brk() and malloc()

Check all the true claims about brk() and malloc(). To help you, we provide the
manul page of brk() below.

BRK(2) Linux Programmer's
Manual BRK(2)
NAME

brk, sbrk - change data segment size

SYNOPSIS
#include <unistd.h>

int brk(void *addr);
void *sbrk(intptr_t increment);
Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

brk(), sbrk():
Since glibc 2.19:
_DEFAULT_SOURCE ||
(_XOPEN_SOURCE >= 500) &&
I (_POSIX_C_SOURCE >= 200112L)
From glibc 2.12 to 2.19:
_BSD_SOURCE || _SVID_SOURCE ||
(_XOPEN_SOURCE >= 500) &&
I (_POSIX_C_SOURCE >= 200112L)
Before glibc 2.12:
_BSD_SOURCE || _SVID_SOURCE || _XOPEN_SOURCE >= 500

DESCRIPTION

brk() and sbrk() change the location of the program break, which defines
the end of the process's data segment (i.e., the

program break is the first location after the end of the uninitialized data
segment). Increasing the program break has the

effect of allocating memory to the process; decreasing the break deallocates
memory.

brk() sets the end of the data segment to the value specified by addr, when
that value is reasonable, the system has enough
memory, and the process does not exceed its maximum data size (see

setrlimit(2)).

sbrk() increments the program's data space by increment bytes. Calling

sbrk() with an increment of 0 can be used to find
the current location of the program break.

RETURN VALUE
On success, brk() returns zero. On error, -1 is returned, and errno is set to
ENOMEM.

On success, sbrk() returns the previous program break. (If the break was
increased, then this value is a pointer to the

start of the newly allocated memory). On error, (void *) -1 is returned, and
errno is set to ENOMEM.

CONFORMING TO
4.3BSD; SUSv1, marked LEGACY in SUSv2, removed in POSIX.1-2001.

NOTES
Avoid using brk() and sbrk(): the malloc(3) memory allocation package is
the portable and comfortable way of allocating memory.

Various systems use various types for the argument of sbrk(). Common are
int, ssize_t, ptrdiff_t, intptr_t.

C library/kernel differences

The return value described above for brk() is the behavior provided by the
glibc wrapper function for the Linux brk() system

call. (On most other implementations, the return value from brk() is the
same; this return value was also specified in

SUSv2.) However, the actual Linux system call returns the new program
break on success. On failure, the system call re-

turns the current break. The glibc wrapper function does some work (i.e.,
checks whether the new break is less than addr)

to provide the 0 and -1 return values described above.

On Linux, sbrk() is implemented as a library function that uses the brk()
system call, and does some internal bookkeeping so
that it can return the old break value.

SEE ALSO
execve(2), getrlimit(2), end(3), malloc(3)

COLOPHON

This page is part of release 4.16 of the Linux man-pages project. A
description of the project, information about reporting

bugs, and the latest version of this page, can be found at
https://www.kernel.org/doc/man-pages/.

Linux
2016-03-15 BRK(2)

This manual page of brk() applies to all Linux 4 versions

brk() can be used to allocate memory

brk() can be used to disallocate memory

malloc() can be used to allocate memory

malloc() can be used to disallocate memory

malloc() is a syscall

brk() fails if and only if not enough memory is available

brk() is a syscall

Chunks of malloc

malloc() manages memory at user level. It requires pages from the OS if
necessary, and handles the allocated pages in a fine way, thus allowing a user to
require from one byte to billions of bytes. The structure used for this
management is called a chunk. A chunk is defined as follows in the
documentation of malloc:

An allocated chunk looks like this:
Chunks of malloc

Check all the true claims below.

This figure shows that a linked list is used to store allocated chunks

Chunks reference each other with a size information

Size reserved for application data is stored in the chunk header

The memory where chunk header is saved is not writable by the application

if a process writes more bytes than the allocated one, a chunk size might be
erased

Dynamic memory allocations

Check the memory sections of processes containing memory dynamically
allocated during run time

Data

Text

Stack

Heap

Exceptions in RTOS

Check all the true claims listed below about exceptions, interrupts and processes
in RTOS

Urgent processes can have a higher priority than interrupts

Moving part of an Interrupt Service Routine as a regular process makes the
system slower

Urgent processes can preempt Interrupt Service Routines

Scheduling policies of RTOS always select first Interrupt Service Routines

Exceptions in real-time systems are sometimes ighored to execute urgent
processes first

Exiting a blocked state

We assume that a process p is currently in "blocked" state. Which reasons might
apply for the process p to go back to "Runnable" state?

Process p has been killed

The currently running process has used all its quantum of time

The currently running process has called _exit()

The administrator has started a poweroff procedure

An IO operation started by p has completed

A signal not ignored by p has been sent to p

Fork: true or false?

Select all the true claims about fork() in Linux

fork() is a syscall

fork() creates a new process

After fork() has completed, child and parent processes share the same
address space

After fork() has completed, the memory content of the child and parent
process are equal

After fork(), the child process runs first

fork() returns the pid of the parent process to the child process

Handling pages

Linux maintains a list of allocated memory on the heap for each:

process

page

thread

kernel module

Hard disk drives

Hard disk drives may have an embedded request scheduling policy (e.g. SSTF).
Check all the true claims.

Embedding a scheduling policy into a disk discharges the Operating System
from doing it

Embedding a scheduling policy into a disk avoids having a disk driver in the
Operating System

Embedding a scheduling policy into a disk allows the Operating System to
have its own request scheduler for the disk

A DMA engine must be used for the scheduling policy to be activated

File caching by the Operating System makes the use of an embedded
scheduling policy useless

Kernel

Check all the true claims.

Kernel is the central program of an Operating System

When a computer starts, the kernel of the Operating System is the first code
to be executed

The kernel first starts before system services can be started

Kernel remains in memory until the computer is stopped

Message queues : Linux code

The following code is taken from the ipc/msg.c file of the Linux Kernel 4.19.225.
Check all the true claims that follow.

/**
* newque - Create a new msg queue

* @ns: namespace
* @params: ptr to the structure that contains the key and msgflg

b3

* Called with msg_ids.rwsem held (writer)
*/
static int newque(struct ipc_namespace *ns, struct ipc_params *params)
{
struct msg_queue *msq;
int retval;
key_t key = params->key;
int msgflg = params->flg;

msq = kvmalloc(sizeof(*msq), GFP_KERNEL);
if (unlikely(!msq))
return -ENOMEM;

msq->q_perm.mode = msgflg & S_IRWXUGO;
msqg->q_perm.key = key;

msqg->q_perm.security = NULL;
retval = security_msg_queue_alloc(&msqg->q_perm);
if (retval) {

kvfree(msq);

return retval;

by

msqg->q_stime = msqg->qg_rtime = 0;
msq->q_ctime = ktime_get_real_seconds();
msq->q_cbytes = msqg->qg_gnum = 0;
msq->q_qgbytes = ns->msg_ctimnb;
msq->q_lspid = msq->q_Irpid = NULL;
INIT_LIST_HEAD(&msg->q_messages);
INIT_LIST_HEAD(&msqg->q_receivers);
INIT_LIST_HEAD(&msqg->q_senders);

/* ipc_addid() locks msq upon success. */
retval = ipc_addid(&msg_ids(ns), &msqg->q_perm, ns->msg_ctimni);
if (retval < 0) {

ipc_rcu_putref(&msg->q_perm, msg_rcu_free);

return retval;

by

ipc_unlock_object(&msqg->q_perm);
rcu_read_unlock();

return msq->q_perm.id;

The function creates a new message

The function returns a pointer to a message queue

This function returns an error if no "id" is available

The function allocates a new structure but has to disallocate it in case of
error

The created object can handle receivers

Preemption points

Which of the following assertions on preemption points are true?

Preemption points make the system run faster.

When running, the kernel can be preempted only at preemption points.

When a preemption point is reached, the OS scheduler is called.

Preemption points can be reached only if interrupts have been disabled

Real-time tasks are executed only after a preemption point has been reached

Random device

$ Is -al /dev/random

crw-rw-rw- 1 root root 1, 8 Oct 21 13:07 /dev/random

/dev/random corresponds to any kind of devices

This device has no major number

The minor number of this device is "8"

This device is a character device

Synchronization

A process that is perpetually denied necessary resources is in a state

starvation

deadlock

cache

progress

Threading and pointers

Carefully read the (fantastic) following code, and check the true claims below.

#include <stdlib.h>
#include <pthread.h>
#include <stdio.h>
#include <unistd.h>

long b;

void *t1(void *arg) {

inta = 10;

b = &a;

sleep(random() % 5);

printf("End of t1; a=%d\n", *((int *)b));
b

void *t2(void *arg) {
sleep(random() % 5);
int *myP = b;
myP[0] = 5;
myP[100] = 6;
printf("End of t2\n");

int main(void) {
inti;
pthread_t tid_h;
pthread_t tid_ny;

pthread_create(&tid_h, NULL, t1, NULL);
pthread_create(&tid_ny, NULL, t2, NULL);

pthread_join(tid_h, NULL);
pthread_join(tid_ny, NULL);

return (0);

¥

This program may provoke a segmentation fault

This program always provokes a segmentation fault

This program may smash the stack of thread tid_h without the OS noticing it

If tid_ny totally executes first, then no error is produced

Time slot and process states

Assuming a round robin scheduling with time slots, after a process p has used all
its quantum of time, p switches from the current state to?

Blocked?

Runnable?

Terminated?

USB keys

Check all the true claims among the following ones.

A USB key is a block device

A USB key is generally a read and write device

A USB key has a mechanical latency

A USB key must be ejected before files can be written to it

Caching makes writing operations to the memory cells of USB keys faster

Creation of processes

Assume we compile this program and we start it: a new process "p" is created in

the Operating System. How many new processes are started by "p" and its
descendants?

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>

int main(void) {
pid_t ret;
ret = fork();

ret = fork();
if (ret == 0) {
ret = fork();

¥
¥

Answer

Hard disks on my computer

How many hard disks do I have on my computer?

$ Is -al /dev/sd*

brw-rw---- 1 root disk 8, 0 Oct 21 13:07 /dev/sda
brw-rw---- 1 root disk 8, 1 Oct 21 13:07 /dev/sdal
brw-rw---- 1 root disk 8, 16 Oct 21 13:07 /dev/sdb
brw-rw---- 1 root disk 8, 17 Oct 21 13:07 /dev/sdb1
brw-rw---- 1 root disk 8, 32 Oct 21 13:07 /dev/sdc
brw-rw---- 1 root disk 8, 33 Oct 21 13:07 /dev/sdcl

Answer

How many processes?

How many processes are created by this shell command?
$ cat /etc/os-release | grep VERSION > test

Answer

Support for several processors or cores

From this command, does your kernel support several processors?

$ uname -a
Linux box 4.2.9 #2 SMP Fri Sep 8 14:42:43 UTC 2017 i686 GNU/Linux

True
False

Envoyer

