TELECOM

Paris

m Xt

N2 1P PARIS

d_ nd

Institut Mines-Télécom

Operating Systems

Il. Processes

Ludovic Apvrille
ludovic.apvrille@telecom-paris.fr

Eurecom, office 470

perso.telecom-paris.fr/apvrille/0S/

Concepts Process management

#0000000000 000000

Program

B Program is usually written in a high level language

m Compilers / interpreters convert high level languages into

binary code

compiler

Boot sequence of an 0S Managing processes And one last question!
[sle]slele] 0000000000000 o]

assembler

¢

v

S
>

Binary code

TELECOM
Paris

2/37 Une école de 'IMT & e ranis

Concepts Process management Boot sequence of an 0S Managing processes And one last question!
08000000000 000000 [sle slele] 0000000000000 o]

Process Definition

Definition of a process

Program in execution

Programs and processes

B One execution of a sequential program = one process

B Two executions of the same program = two processes

v

Computer system = set of processes

B Operating System processes
B User processes

TELECOM

3/37 Une école de I'IMT Operating Systems - Processes @m PARIS
Concepts Process management Boot sequence of an 0S Managing processes
00800000000 000000 [sle]slele]

And one last question!
0000000000000 o]

Users

User: Definition

Person authorized to run processes

Features

m Userld, groupld

B Access rights to resources

¢ On processes
¢ On files

B Super-user

e Administrator (Windows), root (Unix)

TELECOM

4/37 Une école de I'IMT Operating Systems - Processes @m PARIS

Concepts Process management Boot sequence of an 0S Managing processes And one last question!
00080000000 000000 [sle slele] 0000000000000 o]

CPU Protection

Dt

The OS must be sure to periodically gain control
®m Ensure CPU fairness between processes

B Prevent a process from stucking the system
e e.g., infinite loop

Example of mechanisms

1. A hardware timer is set before a process is given the CPU
2. The timer interrupts the process after a specified period
Of course, instructions for settling the timer are privileged

TELECOM
Paris

EEIm
Concepts Process management Boot sequence of an 0S Managing processes And one last question!
00008000000 000000 [sle]slele] 0000000000000 o]
Example of CPU Protection
Kernel mode User mode
Setup timer
Switch to user mode R
“|. Start user process

User process executes

Nnterrupt (hardware timer, or else) I

The corresponding routine of the
interrupt vector is called

OS can perform maintenance
operations and choose another
user process

TELECOM
Paris

6/37 Une école de I'IMT Operating Systems - Processes @u’ PARIS

Concepts Process management Boot sequence of an 0S Managing processes
00000800000 000000 [sle/olels] 0000000000000

Running a Set of Processes

B Monoprocessor
* Pseudo-parallelism: 1 process running at a time
- So, either the OS or a user process is running
B Multiprocessor
® A process can be running on each processor

And one last question!
(o]

O

%]
e
W

4y,

B The OS scheduler dispatches processes on processors

® Scheduling policy

ProcessD -

Process C

ProcessB

ProcessA

7/37 Une école de 'IMT

Concepts Process management Boot sequence of an 0S Managing processes
C0000080000 000000 [slelolele] 0000000000000

States of Processes

&

Blocked

8/37 Une école de 'IMT

And one last question!
[s]

TELECOM

Paris
EEI
@ IP PARIS

Concepts
00000008000

Process management
000000

Boot sequence of an 0S
[sle slele]

Managing processes
0000000000000

Process Data

Data of processes are stored in memory

Program code = text section (static)
Current Activity

® Program counter = Processor’s register
* Next instruction to execute

Stack: function calls are stored in a LIFO manner

¢ Function parameters
® Return address
® Local variables

Heap: Data section

And one last question!
o]

——
n——

9/37 Une école de 'IMT

Concepts
00000000800

Process management
000000

Managing processes

Boot sequence of an 0S
[sle]slele] 0000000000000

Memory Layout of a C Program

High add
1gh address Environment data

Stack

Main()

fool()

Heap

Uninitialized data
Uninitialized data
Text (=code)

Low address

10/37 Une école de I'IMT

TELECOM
Paris

EEIN
@IP PARIS

And one last question!
o]

TELECOM

Paris
EEIN
@ IP PARIS

Concepts Process management Boot sequence of an 0S Managing processes
00000000080 000000 [sle slele] 0000000000000

Memory Allocation in C Programs

int a;

int funnyAllocation (char xbuf, int b) {
a = b;
b =0b +1;
strepy (buf,);

return 7;

}

int main(int argc, charxargv[]) {
int b = 3;

char %buf = (char %) (malloc(sizeof(char) x 20));

int returned = funnyAllocation (buf, b);
printf(, returned);
printf(, b);
printf(, buf);
11/37 Une école de 'IMT
Concepts Process management Boot sequence of an 0S Managing processes
00000000008 000000 [sle]slele] 0000000000000

Memory Allocation in C Programs (Cont.)

$ gcc —Wall —o procmem procmem. c

$./procmem

The returned value is: 7
The value of b is: 3

The content of buf is: hello

12/37 Une école de 'IMT

And one last question!
o]

TELECOM
Paris

EEIN
@ IP PARIS

And one last question!
o]

Paris
EEIN
@ IP PARIS

Concepts Process management Boot sequence of an 0S Managing processes And one last question!
00000000000 800000 [sle slele] 0000000000000 o]

Logical Organization of Processes

UNIX

B Process hierarchy
e A parent can possibly have many children
* A child has exactly one parent
®m Group of a process = this process + children + further
descendants

m All processes belong to the group of the init process (root)

o

® No process hierarchy

B When a parent creates a child, it is given a special token
(called a handle)
* A handle can be passed to other processes
» == UNIX: processes cannot disinherit their children

TELECOM
Paris
13/37 Une école de I'IMT Operating Systems - Processes @m PARIS

Concepts Process management Boot sequence of an 0S Managing processes And one last question!
00000000000 080000 [slelolele] 0000000000000 [s]
UNIX: Hierarchy of Processes
root
pagedaemon swapper init
user 1 user 2 user 3

14/37 Une école de 'IMT Operating Systems - Processes & reans

Concepts Process management Boot sequence of an 0S Managing processes
00000000000 [ele] lelels] [sle slele] 0000000000000

Process Control Block

Process id (pid)

Scheduling information

Program counter
Registers

Allocated memory

Resources

/O pending operations

15/37 Une école de I'IMT

Concepts Process management Boot sequence of an 0S Managing processes
00000000000 000800 [slelolele] 0000000000000

Switching Between Processes

And one last question!

o}

| ProcessA | | Operating System | [Process B

Executingﬂ Interrupt / System Call ‘L

Save state into PCB(A) I
v

| Load state from PCB(B) | /

l Save state into PCB(B) |
v

Idle

v
| Load state from PCB(A) I

&
<

Executing !

16/37 Une école de 'IMT

Idle

Idle

TELECOM
Paris

EEIN
@ IP PARIS

And one last question!
[s]

Executing

TELECOM

Paris
EEI
@ IP PARIS

Concepts Process management Boot sequence of an 0S Managing processes And one last question!
00000000000 [elolelel lo] [sle/olels] 0000000000000 (o]

Processes Data Structure

Environment
proc, / —| group data
Stack
Proc, N
proc, [— fd, fd, ¥
Proc,, 3
|—> page table Heap
> .
Initialized
data
Static array (Linux 2.2) Text
Dynamic array (since Linux 2.4)
EEI
Concepts Process management Boot sequence of an 0S Managing processes And one last question!
00000000000 000008 [sle]slele] 0000000000000 o]

Four Important Issues Regarding Processes

1. How is it possible to launch 4. How can processes

the first user process? communicate with each others?

Boot sequence B Signals, shared memory,
message passing, etc.

2. How to manage processes B Synchronization between
from a programmer’s point of processes

view?
APls

Boot, APIls: next slides ...
For other issues: attend next
courses!

3. How to schedule processes

(efficiently)?
Scheduling policies
EEIN

18/37 Une école de I'IMT Operating Systems - Processes @m PARIS

Concepts Process management Boot sequence of an 0S Managing processes And one last question!

00000000000 000000 90000 0000000000000 o

Steps of Boot Sequence

1. Reset of the hardware
e All logic gates are reset to a known state

2. Diagnostic tests are run from the PROM Monitor
3. Boot manager
4. Starting of the OS kernel
5. User processes can execute!
Paris
EEITN
Concepts Process management Boot sequence of an 0S Managing processes And one last question!
00000000000 000000 [s] lslele] 0000000000000 o]
Step 2: The PROM Monitor
®m System hardware is initialized
B Miniature diagnostic program: Ensures a minimal operational
base for the OS to run (memory, keyboard)
B = Does not guarantee that the hardware is fully functional!
To detect hardware devices connected to the system
(See next slide)
TELECOM
Paris
EEIN

20/37 Une école de I'IMT

@ IP PARIS

Concepts Process management Boot sequence of an 0S Managing processes And one last question!
00000000000 000000 [sle] lele] 0000000000000 o]

Step 3: Boot Manager

m Examples: BIOS, (U)EFI

B Initialization of some of the devices and annex memories
B Execution of boot loader

¢ Kernel selection
* Selection of boot parameters

- Maintenance mode, multi-user mode, etc.
e Loads the chosen kernel, and starts it

* Example of boot loaders

- Grub
- Windows multi-boot loader
- rEFInd

TELECOM
Paris

HEIT

Concepts Process management Boot sequence of an 0S Managing processes And one last question!
00000000000 000000 [sle]s] 1o 0000000000000 o]

Boot Menu of Windows

Advanced Boot Options

Choose Advanced Options for: windows Technical Preview
(Use the arrow keys to highlight your choice.)

Repair Your Computer]

safe Mode
safe Mode with Networking
safe Mode with Command Prompt

Enable Boot Logging

Enable low-resolution video

Debugging Mode

Disable automatic restart on system failure
Disable Driver Signature Enforcement
Disable Early Launch Anti-Malware Driver

Start windows Normally

Description: view a 1ist of system recovery tools you can use to repair
startup problems, run diagnostics, or restore your system.

TELECOM

Paris
EEIeN
@ IP PARIS

ENTER=Choose ESC=Cancel

Concepts Process management Boot sequence of an 0S Managing processes And one last question!
00000000000 000000 [sle slel J 0000000000000 o]

Step 4: Starting the OS Kernel

®m Allocation of memory
e Kernel, data storage areas, 1/0 buffers
B Probe of devices
e The kernel builds a device tree and loads corresponding devices
m Creation of first system processes
e Swapper (sched), init, pagedaemon
B Start-up scripts are executed according to run-level

e Start system services (e.g., rlogin daemon)
* Windows runlevels

— Multi-user, Safe mode, Safe mode with network

TELECOM
Paris

HEIT

Concepts Process management Boot sequence of an 0S Managing processes And one last question!
[sle]slele] #000000000000 o]

00000000000 000000

Controlling Processes

m Creation of new processes

B Management of processes

B Termination of processes

TELECOM
Paris
HEIT

Concepts Process management Boot sequence of an 0S Managing processes And one last question!
00000000000 000000 [sle slele] 0800000000000 o]

Starting and Terminating a Process

A C program starts its execution with a call to:

int main(int argc, char xargv(])

Termination

® Normal termination EXIT (3)
#include <stdlib . h>

void exit(int status)

e Return from main
» Call to exit() (or _exit())

B Abnormal termination #E-XIT(E) ed b
include <unistd . h>
e Gall to abort() void _exit(int status)
¢ Allocated resources exceeded
* Cascading termination ABORT(3)
. #include <stdlib.h>
void abort(void); Y
Paris

25/37 Une école de I'IMT & e ranis

Concepts Process management Boot sequence of an 0S Managing processes And one last question!
00000000000 000000 [slelolele] 0080000000000 [s]

"Life” of a C Program (Linux)

User] \
functions exit handler
A &0 call
call | return return
gxit . e . call .
=70 main() ez, s exit() —> exit handler User
Tetuln process
call T l return call
C start-up ret Standard
routine . /o
) —exi) cleanup
exec()
, 7
> KERNEL
TELECOM
Paris
BRI

26/37 Une école de 'IMT & e ranis

Concepts Process management Boot sequence of an 0S Managing processes And one last question!
00000000000 000000 [sle slele] 0008000000000 o]

Call to _exit()

m File descriptors
m Shared memory segments
B Semaphores
B Message queues
.
®m Entry in the process allocation table is conserved
®m Children’s parent is set to the /nit process
B All children executing in foreground are terminated
Paris
EEITN

27/37 Une école de I'IMT & e ranis

Concepts Process management Boot sequence of an 0S Managing processes And one last question!
00000000000 000000 [sle]slele] 0000800000000 o]

UNIX: Creation of a New Process with fork()

B A running process calls fork()

#include <sys/types.h>
#include <unistd.h>

pid_-t fork(void);

B The new process is a child process
B The function is called once but returns twice:

® 0 is returned to the child process
¢ The pid (process id) of the child is return to the parent process

B For more information on fork()

$man fork TELECOM
Paris

HEIT

Concepts Process management Boot sequence of an 0S Managing processes And one last question!
00000000000 000000 [sle/olels] 0000080000000

fork(): Code Example

#include <sys/types .h>

int glob = 6;

int main(void) {

pid_t ret;

int var = 66; What happens when executing this

ret = fork (); co_de?]

if (ret == 0) { /% Child =/ What must be improved in that
glob ++; var ++; code?

} else { ’
sleep(1);

printf("process ret %d glob=%d var=%d\n", ret, glob, var);

exit(0);

TELECOM
Paris

I

Concepts Process management Boot sequence of an 0S Managing processes And one last question!
00000000000 000000 [sle]slele] 0000008000000 o]

fork(): Drawback and Solution

Recopy of data space, heap, stack, etc.
= Not very efficient

W fork() under Linux: Copy-On-Write technique
e Memory pages shared by parent and child
e Memory pages set to read-only for both
¢ Copy of the memory page when a write operation is performed

m vfork()

* Parent process is suspended until the child process makes a
call to exec() or to exit() (Linux)
m exec()

R - . TELECOM
* Replaces the current process image with a new process image
CETET

Concepts Process management Boot sequence of an 0S Managing processes And one last question!
00000000000 000000 [sle slele] 0000000800000 o]

vfork() and exec(): Code Example

#include <sys/types.h>
#include <unistd .h>
int glob = 6;

int main(void) {
int var = 66;

pid_t ret = fork();
if (ret == 0) { /% Child */

if (execl(, , . NULL) <0) {
exit(127); /* error x/
}
} else {
sleep(l);
printf(, ret, glob, var);
exit(0);
}
What happens when executing this program?
Paris
-]]|

Concepts Process management Boot sequence of an 0S Managing processes And one last question!
00000000000 000000 [sle]slele] 0000000080000 o]

Linux: Excerpt of The Manual of fork()

T

3

fork() creates a new process by duplicating the calling process. The new
process is referred to as the child process. The calling process is referred to as
the parent process.

The child process and the parent process run in separate memory spaces. At
the time of fork() both memory spaces have the same content. Memory writes,
file map- pings (mmap(2)), and unmappings (munmap(2)) performed by one of
the processes do not affect the other.

The child process is an exact duplicate of the parent process except for the fol-
lowing points:

B The child has its own unique process |ID, and this PID does not match
the ID of any existing process group (setpgid(2)).

B The child's parent process ID is the same as the parent's process ID.

B ... (info on locks, etc.) TELECOM
EEIN

Concepts Process management Boot sequence of an 0S Managing processes And one last question!
00000000000 000000 [sle slele] 0000000008000 o]

Linux: Excerpt of The Manual of vfork()

vfork, just like fork(2), creates a child process of the calling
process.

vfork() is a special case of clone(2). It is used to create new
processes without copying the page tables of the parent process. It
may be useful in performance sensitive applications where a child
will be created which then immediately issues an execve.

vfork() differs from fork in that the parent is suspended until the
child makes a call to execve(2) or exit(2). The child shares all
memory with its parent, including the stack, until execve is issued
by the child. The child must not return from the current function

or call exit, but may call _exit(). TELECOM
33/37 Une école de I'IMT & e ranis
Concepts Process management Boot sequence of an 0S Managing processes And one last question!
00000000000 000000 [sle]slele] 0000000000800 o]

Solaris: Excerpt of The Manual of fork() and vfork()

The fork() and forkl() functions create a new process. The new
process (child process) is an exact copy of the calling process
(parent process). ...

The vfork() function creates new processes without fully copying
the address space of the old process. This function is useful in
instances where the purpose of a fork(2) operation would be to
create a new system context for an execve() operation (see
exec(2)). ...

TELECOM
Paris
HEIT

Concepts Process management Boot sequence of an 0S Managing processes And one last question!
00000000000 000000 [sle slele] 0000000000080 o]

POSIX: Excerpt of The Manual of vfork()

POSIX = Portable Operating System Interface based on UNIX

The vfork() function has the same effect as fork(), except that the
behavior is undefined if the process created by vfork() either
modifies any data other than a variable of type pid_t used to store
the return value from vfork(), or returns from the function in which
vfork() was called, or calls any other function before successfully
calling _exit() or one of the exec family of functions.

(For the origin of the POSIX name, see
http://stallman.org/articles/posix.html)

TELECOM
Paris

35/37 Une école de I'IMT & e ranis
Concepts Process management Boot sequence of an 0S Managing processes And one last question!
00000000000 000000 [sle]slele] 0000000000008 o]

vfork(): Another Code Example

Code

#include <sys/types .h>
int glob = 6;

int main(void) {
pid_t ret;
int var = 66;

ret = vfork(); // previously was fork
if (ret == 0) { /% Child =/
glob ++; var ++4;
} else { sleep(1);}
printf(, ret, glob, var);
exit(0);

Execution

| HH

process ret
process ret

0 glob=7 var=67
7262 glob=7 var=67

TELECOM
Paris

HEIT

Concepts Process management Boot sequence of an 0S Managing processes And one last question!
00000000000 000000 [sle slele] 0000000000000 []

P

Questions QLU

i

When | need some information on a function provided by an

Operating System, what should | do?
B Use google? wikipedia? Other sites?
B Use local manual pages?

Why?

Local manual pages

$ man —s2 fork
$ info fork
$ man —s3 abort

TELECOM

37/37 Une école de I'IMT Operating Systems - Processes @m PARIS

