Time Operating Systems Linux for real-time systems

Examples of RTOS

RTOS

■ FreeRTOS, iOS, VxWorks

■ Linux for RT and embedded systems
• RTAI, Xenomai, Wind River Linux, Android

Using FOSS for Embedded Systems

(”FOSS” means ”Free and Open Source Software”)

■ No royalties when distributing the embedded system

■ Source code is available
• Maintenance can be performed for as long as desired
• Systems can be built from this source code

25/56 Une école de l’IMT Real-Time Operating Systems

Real-time and embedded Systems Real-Time Operating Systems Linux for real-time systems

How to Make UNIX more ”Real-Time”?

UNIX Real-Time UNIX

Time-sharing based scheduling Real-time scheduling classes

Services not reentrant Fully reentrant libraries

IPC non deterministic Reworking IPC with determin-
istic communication time

Large memory footprint Modularity (micro-kernels)

Timing issues, timer accuracy Preemptive kernel

.

26/56 Une école de l’IMT Real-Time Operating Systems

Real-time and embedded Systems Real-Time Operating Systems Linux for real-time systems

Scheduling

Limitations of schedulers in general-purpose OS

■ Schedulers are defined with interactivity in mind
• Dynamic priorities
• Calculation tasks are penalized

■ Timing constraints are not taken into account

■ Schedulability analysis cannot be performed

Schedulers for Real-Time Systems

RMA, EDF, FCFS, Round-Robin, Fixed priority

27/56 Une école de l’IMT Real-Time Operating Systems

Real-time and embedded Systems Real-Time Operating Systems Linux for real-time systems

Preemption Latency in a Priority-Based System

28/56 Une école de l’IMT Real-Time Operating Systems

Real-time and embedded Systems Real-Time Operating Systems Linux for real-time systems

Preemption Points

Adding preemption points in the kernel (”Fully preemptive”
kernel)

■ Define a slice of time during which no preemption is allowed
(e.g., 2,000 instructions)

■ Rewrite all kernel primitives:
• The duration during which no preemption is allowed must
always be shorter than the defined slice of instructions

• After each slice, call the scheduler (just in case)

Limitation: Defining the slice is not obvious

■ Too long → average preemption latency is higher

■ Too short → important overhead

29/56 Une école de l’IMT Real-Time Operating Systems

Real-time and embedded Systems Real-Time Operating Systems Linux for real-time systems

Memory Management

Dynamic allocations

■ Should be avoided at run-time

■ Algorithms are based on fixed-size blocks

■ Pools of objects
• Avoid frequent allocation and fragmentation

No memory compaction

■ Real-time compaction algorithms might be used

Most of the time, virtual addressing (i.e., MMU) is not used

■ And sometimes even not implemented in RTOS!

■ Page fault introduces non-determinism

30/56 Une école de l’IMT Real-Time Operating Systems

Real-time and embedded Systems Real-Time Operating Systems Linux for real-time systems

IPC - Inter Process Communications

Limitations for RT systems

■ No deterministic transmission delay for:
• Signals, pipes, message passing, semaphores, (shared memory)

A Few Solutions

■ Implementation with deterministic processing time
• Example: RT-FIFO

- RT-FIFO = FIFO with predefined maximum size and with
pre-allocated messages

31/56 Une école de l’IMT Real-Time Operating Systems

Real-time and embedded Systems Real-Time Operating Systems Linux for real-time systems

Input / Output Management

Limitations for RT systems

■ Difficult or impossible to bound the time to perform an I/O
operation

Solutions

■ Drivers working closely with the kernel

■ Deterministic delay in all inter-process communications
• Communication structures with basic and deterministic
algorithms

- RT-FIFO, RT-signals, etc.

32/56 Une école de l’IMT Real-Time Operating Systems

Real-time and embedded Systems Real-Time Operating Systems Linux for real-time systems

Reentrant Runtime Libraries

Issue

■ Libraries offer services such as: Input / Output operations,
dynamic memory allocations, etc.

■ Services may have an internal state: buffer (I/O), pointer to
the next chunk of free memory, etc.

■ If preemption occurs when a service is being called, internal
state of the service may be corrupted

Solutions

■ Protection at application level: mutex, semaphore, etc.
• Safe, but costly

■ Use a reentrant version of the library (if available)
• Safe, less costly (but more costly than non-reentrant librairies)

33/56 Une école de l’IMT Real-Time Operating Systems

Real-time and embedded Systems Real-Time Operating Systems Linux for real-time systems

Exceptions and Interrupts

Exceptions

■ Events that disrupt the normal execution flow of the processor
and force the processor to execute special instructions in a
privileged state

■ Synchronous exceptions
• Divide by zero

■ Asynchronous exceptions
• Pushing the reset button of the embedded system

Interrupts

■ = Asynchronous exceptions triggered by events external
hardware devices generate

34/56 Une école de l’IMT Real-Time Operating Systems

Real-time and embedded Systems Real-Time Operating Systems Linux for real-time systems

Programmable Interrupt Controller

Airbag sensorAirbag sensor

Brake sensorBrake sensor

Fuel level
sensor

Fuel level
sensor

Real-time
clock

Real-time
clock

PICPIC

HighestHighest

HighHigh

MediumMedium

LowLow

InterruptInterrupt

Interrupt
vector
Interrupt
vector

ISRISR

35/56 Une école de l’IMT Real-Time Operating Systems

Real-time and embedded Systems Real-Time Operating Systems Linux for real-time systems

Programmable Interrupt Controller (Cont.)

■ Hardware-implemented

■ Prioritizing multiple interrupt sources so that at any time the
highest priority interrupt is presented to the core CPU for
processing

■ PICs have a set of Interrupt Request Lines
• Interrupt = physical signal on a given line

■ Handlers specified at PIC level
• ESR = Exception Service Routine
• ISR = Interrupt Service Routine

36/56 Une école de l’IMT Real-Time Operating Systems

Real-time and embedded Systems Real-Time Operating Systems Linux for real-time systems

Programmable Interrupt Controller: Example

Source Priority Vector
Address

IRQ Max
freq.

Description

Airbag
sensor

Highest 14h 8 N/A Detects the
need to deploy
airbags

Brake
sensor

High 18h 7 N/A Informs about
the current
braking power

Fuel
Level
Sensor

Med 1Bh 6 20Hz Detects the
level of fuel

RTC Low 1Dh 5 100Hz Clock runs at
10ms tick

37/56 Une école de l’IMT Real-Time Operating Systems

Real-time and embedded Systems Real-Time Operating Systems Linux for real-time systems

Masking Interrupts

Why masking?

■ Reduce the total number of interrupts raised by devices
• Warning: Interrupts may be lost when masked

■ Atomic operations

How is masking done?

■ Disable the device so that it cannot assert additional
interrupts

■ Mask the interrupts of equal or lower priority levels

■ Disable the line between the PIC and the core processor
• Interrupts of any priority level do not reach the processor

38/56 Une école de l’IMT Real-Time Operating Systems

Real-time and embedded Systems Real-Time Operating Systems Linux for real-time systems

Classification of Exceptions

Asynchronous

Maskable
Can be blocked or enabled by
software

Non-maskable
Cannot be blocked or enabled by
software

Synchronous

Precise

■ Program counter points to
the exact instruction which
caused the exception
(Offending instruction)

■ Processor knows where to
resume the execution

Non-precise

Because of prefetching and
pipelining techniques, no
knowledge about the exact
instruction that caused the
exception

39/56 Une école de l’IMT Real-Time Operating Systems

Real-time and embedded Systems Real-Time Operating Systems Linux for real-time systems

General Exceptions Priorities

40/56 Une école de l’IMT Real-Time Operating Systems

Real-time and embedded Systems Real-Time Operating Systems Linux for real-time systems

Nested Interrupts

41/56 Une école de l’IMT Real-Time Operating Systems

Real-time and embedded Systems Real-Time Operating Systems Linux for real-time systems

Exceptions Timing

■ ESR and ISR should be short

■ Designers

1. Should avoid situations where interrupts could be missed
2. Should be aware of the interrupt frequency of each device

- Maximum allowed duration can be deduced from this
information

3. Should take into account the fact that real-time tasks cannot
execute when interrupts are being processed

42/56 Une école de l’IMT Real-Time Operating Systems

Real-time and embedded Systems Real-Time Operating Systems Linux for real-time systems

Exceptions Timing (Cont.)

43/56 Une école de l’IMT Real-Time Operating Systems

Real-time and embedded Systems Real-Time Operating Systems Linux for real-time systems

Cutting ISRs in Two Parts

44/56 Une école de l’IMT Real-Time Operating Systems

Real-time and embedded Systems Real-Time Operating Systems Linux for real-time systems

Conclusion on ISRs

Benefits about cutting ISRs in two parts

■ Lower priority interrupts can be handled

■ Reduces the chance of missing interrupts

■ Increase concurrency because devices can start working on
next operations earlier

■ Urgent tasks have a chance to be executed sooner

General guide for implementing ISRs

■ An ISR should disable interrupts of the same level

■ An ISR should mask all interrupts if it needs to execute a
sequence of code as one atomic operation

■ An ISR should avoid calling non-reentrant functions and
blocking system calls

45/56 Une école de l’IMT Real-Time Operating Systems

Real-time and embedded Systems Real-Time Operating Systems Linux for real-time systems

Timer and Timer Services

Use of Timers

Applications often have to perform jobs after a given delay has
elapsed

Programmable Interval Timers (PIT)

46/56 Une école de l’IMT Real-Time Operating Systems

Real-time and embedded Systems Real-Time Operating Systems Linux for real-time systems

Timer Interrupt Service Routine

■ Updating the system clock
• Absolute time (calendar)
• Elapsed time (since power up)

■ Calling a registered kernel function to notify the occurrence of
a pre-programmed period

• announce time tick()

- Calls the Scheduler and the Soft-timer facility

■ Acknowledging the interrupt, reinitializing the necessary timer
control register and returning from interrupt

47/56 Une école de l’IMT Real-Time Operating Systems

Real-time and embedded Systems Real-Time Operating Systems Linux for real-time systems

Steps in Servicing Timer Interrupt

48/56 Une école de l’IMT Real-Time Operating Systems

Real-time and embedded Systems Real-Time Operating Systems Linux for real-time systems

Soft-Timer Facility

Goal

■ Allowing applications to start a timer
• A callback function is called when the timer expires

■ Allowing applications to stop or cancel a previously installed
timer

■ Internally maintaining the application timers

The timer ISR should be as fast as possible to avoid missing next
timer interrupts

49/56 Une école de l’IMT Real-Time Operating Systems

Real-time and embedded Systems Real-Time Operating Systems Linux for real-time systems

Timer Inaccuracy Due to Processing Delays

■ ISR triggers asynchronous events to signal a task of the
expiration of its timer

• E.g., sending of a message, release of a semaphore

■ Task scheduling delay, context switch

■ Higher priority task may be running

50/56 Une école de l’IMT Real-Time Operating Systems

Real-time and embedded Systems Real-Time Operating Systems Linux for real-time systems

Limitations of Linux for Real-Time Systems

■ Time-sharing system
• Interactivity-based scheduling: strict priority-based approach is
needed in real-time systems!

■ Long code sections where all external events are masked
• Preemption is not possible

■ Kernel cannot be preempted
• When executing a system call (so, interrupts may be missed!)
• When executing an ISR

■ Device management

51/56 Une école de l’IMT Real-Time Operating Systems

Real-time and embedded Systems Real-Time Operating Systems Linux for real-time systems

Towards a Linux for Real-Time Systems

■ Introducing a real-time scheduler and preemption points
• Patching the kernel

■ Adding new kernel modules

52/56 Une école de l’IMT Real-Time Operating Systems

Real-time and embedded Systems Real-Time Operating Systems Linux for real-time systems

Introducing a Real-Time Scheduler (Patch)

Patchs are said to be ”preemptive”

■ Kernel’s latency is reduced

■ Limited to soft real-time systems?

”RT-Preempt”

■ Based on call to the
scheduler whenever
possible

■ Kernel’s data are
protected with mutex

”Low Latency”

■ Adds preemption points at carefully
chosen places in the code

■ Approach is less systematic

■ Performance study demonstrates
its efficiency with regards to the
”RT-Preempt” patch

53/56 Une école de l’IMT Real-Time Operating Systems

Real-time and embedded Systems Real-Time Operating Systems Linux for real-time systems

Modifying the Kernel (Modules)

Basic idea: the Linux kernel will never be ”real-time”

■ Another scheduler is added to the kernel
• Priority-based scheduling policy
• Non real-time tasks are scheduled by the default Linux
scheduler

• Real-time tasks are programmed as linux kernel modules

■ → Hard real-time system

Main implementations

■ RTAI (http://www.rtai.org/)

■ Xenomai (https://xenomai.org/)

54/56 Une école de l’IMT Real-Time Operating Systems

Real-time and embedded Systems Real-Time Operating Systems Linux for real-time systems

Architecture of the Linux Kernel

55/56 Une école de l’IMT Real-Time Operating Systems

Real-time and embedded Systems Real-Time Operating Systems Linux for real-time systems

Architecture of Xenomai

Exploration
d'architectures

Linux application VxWorks application POSIX application

Hardware

Linux Kernel
Adeos (Hardware Abstraction Layer)

glibc glibc Xenomai libvxworks glibc Xenomai libpthread_rt

Xenomai RTOS
(nucleus) Memory

manager
VFS

Drivers Network

Scheduler
Xenomai
drivers

Xenomai
services

56/56 Une école de l’IMT Real-Time Operating Systems

	Real-time and embedded Systems
	Embedded systems in a nutshell
	Real-time systems in a nutshell
	Examples of real-time and embedded systems

	Real-Time Operating Systems
	Basics
	Advanced concepts
	Exceptions and interrupts
	Timers

	Linux for real-time systems
	Limitations
	A few solutions
	Xenomai

