TELECOM

Paris

ﬁ%gml Operating Systems

VII. Synchronization

% 1P PARIS
" Ludovic Apvrille

'N’ ludovic.apvrille@telecom-paris.fr

Institut Mines-Télécom EU recom) Offlce 470

perso.telecom-paris.fr/apvrille/0S/

Synchronization issues Implementing critical sections Programming with synchronization constraints
#0000 00000 [slelolslolslolslelsale)

Why is Synchronization Necessary?

m Know for a process / thread at which execution point is
another process / thread

B Ensure shared data consistency

— Where is my money?!

| ProcessA | | Bank account | [Process B |

1000 “Yﬂ]u(‘.: 1000
- : y = getValue()

x = getValue() 1000

x=x+ 700

1700 E
selalue(x) Value'= 1700

Valuei= 1500

1500

setValue(y)

TELECOM
Paris
It

Synchronization issues Implementing critical sections Programming with synchronization constraints
08000 00000 00000000000

Critical Sections

1. Mutual exclusion (or safety condition): At most one
process at a time is allowed to execute code inside a critical
section of code

2. Machine independence: No assumptions should be made
about speeds or the number of CPUs

3. Progress: Process running outside a critical section may not
block other processes

4. Bounded waiting (or liveness): Process should be
guaranteed to enter a critical section within a finite time

i 1
Supported by many programming mechanisms EEIm
3/22 Une école de I'IMT & e ranis
Synchronization issues Implementing critical sections Programming with synchronization constraints
00800 00000 [slelolslolslolslelsale)

Mutual Exclusion Using Critical Sections

[ProcessA | | Process B |
Executing Executing
Enters critical section 3
¥ >
. Attempts to enter critical section
L
Executing in . 3
critical ?
R e Blocked
section s H
° o y b
° = Leaves critical section Enters critical section ,
M
« Executing in
s critical
.) 3 section
1 Leaves critical section .
Executing erxecuting
TELECOM
Paris
BRI

4/22 Une école de 'IMT & e ranis

Synchronization issues Implementing critical sections
[elele] le] 00000

Handling Deadlocks

Programming with synchronization constraints
00000000000

Definition
B Use of shared resources: request, use, release

B Deadlock = situation in which a process waits for a resource
that will never be available

(i) Prevent the system to enter a deadlock state
B Deadlock prevention: Restraining how requests can be made

B Deadlock avoidance: More information from user on the use
of resources

TELECOM

5/22 Une école de I'IMT Operating Systems - Synchronization @m PARIS

Synchronization issues Implementing critical sections
00008 00000

Handling Deadlocks

Programming with synchronization constraints
00000000000

(i) Allow the system to enter a deadlock state and then

recover

B Process termination

B Resource preemption

(iii) Ignore the problem (i.e., assume deadlocks never occur in

the system)

B Most OS, including Linux

TELECOM

6/22 Une école de I'IMT Operating Systems - Synchronization @m PARIS

Synchronization issues Implementing critical sections Programming with synchronization constraints
00000 #0000 00000000000

Software Approaches

B Unwise to empower user processes to turn off interrupts!

B Procedure

* Reads the value of a shared variable
e If 0, sets it to 1 and enters the critical section
e If 1, waits until the variable equals to 0

B There is a major flaw related to scheduling
e Can you guess why?

TELECOM
Paris

HEIT

Synchronization issues Implementing critical sections Programming with synchronization constraints
00000 (o] lelele) 00000000000

Software Approaches (Cont.)

® Busy waiting (waste of CPU)
B Violates the progress requirement of critical-sections
e Can you guess why?

Process 0 Process 1

While (TRUE){ While (TRUE){
while (turn 1= 0); while (turn 1= 1);
/#*begin critical section #/ /#begin critical section */
turn = 1; turn = 0;
/% end critical section */ /# end critical section x/
} }
TELECOM
-]]|

8/22 Une école de 'IMT & e ranis

Synchronization issues Implementing critical sections Programming with synchronization constraints
00000 [elo] lele) 00000000000

Software Approaches (Cont.)

m 1965, 1981
B Alternation + lock variables

Process 0 Process 1

while (true) { while (true) {
flag [0] = true; flag [1] = true;
turn = 0; turn = 1;
while (flag [1] && (turn==0)) { while(flag [0] && (turn==1)){
// busy wait // busy wait
} }
/#% Critical section #+/ /% Critical section #*/
flag [0] = false; flag [1] = false;
/% End critical section %/ /% End critical section x/ g
!) Paris

HEIT

Synchronization issues Implementing critical sections Programming with synchronization constraints
00000 [elole] 1e] 00000000000

Hardware Approaches

B Special assembly instruction which is atomic
B TSL Rx, LOCK

e Reads the content of the memory at address lock, stores it in
register Rx, and sets the value at address lock to 1

Assembly code to enter / leave critical sections

Enter_critical_section:
TSL register , LOCK
CMP register , #0
JNE Enter_critical-section
RET

Copies lock to register and set lock to 1
Was lock equal to 07

If 1= 0 — lock was set —> loop

Enters critical section

Leave_critical-section:
MOVE LOCK, #0 Stores 0 in lock
RET | Quits critical section

TELECOM
Paris
HEIT

Synchronization issues Implementing critical sections Programming with synchronization constraints
00000 0000e 00000000000

Limits of Peterson’s and TSL solutions

m If a lower priority process is in critical section and a higher
priority process busy waits to enter this critical section, the
lower priority process never gains CPU — Higher priority
processes can never enter critical section

B Sleep(): Caller is blocked on a given address until another
process wakes it up

m Wakeup(): Caller wakes up all processes waiting on a given

address
Paris
=TT
@ e rans
Synchronization issues Implementing critical sections Programming with synchronization constraints
00000 00000 90000000000
Semaphores
B A semaphore is a counter shared by multiple processes
B Processes can increment or decrement this counter in an
atomic way
B Mainly used to protect access to shared resources
B Different APIs to use semaphores
* |PC System V
- semget(), semclt(), semop()
« POSIX
- semopen(), sempost(), semwait(), ...
TELECOM
Paris
T

12/22 Une école de 'IMT & e ranis

Synchronization issues Implementing critical sections Programming with synchronization constraints
00000 00000 08000000000

N
'8

B Mutual Exclusion

Mutex

B A mutex has two states: locked, unlocked

m Only one thread / process at a time can lock a mutex

®m When a mutex is locked, other processes / threads block
when they try to lock the same mutex:
* Locking stops when the mutex is unlocked
* One of the waiting process / thread succeeds in locking the

mutex
TELECOM
13/22 Une école de I'IMT Operating Systems - Synchronization @m PARIS
Synchronization issues Implementing critical sections Programming with synchronization constraints
00000 00000 [sle] Talelsislslelsle]

Mutex: Main Functions (pthread Library)

pthread_mutex_t myMutex;
pthread_mutex_init{&myMutex, NULL);

Lock the mutex

B Waits for the lock

pthread_mutex_lock(&mymutex);

B Returns immediately if mutex is locked

pthread _mutex_trylock(&mymutex};

Unlock the mutex

pthread_mutex_unlock(&mymutex);

14/22 Une école de I'IMT Operating Systems - Synchronization @m PARIS

Synchronization issues Implementing critical sections Programming with synchronization constraints
00000 00000 [sle/e] lolsislslslsle)

Condition Variables

®m Used to signal a condition has changed

To wait on a condition

B Put lock on mutex
B Wait on that condition — Automatic release of the lock

To signal a change on a condition

m Put lock on mutex

m Signal that condition

TELECOM
Paris

15/22 Une école de I'IMT Operating Systems - Synchronization @m PARIS

Synchronization issues Implementing critical sections Programming with synchronization constraints
00000 00000 [sle/sla] lslslslslsle]

Use of Condition Variables

Executing Executing
Enters critical section

v ;—I Attempts to enter critical sectio
. ;
Executingin ¢ Checks for a given condition: if(...)
i We assume the test returns false i
critical . (streturns foise) i Blocked
section x | Waits on cv1 I
°_Reigases mutex LW Enters critical section
Waiting | (1= .
/ | Signals on cv1 S
H L
i >>< I_u Leaves critical section .
Blocked Attempts to get mutex il HHCa! S6¢ S
Executingin ¢
critical ¢ Executing
L
. 5 - .
section < Leaves critical section ety
Executin
B BRI

16/22 Une école de 'IMT Operating Systems - Synchronization & reans

Synchronization issues Implementing critical sections Programming with synchronization constraints
00000 00000 [slelslslel lslslelsle]

Producer/Consumer Example (pthread lib.)

#include <stdlib . h>
#include <pthread .h>

#define N.THREADS_PROD 3
#define N.THREADS_CONS 4

void #produce(void *); void produceData(int id);
void #consume(void #) ;void consumeData(int id);

int data = 0; int maxData = 5;
pthread_mutex_t myMutex;
pthread_cond_t full , empty;

int main(void) {
int i;
pthread_t tid_p [N.-THREADS_PROD];
pthread-t tid-c [N-THREADS_-CONS];

pthread_-mutex-init{&myMutex, NULL);

return (0); TELECOM
} Paris

HEIT

for(i=0; i<N_.-THREADS_PROD; i++) {pthread_create(&tid_p[i], NULL, produce, (void #*)i);
for(i=0; i<N_-THREADS_CONS; i++) {pthread_create(&tid_c[i], NULL, consume, (void *)i);
for (i = 0; i < N-THREADSPROD; i++) {pthread join(tid p[i], NULL); }
for (i = 0; i < N.THREADS_.CONS; i++) {pthread_join(tid_c[i], NULL); }

Synchronization issues Implementing critical sections
00000

Programming with synchronization constraints
00000

00COC080000

Producer/Consumer Example (Cont.)

void *produce(void =arg) {
int myld = (int)arg;
while (1) {
produceData(myld);
sleep (random() % 5);

}

void *consume(void *arg) {
int myld = (int)arg;
while (1) {
consumeData(myld);
sleep (random() % 5);
}
}

Paris
EEIN

18/22 Une école de 'IMT & e ranis

Synchronization issues
00000

Implementing critical sections
00000

Programming with synchronization constraints
[slelslslalsls] lelele]

Producer/Consumer Example (Cont.)

void produceData(int id) {
pthread mutex_lock{&myMutex);

if (data == maxData) {
printf("#%d is waiting for less data; data = %d\n", id, data);
pthread_cond_wait(&full , &myMutex);
data ++;
printf("#“/,d is producing data; data = %d\n", id, data);
pthread_cond_signal(&empty);
pthread_mutex_unlock(&myMutex);
¥
void consumeData(int id){
pthread_mutex_lock(&myMutex);
if (data == 0) {
printf("#%d is waiting for more data; data = %d\n", id, data);
pthread-cond.-wait(&empty, &myMutex);
¥
data —;
printf("#%d is consuming data; data = %d\n", id, data);

pthread_cond_signal(&full);
pthread_mutex_unlock(&myMutex);

TELECOM
Par

EEIN
@ IP PARIS

19/22 Une école de 'IMT

Synchronization issues

Implementing critical sections
00000 00000

Programming with synchronization constraints
[slelslslalslslsl Tole]

Producer/Consumer Example: Execution

$ gcc —lIpthread —o prod prodcons.c

$./prod #2 is producing data; data = 1

#1 is producing data; data =1 #3 is consuming data; data = 0

#2 is consuming data; data =0 #0 is producing data; data =1

#0 is waiting for more data; data =0 #2 is consuming data; data = 0

#0 is producing data; data =1 #0 is producing data; data =1

#0 is consuming data; data = 0 #0 is consuming data; data = 0

#3 is waiting for more data; data =0 #1 is waiting for more data; data =0
#2 is producing data; data =1 #3 is waiting for more data; data =0
#3 is consuming data; data = 0 #2 is producing data; data =1

#1 is waiting for more data; data = 0 #0 is consuming data; data = 0

#0 is waiting for more data; data = 0 #1 is consuming data; data = —1

#3 is waiting for more data; data =0 #2 is producing data; data = 0

#2 is waiting for more data; data =0 #3 is consuming data; data = —1

#0 is producing data; data =1 #0 is producing data; data = 0

#1 is consuming data; data = 0 #0 is waiting for more data; data = 0
#1 is producing data; data =1

#0 is consuming data; data =0

the code is wrong!

20/22 Une école de I'IM

Where?77?

Synchronization issues
00000

Implementing critical sections
00000

Programming with synchronization constraints

[slelslslelslalsls] lo]

Producer/Consumer Example (Updated)

void produceData(int
pthread mutex_lock{&myMutex);

id) {

while (data = maxData) {
printf(
pthread_cond_wait(&full ,

data ++;

printf(

pthread_cond_signal(&empty);

pthread_mutex_unlock(&myMutex);

}

void consumeData(int
pthread_mutex_lock(&myMutex);

while (data =— 0) {

printf(

¥

data —;
printf(

pthread-cond.-wait(&empty, &myMutex);

id){

pthread_cond_signal(&full);

pthread_mutex_unlock(&myMutex);

&myMutex) ;

21/22 Une école de 'IMT

Synchronization issues
00000

Implementing critical sections
00000

id

id |

id ,

data);

id ,

data);

data);

data);

TELECOM
Par

EEIN
@ IP PARIS

Programming with synchronization constraints

[slslslslelslalslelel]

Producer/Consumer Example: Execution (Updated)

$gcc —Ipthread —o prod prodcons.c

$prod

#3 is waiting for
#1 is waiting for

#2 is producing data;
data;
data;
data;

#2 is producing
#0 is consuming
#2 is consuming

#2 is waiting for
#3 is waiting for

#0 is producing
#1 is consuming
#2 is producing
#2 is consuming
#1 is producing
#3 is consuming

#0 is waiting for
#2 is waiting for

#0 is producing
#0 is consuming

#0 is waiting for
#3 is waiting for
#1 is waiting for

#2 is producing
#2 is producing
#2 is consuming
#0 is consuming
#1 is producing

data;
data;
data ;

data ;

data;

data ;
data ;

data;

data;
data;

data;
data;

data
data
data
data

data
data
data
data
data
data

data
data

data
data
data
data
data

more data;
more data;

more data;
more data;
data;

more data;
more data;

more data;
more data;
more data;

data
data

jeRe] o O

o O

OO0

22/22 Une école de 'IMT

is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is

consuming
producing
producing
consuming
producing
producing
consuming
producing
producing
producing
consuming
consuming
consuming
producing
producing
producing

waiting for

consuming
producing
consuming
producing
consuming
producing

waiting for
waiting for

consuming

data;
data;
data ;
data;
data;
data;
data;
data ;
data;
data;
data;
data;
data ;
data;
data;
data;

less
data ;

data;
data;
data;

data;

data ;

less
less
data;

data =
data =
data =
data =
data =
data =
data =
data =
data =
data =
data =
data =
data =
data =
data =
data
data;
data =
data =
data =
data =
data =
data =
data;
data
data =

PO PP PRONWOWROPRONONDENDEO

ata = 5
5
data = 5
data = 5
4

TELECOM
Paris

