
Started on Wednesday, 2 August 2023, 12:23 PM

State Finished

Completed on Wednesday, 2 August 2023, 12:28 PM

Time taken 4 mins 43 secs

Grade 0.00 out of 20.00 (0%)

Question 1
Not answered

Marked out of 1.00

Question 2
Not answered

Marked out of 1.00

QUIZ

It is usually considered as unwise to remove a USB key without ejecting it before. Check all the true claims regarding the handling of USB keys by Linux.

a. Memory Management Unit is in charge of ejecting USB keys

b. Data written to USB keys are really written to USB keys only after the key has been ejected

c. For performance reason, data written to USB keys are Urst written to RAM

d. USB keys are handled by the Linux kernel I/O subsystem

e. A swap out operation must be performed for data to be written to USB keys

Your answer is incorrect.

The correct answers are:
USB keys are handled by the Linux kernel I/O subsystem,

For performance reason, data written to USB keys are Urst written to RAM

Check all the true claims below regarding the sub-code of "grep" provided below. This code is taken from the Apple open-source code of grep.

/*
 * Reads searching patterns from a file and adds them with add_pattern().
 */
static void
read_patterns(const char *fn)
{

struct stat st;
FILE *f;
char *line;
size_t len;

if ((f = fopen(fn, "r")) == NULL)
err(2, "%s", fn);

if ((fstat(fileno(f), &st) == -1) || (S_ISDIR(st.st_mode))) {
fclose(f);
return;

}
 while ((line = fgetln(f, &len)) != NULL)

add_pattern(line, line[0] == '\n' ? 0 : len);
if (ferror(f))

err(2, "%s", fn);
fclose(f);

}

a. Each line of the Ule given as input is read as a new search pattern

b. This code opens a Ule in read and write mode

c. This code returns in the second "if" if the Ule given as parameter is a directory

d. This code takes as parameter a path to a Ule

Your answer is incorrect.

The correct answers are:
This code returns in the second "if" if the Ule given as parameter is a directory,

This code takes as parameter a path to a Ule,

Each line of the Ule given as input is read as a new search pattern

Question 3
Not answered

Marked out of 1.00

Question 4
Not answered

Marked out of 1.00

Check all the true claims about page replacement algorithms.

a. Page replacement algorithm commonly monitor how pages are read and write to decide of the page to be evicted

b. Page replace algorithms are always triggered when the Memory Management Unit generates a trap

c. A "segmentation fault" is the result of running page replacement algorithms

d. Page replacement algorithms are systematically used when malloc() is called

e. Memory Management Units trigger a page replacement algorithm each time a page cannot be accessed

Your answer is incorrect.

The correct answer is:
Page replacement algorithm commonly monitor how pages are read and write to decide of the page to be evicted

Select all correct claims below. These claims concern the CPU kernel / supervisor mode and the administrator user (root, admin) of an Operating System.

a. An administrator can execute any software in kernel mode

b. The compilation of a new kernel must be done in kernel mode

c. An administrator can select which mode (kernel, user) of the processor must be used to execute each software installed in a system

d. An administrator can install a new kernel module that will execute in kernel mode

Your answer is incorrect.

The correct answer is:
An administrator can install a new kernel module that will execute in kernel mode

Question 5
Not answered

Marked out of 1.00

Check all the true claims about the following code (includes have been removed)

int main(int argc, char*argv[]) {

 int out_fd;
 int written;

 if (argc < 3) {
 printf("usage: writeToFile <Ule> <text>\n");
 exit(0);
 }

 char *Ule = argv[1];

 if ((out_fd = open(Ule, O_WRONLY | O_SYNC | O_CREAT)) < 0) {
 printf("Could not open the Ule %s because:%d\n", Ule, errno);
 exit(1); // bash assumes a non zero code means an error
 }

 char * toBeWritten = argv[2];

 written = write(out_fd, toBeWritten, strlen(toBeWritten));

 if (written < strlen(toBeWritten)) {
 printf("Write in Ule %s failed\n", Ule);
 exit(1); // bash assumes a non zero code means an error
 }

 if (close(out_fd) < 0) {
 printf("Could not close the Ule %s\n", Ule);
 }

 printf("Text %s successfully written to %s\n", toBeWritten, Ule);
 exit(0);
}

a. This program can crash because "toBeWritten" is not allocated

b. The last printf crashes because toBeWritten does not terminate with '\0'

c. The destination Ule is created if it does not exist

d. If this program were to omit the call to close(p), then the Ule would remain open after the program terminates

e. The program does not accept more than 2 arguments

f. The program exits if the destination Ule given as parameter does not exist

Your answer is incorrect.

The correct answer is: The destination Ule is created if it does not exist

Question 6
Not answered

Marked out of 1.00

Check all the true claims about the following manual page.

NAME
 read - read from a Ule descriptor

SYNOPSIS
 #include <unistd.h>

 ssize_t read(int fd, void *buf, size_t count);

DESCRIPTION
 read() attempts to read up to count bytes from Ule descriptor fd into the buffer starting at buf.

 On Ules that support seeking, the read operation commences at the Ule offset, and the Ule offset is incremented by the number of bytes read. If the Ule offset is at or past the end of Ule, no bytes
are read, and read() returns zero.

 If count is zero, read() may detect the errors described below. In the absence of any errors, or if read() does not check for errors, a read() with a count of 0 returns zero and has no other effects.

 According to POSIX.1, if count is greater than SSIZE_MAX, the result is implementation-deUned; see NOTES for the upper limit on Linux.

RETURN VALUE
 On success, the number of bytes read is returned (zero indicates end of Ule), and the Ule position is advanced by this number. It is not an error if this number is smaller than the number of bytes
requested; this may happen for example because fewer bytes are actually available right now (maybe because we were close to end-of-Ule, or because we are reading from a pipe, or from a
terminal), or because read() was interrupted by a signal. See also NOTES.

 On error, -1 is returned, and errno is set appropriately. In this case, it is left unspeciUed whether the Ule position (if any) changes.

ERRORS
 EAGAIN The Ule descriptor fd refers to a Ule other than a socket and has been marked nonblocking (O_NONBLOCK), and the read would block. See open(2) for further
 details on the O_NONBLOCK sag.

 EAGAIN or EWOULDBLOCK
 The Ule descriptor fd refers to a socket and has been marked nonblocking (O_NONBLOCK), and the read would block. POSIX.1-2001 allows either error to be returned for this case, and does
not require these constants to have the same value, so a portable application should check for both possibilities.

 EBADF fd is not a valid Ule descriptor or is not open for reading.

 EFAULT buf is outside your accessible address space.

 EINTR The call was interrupted by a signal before any data was read; see signal(7).

 EINVAL fd is attached to an object which is unsuitable for reading; or the Ule was opened with the O_DIRECT sag, and either the address speciUed in buf, the value speciUed in count, or the Ule
offset is not suitably aligned.

 EINVAL fd was created via a call to timerfd_create(2) and the wrong size buffer was given to read(); see timerfd_create(2) for further information.

 EIO I/O error. This will happen for example when the process is in a background process group, tries to read from its controlling terminal, and either it is ignoring or blocking SIGTTIN or its
process group is orphaned. It may also occur when there is a low-level I/O error while reading from a disk or tape. A further possible cause of EIO on networked Ulesystems is when an advisory lock
had been taken out on the Ule descriptor and this lock has been lost. See the Lost locks section of fcntl(2) for further details.

 EISDIR fd refers to a directory.

 Other errors may occur, depending on the object connected to fd.

CONFORMING TO
 SVr4, 4.3BSD, POSIX.1-2001.

BUGS
 According to POSIX.1-2008/SUSv4 Section XSI 2.9.7 ("Thread Interactions with Regular File Operations"):

 All of the following functions shall be atomic with respect to each other in the effects speciUed in POSIX.1-2008 when they operate on regular Ules or symbolic links: ...

 Among the APIs subsequently listed are read() and readv(2). And among the effects that should be atomic across threads (and processes) are updates of the Ule offset. However, on Linux
before version 3.14, this was not the case: if two processes that share an open Ule description (see open(2)) perform a read() (or readv(2)) at the same time, then the I/O operations were not atomic
with respect updating the Ule offset, with the result that the reads in the two processes might (incorrectly) overlap in the blocks of data that they obtained. This problem was Uxed in Linux 3.14.

a. An error is returned if the input buffer "buf" is not part of the process address space

b. read() ignores the current Ule offset to read data from a Ule

c. With the latest Linux kernels, a programmer can safely open the same Ule in two different processes and perform concurrent calls to read(2).

d. Receiving a signal while reading bytes with read() may trigger an error.

e. Read takes as argument the number of bytes "count" to be read. If the effective number of bytes read is smaller than "count", then an error is returned

Your answer is incorrect.

The correct answers are:
With the latest Linux kernels, a programmer can safely open the same Ule in two different processes and perform concurrent calls to read(2).,

An error is returned if the input buffer "buf" is not part of the process address space,

Receiving a signal while reading bytes with read() may trigger an error.

Question 7
Not answered

Marked out of 1.00

Question 8
Not answered

Marked out of 1.00

Question 9
Not answered

Marked out of 1.00

#include <p t h r e a d . h>
#include <s t d i o . h>
pthread_mutex_t m;
pthread_t a , b ;

void ∗ f (void ∗param) {
 while (1){
 pthread_mutex_lock(&m) ;
 p r i n t f (" % s " , param) ;
 pthread_mutex_unlock(&m) ;
 p t h r e a d _ y i e l d () ;
 }
}

i n t main () {
 pthread_mutex_init (&m, NULL) ;
 p t h r e a d _ c r e a t e (&a , NULL, f , " Hello ") ;
 p t h r e a d _ c r e a t e (&b , NULL, f , " World \ n ") ;
 p t h r e a d _ j o i n (a , NULL) ;
 p t h r e a d _ j o i n (b , NULL) ;
}

a. This program guarantees to print "Hello world" many times

b. This program could crash because param is never allocated

c. "p t h r e a d _ j o i n (b , NULL) ;" is not likely to be executed

d. "pthread_t a , b ;" could be moved to the beginning of the main function

Your answer is incorrect.

The correct answers are:
"p t h r e a d _ j o i n (b , NULL) ;" is not likely to be executed,

"pthread_t a , b ;" could be moved to the beginning of the main function

Does this program always provoke a segmentation fault? (includes have been removed)

int main(int argc, char ** argv) {
 char *name;
 name = (char *) (malloc (20 * sizeof (char)));
 name[22] = 'h';
}

a. Yes

b. No

Your answer is incorrect.

The correct answer is:
No

When executing the following code, assuming it never fails, how many times is "OS is great!" printed? (includes have been removed)

--
i n t main (int nbOfArgs , char ** args) {
 int i =0;
 pid_t ret ;
 for (i =0; i <2; i ++){
 ret = f o r k ();
 if (ret == -1) exit (-1);
 }
 p r i n t f ("OS is great!\n");
 r e t u r n 1;
}

Answer: ×

The correct answer is: 4

Question 10
Not answered

Marked out of 1.00

Question 11
Not answered

Marked out of 1.00

Check all the true claims about brk() and malloc(). To help you, we provide the
manul page of brk() and of malloc() below.

BRK(2) Linux Programmer's Manual BRK(2)

NAME
 brk, sbrk - change data segment size

SYNOPSIS
 #include <unistd.h>

 int brk(void *addr);

 void *sbrk(intptr_t increment);

DESCRIPTION
 brk() and sbrk() change the location of the program break, which deUnes the end of the process's data segment (i.e., the program break is the Urst location after the end of the uninitialized data
segment). Increasing the program break has the effect of allocating memory to the process; decreasing the break deallocates memory.

 brk() sets the end of the data segment to the value speciUed by addr, when that value is reasonable, the system has enough memory, and the process does not exceed its maximum data size (see
setrlimit(2)).

 sbrk() increments the program's data space by increment bytes. Calling sbrk() with an increment of 0 can be used to Und the current location of the program break.

RETURN VALUE
 On success, brk() returns zero. On error, -1 is returned, and errno is set to ENOMEM.

 On success, sbrk() returns the previous program break. (If the break was increased, then this value is a pointer to the start of the newly allocated memory). On error, (void *) -1 is returned, and
errno is set to ENOMEM.

COLOPHON
 This page is part of release 4.16 of the Linux man-pages project. A description of the project, information about reporting
 bugs, and the latest version of this page, can be found at https://www.kernel.org/doc/man-pages/.

MALLOC(3) Linux Programmer's Manual MALLOC(3)

NAME
 malloc, free, calloc, realloc - allocate and free dynamic memory

SYNOPSIS
 #include <stdlib.h>

 void *malloc(size_t size);

a. If sbrk() fails, a pointer to address -1 is returned

b. malloc() is a syscall

c. brk() can be used to disallocate memory

d. This manual page of brk() is correct for Linux kernel 4.16

e. brk() is a syscall

Your answer is incorrect.

The correct answers are:
This manual page of brk() is correct for Linux kernel 4.16,

brk() can be used to disallocate memory,

brk() is a syscall,

If sbrk() fails, a pointer to address -1 is returned

Check the memory sections that can be allocated at run time after the process has been initialized.

--

a. Heap

b. Environment data

c. Stack

d. Text

Your answer is incorrect.

The correct answers are:
Stack,

Heap

Question 12
Not answered

Marked out of 1.00

Check all the true claims about the functions shmat() and shmdt(). An excerpt of their manual page is given below.

NAME
 shmat, shmdt - System V shared memory operations

SYNOPSIS
 #include <sys/types.h>
 #include <sys/shm.h>

 void *shmat(int shmid, const void *shmaddr, int shmsg);

 int shmdt(const void *shmaddr);

DESCRIPTION
 shmat()
 shmat() attaches the System V shared memory segment identiUed by shmid to the address space of the calling process. The attaching address is speciUed by shmaddr with one of the following
criteria:

 * If shmaddr is NULL, the system chooses a suitable (unused) page-aligned address to attach the segment.

 * If shmaddr isn't NULL and SHM_RND is speciUed in shmsg, the attach occurs at the address equal to shmaddr rounded down to the nearest multiple of SHMLBA.

 * Otherwise, shmaddr must be a page-aligned address at which the attach occurs.

 In addition to SHM_RND, the following sags may be speciUed in the shmsg bit-mask argument:

 SHM_EXEC (Linux-speciUc; since Linux 2.6.9)
 Allow the contents of the segment to be executed. The caller must have execute permission on the segment.

 SHM_RDONLY
 Attach the segment for read-only access. The process must have read permission for the segment. If this sag is not speciUed, the segment is attached for read and write access, and the
process must have read and write permission for the segment. There is no notion of a write-only shared memory segment.

 SHM_REMAP (Linux-speciUc)
 This sag speciUes that the mapping of the segment should replace any existing mapping in the range starting at shmaddr and continuing for the size of the segment. (Normally, an EINVAL
error would result if a mapping already exists in this address range.) In this case, shmaddr must not be NULL.

 The brk(2) value of the calling process is not altered by the attach. The segment will automatically be detached at process exit. The same segment may be attached as a read and as a read-
write one, and more than once, in the process's address space.

 A successful shmat() call updates the members of the shmid_ds structure (see shmctl(2)) associated with the shared memory segment as follows:

 shm_atime is set to the current time.

 shm_lpid is set to the process-ID of the calling process.

 shm_nattch is incremented by one.

 shmdt()
 shmdt() detaches the shared memory segment located at the address speciUed by shmaddr from the address space of the calling process. The to-be-detached segment must be currently
attached with shmaddr equal to the value returned by the attaching shmat() call.

 On a successful shmdt() call, the system updates the members of the shmid_ds structure associated with the shared memory segment as follows:

 shm_dtime is set to the current time.

 shm_lpid is set to the process-ID of the calling process.

 shm_nattch is decremented by one. If it becomes 0 and the segment is marked for deletion, the segment is deleted.

RETURN VALUE
 On success, shmat() returns the address of the attached shared memory segment; on error, (void *) -1 is returned, and errno is set to indicate the cause of the error.

 On success, shmdt() returns 0; on error -1 is returned, and errno is set to indicate the cause of the error.

ERRORS
 When shmat() fails, errno is set to one of the following:

 EACCES The calling process does not have the required permissions for the requested attach type, and does not have the CAP_IPC_OWNER capability in the user name-
 space that governs its IPC namespace.

 EIDRM shmid points to a removed identiUer.

 EINVAL Invalid shmid value, unaligned (i.e., not page-aligned and SHM_RND was not speciUed) or invalid shmaddr value, or can't attach segment at shmaddr, or
 SHM_REMAP was speciUed and shmaddr was NULL.

 ENOMEM Could not allocate memory for the descriptor or for the page tables.

 When shmdt() fails, errno is set as follows:

 EINVAL There is no shared memory segment attached at shmaddr; or, shmaddr is not aligned on a page boundary.

NOTES
 After a fork(2), the child inherits the attached shared memory segments.

 After an execve(2), all attached shared memory segments are detached from the process.

 Upon _exit(2), all attached shared memory segments are detached from the process.

Question 13
Not answered

Marked out of 1.00

Question 14
Not answered

Marked out of 1.00

a. shmat() attaches a shared memory segment at whatever address provided as argument (void * shmaddr)

b. When a process that has performed a shmat() exits, all shared memory segments it has attached are automatically disallocated.

c. After a fork, both the parent and child processes share the memory segments previously attached with shmat() by the parent process

d. A shared memory segment detached with shmdet() is immediately disallocated by the OS

e. If the "void * shmaddr" argument of shmat() is NULL, then an error is returned

Your answer is incorrect.

The correct answer is:
After a fork, both the parent and child processes share the memory segments previously attached with shmat() by the parent process

Check all the true claims about the execution of the C code provided below.

#include <stdlib.h>
#include <string.h>
#include <stdio.h>

int funnyAllocation(char *buf, int b) {

 b = b+ 2;
 buf = (char *) (malloc(sizeof(char) * 5));
 memcpy(buf, "hello", 6);
 return b;
}

int main(int argc, char*argv[]) {
 int b = 8;
 char *buf = (char *) (malloc(sizeof(char) * 5));
 int returned = funnyAllocation(buf, b);
 printf("The content of buf is: %s\n", buf);
}

a. The memory allocated by the call to malloc() in main() is Ulled in funnyAllocation()

b. The execution can provoke a memory allocation error

c. At the end of this program execution, the value of b is 10

d. hello is always printed in the standard output

e. argv is not used

Your answer is incorrect.

The correct answers are:
argv is not used,

The execution can provoke a memory allocation error

What is the average waiting time of the following set of tasks scheduled with Shortest Job First?

Processes ; Arrival Time ; Duration

p1 ; 5 ; 3

p2 ; 2 ; 4

p3 ; 7 ; 2

p4 ; 6 ; 1

p5 ; 10; 1

Answer: ×

The correct answer is: 1.2

Question 15
Not answered

Marked out of 1.00

Question 16
Not answered

Marked out of 1.00

$ ls -l /dev/

...

crw-r----- 1 root kmem 1, 1 Jan 16 17:07 mem

crw-rw-rw- 1 root root 1, 8 Jan 16 17:07 random

crw------- 1 root root 249, 0 Jan 16 17:07 rtc0

...

a. The real-time clock can be read by all users

b. A member of the "root" group can set the real-time clock

c. The "random" device can be read by all users

d. The "random" device is a character device

e. The "random" device can return a block of characters

Your answer is incorrect.

The correct answers are:
The "random" device is a character device,

The "random" device can be read by all users

Check all the true claims about a C program.

a. The program is in charge of dis-allocating resources since the Operating System cannot do it once the program has terminated.

b. A C program cannot start another C program without using a system call.

c. The execution of a C program involves the Operating System

d. A C program currently executing a sub-function from its main cannot exit until this sub-function has returned to the main function.

e. Calling the "exit()" function immediately terminates the C program that returns to the OS.

Your answer is incorrect.

The correct answers are:
The execution of a C program involves the Operating System,

A C program cannot start another C program without using a system call.

Question 17
Not answered

Marked out of 1.00

The paper entitled "Analysis of Traditional Hard Disk Scheduling Algorithms: A Review" was published in 2021 by Bamboat et al. It compares the fairness and seek time for different datasets of
transactions on disks., and for different disk scheduling algorithms (e.g., SSTF, C-SCAN, etc.).

Check all the true claims that follow the paper content.

Section 5 of their paper is as follows:

This paper discussed different disk scheduling algorithms and compared their performances on two lists of I/O requests to determine each algorithm’s time to execute the queue processes. Disk head
scheduling takes into account two key concerns: throughput and fairness. Throughput refers to the number of jobs completed per unit time. Whereas, fairness refers to each job being treated equally and
is ultimately served. An effective scheduling algorithm seeks a balance between these two issues. The best algorithm has the highest level of fairness and throughput. Table 11 shows the comparison
between total seek time of all disk scheduling techniques and their overall throughput and fairness for each track in the requested queue.

Table 11 shows the comparison of total seek time of all disk scheduling techniques along with their overall throughput and fairness for each track in the request
queue. The measures set for throughput and fairness include better, good, bad, moderate, and poor, as shown in Table 11. Figure-1 shows that the Optimize Two Head Disk Scheduling Algorithm
(OTHDSA) has outstanding performance among all Disk Scheduling Techniques.

a. This study takes into account three different loads on disk

b. Taking into account only the total seek time, SCAN is better than C-LOOK

c. From their study, we can easily conclude on the best disk scheduling algorithm for real-time systems

d. The curve of Figure 1 contains more information than Table 11

e. According to the two selected datasets, and according to their their testing approach, one algorithm always performs better than the others

Your answer is incorrect.

The correct answers are:
According to the two selected datasets, and according to their their testing approach, one algorithm always performs better than the others,

Taking into account only the total seek time, SCAN is better than C-LOOK

Question 18
Not answered

Marked out of 1.00

Question 19
Not answered

Marked out of 1.00

Question 20
Not answered

Marked out of 1.00

Check all the true claim about the code below. This code is taken from the dump1090 software used to analyze ADSB messages sent by aircrafts.

struct stDF *interactiveFindDF(uint32_t addr) {
 struct stDF *pDF = NULL;

 if (!pthread_mutex_lock(&Modes.pDF_mutex)) {
 pDF = Modes.pDF;
 while(pDF) {
 if (pDF->addr == addr) {
 pthread_mutex_unlock (&Modes.pDF_mutex);
 return (pDF);
 }
 pDF = pDF->pNext;
 }
 pthread_mutex_unlock (&Modes.pDF_mutex);
 }
 return (NULL);
}

a. The function guarantees to have the mutex unlock when the function returns

b. The function returns NULL if it cannot lock the mutex

c. This function may be stuck in an inUnite loop if the data structure is badly built

d. This function manipulates a binary tree structure

Your answer is incorrect.

The correct answers are:
The function returns NULL if it cannot lock the mutex,

The function guarantees to have the mutex unlock when the function returns,

This function may be stuck in an inUnite loop if the data structure is badly built

Check all the true claims about Inter Process Communications.

a. Memory can be shared between processes without the permission of the OS

b. Killing a process is a communication between two processes

c. In the shell, the "|" symbol represents a communication between two processes

d. Memory sharing relies on the use of the Memory Management Unit if present

e. Files can be used to exchange data between processes

Your answer is incorrect.

The correct answers are:
In the shell, the "|" symbol represents a communication between two processes,

Memory sharing relies on the use of the Memory Management Unit if present,

Files can be used to exchange data between processes,

Killing a process is a communication between two processes

Check all the true claims about interrupts and real-time systems

a. To improve the handling of deadlines, Interrupt Service Routines can be split between user mode and kernel mode

b. Interrupt Service Routines can always be preempted by urgent software tasks

c. The scheduler of RTOS schedules both all real-time tasks and all Interrupt Service Routines

d. Interrupt Service Routines can prevent other parts of the kernel and other software tasks to execute by masking interrupts

e. Interrupt Service Routines are Urst executed in user mode

Your answer is incorrect.

The correct answers are:
To improve the handling of deadlines, Interrupt Service Routines can be split between user mode and kernel mode,

Interrupt Service Routines can prevent other parts of the kernel and other software tasks to execute by masking interrupts

