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Why is Synchronization Necessary?

m Know for a process / thread at which execution point is
another process / thread

B Ensure shared data consistency

— Where is my money?!
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Critical Sections

1. Mutual exclusion (or safety condition): At most one
process at a time is allowed to execute code inside a critical
section of code

2. Machine independence: No assumptions should be made
about speeds or the number of CPUs

3. Progress: Process running outside a critical section may not
block other processes

4. Bounded waiting (or liveness): Process should be
guaranteed to enter a critical section within a finite time

i 1
Supported by many programming mechanisms EEIm
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Mutual Exclusion Using Critical Sections
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Handling Deadlocks

Programming with synchronization constraints
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Definition
B Use of shared resources: request, use, release

B Deadlock = situation in which a process waits for a resource
that will never be available

(i) Prevent the system to enter a deadlock state
B Deadlock prevention: Restraining how requests can be made

B Deadlock avoidance: More information from user on the use
of resources

TELECOM
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Handling Deadlocks

Programming with synchronization constraints
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(i) Allow the system to enter a deadlock state and then

recover

B Process termination

B Resource preemption

(iii) Ignore the problem (i.e., assume deadlocks never occur in

the system)

B Most OS, including Linux

TELECOM
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Software Approaches

B Unwise to empower user processes to turn off interrupts!

B Procedure

* Reads the value of a shared variable
e If 0, sets it to 1 and enters the critical section
e If 1, waits until the variable equals to 0

B There is a major flaw related to scheduling
e Can you guess why?
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Software Approaches (Cont.)

® Busy waiting (waste of CPU)
B Violates the progress requirement of critical-sections
e Can you guess why?

Process 0 Process 1

While (TRUE){ While (TRUE){
while (turn 1= 0); while (turn 1= 1);
/#*begin critical section #/ /#begin critical section */
turn = 1; turn = 0;
/% end critical section */ /# end critical section x/
} }
TELECOM
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Software Approaches (Cont.)

m 1965, 1981
B Alternation + lock variables

Process 0 Process 1

while (true) { while (true) {
flag [0] = true; flag [1] = true;
turn = 0; turn = 1;
while (flag [1] && (turn==0)) { while(flag [0] && (turn==1)){
// busy wait // busy wait
} }
/#% Critical section #+/ /% Critical section #*/
flag [0] = false; flag [1] = false;
/% End critical section %/ /% End critical section x/ g
! ) Paris
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Hardware Approaches

B Special assembly instruction which is atomic
B TSL Rx, LOCK

e Reads the content of the memory at address lock, stores it in
register Rx, and sets the value at address lock to 1

Assembly code to enter / leave critical sections

Enter_critical_section:
TSL register , LOCK
CMP register , #0
JNE Enter_critical-section
RET

Copies lock to register and set lock to 1
Was lock equal to 07

If 1= 0 — lock was set —> loop

Enters critical section

Leave_critical-section:
MOVE LOCK, #0 Stores 0 in lock
RET | Quits critical section
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Limits of Peterson’s and TSL solutions

m If a lower priority process is in critical section and a higher
priority process busy waits to enter this critical section, the
lower priority process never gains CPU — Higher priority
processes can never enter critical section

B Sleep(): Caller is blocked on a given address until another
process wakes it up

m Wakeup(): Caller wakes up all processes waiting on a given

address
Paris
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Semaphores
B A semaphore is a counter shared by multiple processes
B Processes can increment or decrement this counter in an
atomic way
B Mainly used to protect access to shared resources
B Different APIs to use semaphores
* |PC System V
- semget(), semclt(), semop()
« POSIX
- semopen(), sempost(), semwait(), ...
TELECOM
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B Mutual Exclusion

Mutex

B A mutex has two states: locked, unlocked

m Only one thread / process at a time can lock a mutex

®m When a mutex is locked, other processes / threads block
when they try to lock the same mutex:
* Locking stops when the mutex is unlocked
* One of the waiting process / thread succeeds in locking the

mutex
TELECOM
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Mutex: Main Functions (pthread Library )

pthread_mutex_t myMutex;
pthread_mutex_init{&myMutex, NULL);

Lock the mutex

B Waits for the lock

pthread_mutex_lock(&mymutex);

B Returns immediately if mutex is locked

pthread _mutex_trylock(&mymutex};

Unlock the mutex

pthread_mutex_unlock(&mymutex);
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Condition Variables

®m Used to signal a condition has changed

To wait on a condition

B Put lock on mutex
B Wait on that condition — Automatic release of the lock

To signal a change on a condition

m Put lock on mutex

m Signal that condition

TELECOM
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Use of Condition Variables

Executing Executing
Enters critical section
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Producer/Consumer Example (pthread lib.)

#include <stdlib . h>
#include <pthread .h>

#define N.THREADS_PROD 3
#define N.THREADS_CONS 4

void #produce(void *); void produceData(int id);
void #consume(void #) ;void consumeData(int id);

int data = 0; int maxData = 5;
pthread_mutex_t myMutex;
pthread_cond_t full , empty;

int main(void) {
int i;
pthread_t tid_p [N.-THREADS_PROD];
pthread-t tid-c [N-THREADS_-CONS];

pthread_-mutex-init{&myMutex, NULL);

return (0); TELECOM
} Paris
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for(i=0; i<N_.-THREADS_PROD; i++) {pthread_create(&tid_p[i], NULL, produce, (void #*)i);
for(i=0; i<N_-THREADS_CONS; i++) {pthread_create(&tid_c[i], NULL, consume, (void *)i);
for ( i = 0; i < N-THREADSPROD; i++) {pthread join(tid p[i], NULL); }
for ( i = 0; i < N.THREADS_.CONS; i++) {pthread_join(tid_c[i], NULL); }
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Producer/Consumer Example (Cont.)

void *produce(void =arg) {
int myld = (int)arg;
while (1) {
produceData(myld);
sleep (random() % 5);

}

void *consume(void *arg) {
int myld = (int)arg;
while (1) {
consumeData(myld);
sleep (random() % 5);
}
}
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Producer/Consumer Example (Cont.)

void produceData(int id) {
pthread mutex_lock{&myMutex);

if (data == maxData) {
printf("#%d is waiting for less data; data = %d\n", id, data);
pthread_cond_wait(&full , &myMutex);
data ++;
printf("#“/,d is producing data; data = %d\n", id, data);
pthread_cond_signal(&empty);
pthread_mutex_unlock(&myMutex);
¥
void consumeData(int id){
pthread_mutex_lock(&myMutex);
if (data == 0) {
printf("#%d is waiting for more data; data = %d\n", id, data);
pthread-cond.-wait(&empty, &myMutex);
¥
data —;
printf("#%d is consuming data; data = %d\n", id, data);

pthread_cond_signal(&full);
pthread_mutex_unlock(&myMutex);
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Producer/Consumer Example: Execution

$ gcc —lIpthread —o prod prodcons.c

$ ./prod #2 is producing data; data = 1

#1 is producing data; data =1 #3 is consuming data; data = 0

#2 is consuming data; data =0 #0 is producing data; data =1

#0 is waiting for more data; data =0 #2 is consuming data; data = 0

#0 is producing data; data =1 #0 is producing data; data =1

#0 is consuming data; data = 0 #0 is consuming data; data = 0

#3 is waiting for more data; data =0 #1 is waiting for more data; data =0
#2 is producing data; data =1 #3 is waiting for more data; data =0
#3 is consuming data; data = 0 #2 is producing data; data =1

#1 is waiting for more data; data = 0 #0 is consuming data; data = 0

#0 is waiting for more data; data = 0 #1 is consuming data; data = —1

#3 is waiting for more data; data =0 #2 is producing data; data = 0

#2 is waiting for more data; data =0 #3 is consuming data; data = —1

#0 is producing data; data =1 #0 is producing data; data = 0

#1 is consuming data; data = 0 #0 is waiting for more data; data = 0
#1 is producing data; data =1

#0 is consuming data; data =0

the code is wrong!

20/22 Une école de I'IM

Where?77?



Synchronization issues
00000

Implementing critical sections
00000

Programming with synchronization constraints

[slelslslelslalsls] lo]

Producer/Consumer Example (Updated)

void produceData(int
pthread mutex_lock{&myMutex);

id) {

while (data = maxData) {
printf(
pthread_cond_wait(&full ,

data ++;

printf(

pthread_cond_signal(&empty);

pthread_mutex_unlock(&myMutex);

}

void consumeData(int
pthread_mutex_lock(&myMutex);

while (data =— 0) {

printf(

¥

data —;
printf(

pthread-cond.-wait(&empty, &myMutex);

id){

pthread_cond_signal(&full);

pthread_mutex_unlock(&myMutex);

&myMutex ) ;
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Producer/Consumer Example: Execution (Updated)

$gcc —Ipthread —o prod prodcons.c

$prod

#3 is waiting for
#1 is waiting for

#2 is producing data;
data;
data;
data;

#2 is producing
#0 is consuming
#2 is consuming

#2 is waiting for
#3 is waiting for

#0 is producing
#1 is consuming
#2 is producing
#2 is consuming
#1 is producing
#3 is consuming

#0 is waiting for
#2 is waiting for

#0 is producing
#0 is consuming

#0 is waiting for
#3 is waiting for
#1 is waiting for

#2 is producing
#2 is producing
#2 is consuming
#0 is consuming
#1 is producing

data;
data;
data ;

data ;

data;

data ;
data ;

data;

data;
data;

data;
data;

data
data
data
data

data
data
data
data
data
data

data
data

data
data
data
data
data

more data;
more data;

more data;
more data;
data;

more data;
more data;

more data;
more data;
more data;

data
data
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consuming
producing
producing
consuming
producing
producing
consuming
producing
producing
producing
consuming
consuming
consuming
producing
producing
producing

waiting for

consuming
producing
consuming
producing
consuming
producing

waiting for
waiting for

consuming

data;
data;
data ;
data;
data;
data;
data;
data ;
data;
data;
data;
data;
data ;
data;
data;
data;

less
data ;

data;
data;
data;

data;

data ;

less
less
data;

data =
data =
data =
data =
data =
data =
data =
data =
data =
data =
data =
data =
data =
data =
data =
data
data;
data =
data =
data =
data =
data =
data =
data;
data
data =
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ata = 5
5
data = 5
data = 5
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