
Operating Systems

II. Processes

Ludovic Apvrille
ludovic.apvrille@telecom-paris.fr
Eurecom, office 470

perso.telecom-paris.fr/apvrille/OS/

perso.telecom-paris.fr/apvrille/OS/

Concepts Process management Boot sequence of an OS Managing processes And one last question!

Program

Abstraction
■ Program is usually written in a high level language

■ Compilers / interpreters convert high level languages into
binary code

2/37 Une école de l’IMT Operating Systems - Processes

Concepts Process management Boot sequence of an OS Managing processes And one last question!

Process Definition

Definition of a process

Program in execution

Programs and processes

■ One execution of a sequential program = one process

■ Two executions of the same program = two processes

Computer system = set of processes

■ Operating System processes

■ User processes

3/37 Une école de l’IMT Operating Systems - Processes

Concepts Process management Boot sequence of an OS Managing processes And one last question!

Users

User: Definition

Person authorized to run processes

Features
■ UserId, groupId

■ Access rights to resources
• On processes
• On files
• . . .

■ Super-user
• Administrator (Windows), root (Unix)

4/37 Une école de l’IMT Operating Systems - Processes

Concepts Process management Boot sequence of an OS Managing processes And one last question!

CPU Protection

Goal

The OS must be sure to periodically gain control

■ Ensure CPU fairness between processes

■ Prevent a process from stucking the system
• e.g., infinite loop

Example of mechanisms

1. A hardware timer is set before a process is given the CPU

2. The timer interrupts the process after a specified period

Of course, instructions for settling the timer are privileged

5/37 Une école de l’IMT Operating Systems - Processes

Concepts Process management Boot sequence of an OS Managing processes And one last question!

Example of CPU Protection

6/37 Une école de l’IMT Operating Systems - Processes

Concepts Process management Boot sequence of an OS Managing processes And one last question!

Running a Set of Processes

■ Monoprocessor
• Pseudo-parallelism: 1 process running at a time

- So, either the OS or a user process is running

■ Multiprocessor
• A process can be running on each processor

■ The OS scheduler dispatches processes on processors
• Scheduling policy

7/37 Une école de l’IMT Operating Systems - Processes

Concepts Process management Boot sequence of an OS Managing processes And one last question!

States of Processes

8/37 Une école de l’IMT Operating Systems - Processes

Concepts Process management Boot sequence of an OS Managing processes And one last question!

Process Data

■ Data of processes are stored in memory

Various data of a process

■ Program code = text section (static)

■ Current Activity
• Program counter = Processor’s register
• Next instruction to execute

■ Stack: function calls are stored in a LIFO manner
• Function parameters
• Return address
• Local variables

■ Heap: Data section

9/37 Une école de l’IMT Operating Systems - Processes

Concepts Process management Boot sequence of an OS Managing processes And one last question!

Memory Layout of a C Program

Environment data

Stack

Main()

foo1()

...

...

 Area allocated with malloc

Heap

Uninitialized data

Uninitialized data

Text (=code)

High address

Low address

10/37 Une école de l’IMT Operating Systems - Processes

Concepts Process management Boot sequence of an OS Managing processes And one last question!

Memory Allocation in C Programs

i n t a ;

i n t f u n n yA l l o c a t i o n (char ∗buf , i n t b) {
a = 5 ;
b = b +1;
s t r c p y (buf , "hello") ;

r e t u r n 7 ;
}

i n t main (i n t argc , char ∗ a rgv []) {
i n t b = 3 ;

char ∗ buf = (char ∗) (ma l l o c (s i z e o f (char) ∗ 2 0)) ;

i n t r e t u r n e d = f u n n yA l l o c a t i o n (buf , b) ;

p r i n t f ("The returned value is: d\n" , r e t u r n e d) ;
p r i n t f ("The value of b is: d\n" , b) ;
p r i n t f ("The content of buf is: s\n" , bu f) ;

}

11/37 Une école de l’IMT Operating Systems - Processes

Concepts Process management Boot sequence of an OS Managing processes And one last question!

Memory Allocation in C Programs (Cont.)

$ gcc −Wall −o procmem procmem . c

$. / procmem
The r e t u r n e d v a l u e i s : 7
The va l u e o f b i s : 3
The con t en t o f buf i s : h e l l o

12/37 Une école de l’IMT Operating Systems - Processes

Concepts Process management Boot sequence of an OS Managing processes And one last question!

Logical Organization of Processes

UNIX
■ Process hierarchy

• A parent can possibly have many children
• A child has exactly one parent

■ Group of a process = this process + children + further
descendants

■ All processes belong to the group of the init process (root)

Windows
■ No process hierarchy

■ When a parent creates a child, it is given a special token
(called a handle)

• A handle can be passed to other processes
• ̸= UNIX: processes cannot disinherit their children

13/37 Une école de l’IMT Operating Systems - Processes

Concepts Process management Boot sequence of an OS Managing processes And one last question!

UNIX: Hierarchy of Processes

14/37 Une école de l’IMT Operating Systems - Processes

Concepts Process management Boot sequence of an OS Managing processes And one last question!

Process Control Block

Process id (pid)

Scheduling information

Program counterProgram counter
Registers

Allocated memory

Resources

I/O pending operations

...

15/37 Une école de l’IMT Operating Systems - Processes

Concepts Process management Boot sequence of an OS Managing processes And one last question!

Switching Between Processes

16/37 Une école de l’IMT Operating Systems - Processes

Concepts Process management Boot sequence of an OS Managing processes And one last question!

Processes Data Structure

17/37 Une école de l’IMT Operating Systems - Processes

Concepts Process management Boot sequence of an OS Managing processes And one last question!

Four Important Issues Regarding Processes

1. How is it possible to launch
the first user process?

Boot sequence

2. How to manage processes
from a programmer’s point of
view?

APIs

3. How to schedule processes
(efficiently)?

Scheduling policies

4. How can processes
communicate with each others?

■ Signals, shared memory,
message passing, etc.

■ Synchronization between
processes

Boot, APIs: next slides ...
For other issues: attend next
courses!

18/37 Une école de l’IMT Operating Systems - Processes

Concepts Process management Boot sequence of an OS Managing processes And one last question!

Steps of Boot Sequence

1. Reset of the hardware
• All logic gates are reset to a known state

2. Diagnostic tests are run from the PROM Monitor

3. Boot manager

4. Starting of the OS kernel

5. User processes can execute!

19/37 Une école de l’IMT Operating Systems - Processes

Concepts Process management Boot sequence of an OS Managing processes And one last question!

Step 2: The PROM Monitor

Power On Self Test
■ System hardware is initialized

■ Miniature diagnostic program: Ensures a minimal operational
base for the OS to run (memory, keyboard)

■ ⇒ Does not guarantee that the hardware is fully functional!

Scan of buses

To detect hardware devices connected to the system

Loading and starting the boot manager

(See next slide)

20/37 Une école de l’IMT Operating Systems - Processes

Concepts Process management Boot sequence of an OS Managing processes And one last question!

Step 3: Boot Manager

■ Examples: BIOS, (U)EFI

■ Initialization of some of the devices and annex memories

■ Execution of boot loader
• Kernel selection
• Selection of boot parameters

- Maintenance mode, multi-user mode, etc.

• Loads the chosen kernel, and starts it

• Example of boot loaders

- Grub

- Windows multi-boot loader

- rEFInd

21/37 Une école de l’IMT Operating Systems - Processes

Concepts Process management Boot sequence of an OS Managing processes And one last question!

Boot Menu of Windows

22/37 Une école de l’IMT Operating Systems - Processes

Concepts Process management Boot sequence of an OS Managing processes And one last question!

Step 4: Starting the OS Kernel

■ Allocation of memory
• Kernel, data storage areas, I/O buffers

■ Probe of devices
• The kernel builds a device tree and loads corresponding devices

■ Creation of first system processes
• Swapper (sched), init, pagedaemon

■ Start-up scripts are executed according to run-level
• Start system services (e.g., rlogin daemon)
• Windows runlevels

- Multi-user, Safe mode, Safe mode with network

23/37 Une école de l’IMT Operating Systems - Processes

Concepts Process management Boot sequence of an OS Managing processes And one last question!

Controlling Processes

■ Creation of new processes

■ Management of processes

■ Termination of processes

24/37 Une école de l’IMT Operating Systems - Processes

Concepts Process management Boot sequence of an OS Managing processes And one last question!

Starting and Terminating a Process

A C program starts its execution with a call to:

i n t main (i n t argc , char ∗ a rgv [])

Termination

■ Normal termination
• Return from main
• Call to exit() (or exit())

■ Abnormal termination
• Call to abort()
• Allocated resources exceeded
• Cascading termination
• . . .

EXIT (3)
#inc l u d e < s t d l i b . h>
vo id e x i t (i n t s t a t u s)

EXIT (2)
#inc l u d e <un i s t d . h>
vo id e x i t (i n t s t a t u s)

ABORT(3)
#inc l u d e < s t d l i b . h>
vo id abo r t (vo id) ;

25/37 Une école de l’IMT Operating Systems - Processes

Concepts Process management Boot sequence of an OS Managing processes And one last question!

”Life” of a C Program (Linux)

26/37 Une école de l’IMT Operating Systems - Processes

Concepts Process management Boot sequence of an OS Managing processes And one last question!

Call to exit()

1. Process resources are freed
■ File descriptors

■ Shared memory segments

■ Semaphores

■ Message queues

■ ...

2. The process becomes a zombie process

■ Entry in the process allocation table is conserved

■ Children’s parent is set to the init process

■ All children executing in foreground are terminated

27/37 Une école de l’IMT Operating Systems - Processes

Concepts Process management Boot sequence of an OS Managing processes And one last question!

UNIX: Creation of a New Process with fork()

■ A running process calls fork()

fork()

#inc l u d e <s y s / t yp e s . h>
#inc l u d e <un i s t d . h>

p i d t f o r k (vo id) ;

■ The new process is a child process

■ The function is called once but returns twice:
• 0 is returned to the child process
• The pid (process id) of the child is return to the parent process

■ For more information on fork()

$man f o r k

28/37 Une école de l’IMT Operating Systems - Processes

Concepts Process management Boot sequence of an OS Managing processes And one last question!

fork(): Code Example

Code

#inc l u d e <s y s / t yp e s . h>

i n t g lob = 6 ;

i n t main (vo id) {
p i d t r e t ;
i n t va r = 66 ;

r e t = f o r k () ;
i f (r e t == 0) { /∗ Ch i l d ∗/

g lob ++; va r ++;
} e l s e {

s l e e p (1) ;
}
p r i n t f ("process ret = %d glob=%d var=%d\n" , r e t , g lob , va r) ;
e x i t (0) ;

}

29/37 Une école de l’IMT Operating Systems - Processes

What happens when executing this
code?

What must be improved in that
code?

Concepts Process management Boot sequence of an OS Managing processes And one last question!

fork(): Drawback and Solution

Drawback: Created child is a clone of its parent

Recopy of data space, heap, stack, etc.
⇒ Not very efficient

A few solutions...

■ fork() under Linux: Copy-On-Write technique
• Memory pages shared by parent and child
• Memory pages set to read-only for both
• Copy of the memory page when a write operation is performed

■ vfork()
• Parent process is suspended until the child process makes a
call to exec() or to exit() (Linux)

■ exec()
• Replaces the current process image with a new process image

30/37 Une école de l’IMT Operating Systems - Processes

Concepts Process management Boot sequence of an OS Managing processes And one last question!

vfork() and exec(): Code Example

Code

#inc l u d e <s y s / t yp e s . h>
#inc l u d e <un i s t d . h>
i n t g lob = 6 ;

i n t main (vo id) {
i n t va r = 66 ;

p i d t r e t = f o r k () ;
i f (r e t == 0) { /∗ Ch i l d ∗/

i f (e x e c l ("/bin/sh" , "sh" , "-c" , "/bin/ls" , NULL) <0) {
e x i t (1 2 7) ; /∗ e r r o r ∗/

}
} e l s e {

s l e e p (1) ;
}
p r i n t f ("process ret = %d glob=%d var=%d\n" , r e t , g lob , va r) ;
e x i t (0) ;

}

What happens when executing this program?

31/37 Une école de l’IMT Operating Systems - Processes

Concepts Process management Boot sequence of an OS Managing processes And one last question!

Linux: Excerpt of The Manual of fork()

fork()

fork() creates a new process by duplicating the calling process. The new
process is referred to as the child process. The calling process is referred to as
the parent process.
The child process and the parent process run in separate memory spaces. At
the time of fork() both memory spaces have the same content. Memory writes,
file map- pings (mmap(2)), and unmappings (munmap(2)) performed by one of
the processes do not affect the other.
The child process is an exact duplicate of the parent process except for the fol-
lowing points:

■ The child has its own unique process ID, and this PID does not match
the ID of any existing process group (setpgid(2)).

■ The child’s parent process ID is the same as the parent’s process ID.

■ . . . (info on locks, etc.)

32/37 Une école de l’IMT Operating Systems - Processes

Concepts Process management Boot sequence of an OS Managing processes And one last question!

Linux: Excerpt of The Manual of vfork()

vfork()

vfork, just like fork(2), creates a child process of the calling
process.
vfork() is a special case of clone(2). It is used to create new
processes without copying the page tables of the parent process. It
may be useful in performance sensitive applications where a child
will be created which then immediately issues an execve.
vfork() differs from fork in that the parent is suspended until the
child makes a call to execve(2) or exit(2). The child shares all
memory with its parent, including the stack, until execve is issued
by the child. The child must not return from the current function
or call exit, but may call exit().

33/37 Une école de l’IMT Operating Systems - Processes

Concepts Process management Boot sequence of an OS Managing processes And one last question!

Solaris: Excerpt of The Manual of fork() and vfork()

fork()

The fork() and fork1() functions create a new process. The new
process (child process) is an exact copy of the calling process
(parent process). . . .

vfork()

The vfork() function creates new processes without fully copying
the address space of the old process. This function is useful in
instances where the purpose of a fork(2) operation would be to
create a new system context for an execve() operation (see
exec(2)). . . .

34/37 Une école de l’IMT Operating Systems - Processes

Concepts Process management Boot sequence of an OS Managing processes And one last question!

POSIX: Excerpt of The Manual of vfork()

POSIX = Portable Operating System Interface based on UNIX

vfork()

The vfork() function has the same effect as fork(), except that the
behavior is undefined if the process created by vfork() either
modifies any data other than a variable of type pid t used to store
the return value from vfork(), or returns from the function in which
vfork() was called, or calls any other function before successfully
calling exit() or one of the exec family of functions.

(For the origin of the POSIX name, see
http://stallman.org/articles/posix.html)

35/37 Une école de l’IMT Operating Systems - Processes

Concepts Process management Boot sequence of an OS Managing processes And one last question!

vfork(): Another Code Example

Code

#inc l u d e <s y s / t yp e s . h>
i n t g lob = 6 ;

i n t main (vo id) {
p i d t r e t ;
i n t va r = 66 ;

r e t = v f o r k () ; // p r e v i o u s l y was f o r k
i f (r e t == 0) { /∗ Ch i l d ∗/

g lob ++; va r ++;
} e l s e { s l e e p (1) ;}
p r i n t f ("process ret = %d glob=%d var=%d\n" , r e t , g lob , va r) ;
e x i t (0) ;

}

Execution

p r o c e s s r e t = 0 g lob=7 va r=67
p r o c e s s r e t = 7262 g lob=7 va r=67

36/37 Une école de l’IMT Operating Systems - Processes

Concepts Process management Boot sequence of an OS Managing processes And one last question!

Questions

When I need some information on a function provided by an
Operating System, what should I do?

■ Use google? wikipedia? Other sites?

■ Use local manual pages?

Why?

Local manual pages

$ man −s2 f o r k
$ i n f o f o r k
$ man −s3 abo r t
. . .

37/37 Une école de l’IMT Operating Systems - Processes

	Concepts
	Process management
	Boot sequence of an OS
	Managing processes
	And one last question!

